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THE ALL-TO-ALL ALTERNATIVE ROUTE PROBLEM (*)

by Brian BOFFEY (*)

Abstract. - There are varions K-best route problems associated with a network. The one studied
here is that offinding,for all node pairs (s, t), a best route front s to t together with an alternative
route which is optimal subject to not containing thefirst edge ofthe best route. The relevance ofthis
problem to dynamic vehicle guidance and to routing in communication networks is briefly discussed.
An algorithm is developed whose complexity, under conditions likely to be met in practice, is
established. An illustrative example is given.

Keywords: Network; AT-best routes problem; alternative routes.

Résumé. -Il y a plusieurs problèmes d'itinéraire « K-best » associés à un réseau. Celui qui est
étudié ici est celui qui consiste à trouver pour toutes les paires de nodes (s, t) un meilleur trajet
pour aller de s à t ainsi qu'un trajet alternatif qui n'utilise pas le premier arc de la meilleure route.
La pertinence de ce problème à « dynamic vehicle guidance » et en réseaux de communications est
discuté brèvement. Un algorithme est développé, dont la complexité est établi sous des conditions
que l'on rencontre probablement en pratique. Un exemple est joint.

Mots clés : Réseau; ^-meilleur routes problème; routes alternatives.

1. INTRODUCTION

The usual aim in routing problems is to findi a best (shortest, least cost,
quickest, most reliable, ,..) route from an origin s to a destination t; or,
more generally, best routes from a set of origins to a set of destinations.
Sometimes, there may be features whieh are of importance, but are not easily
or conveniently included in the model. In this case, a useful strategy is to
generate the best K routes according to the model, with the final choice
being made in the light of non-modelled features.

(*) Received March 1992.
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3 7 6 B. BOFFEY

There is, however, not a single type of /T-best route problem. Here we
shall distinguish three types (though no doubt there are more), and these will
be described for a single origin s and a single destination t,

1. Unrestricted K-best route problem

The K best routes from s to t are computed subject to no restrictions
except, possibly» that the routes contain no repeated nodes (e.g. Perko [12]).
The final choice of route is made by the 'decision-maker' in the light of
non-modelled features (e.g. [7]).

2. Disjoint K-best route problem

It is required to find a set of K routes from s to t which are edge-disjoint
and such that the worst of these is as good as possible. A slightly more
restrictive version is to require node-disjointness. Such problems arise in
connection with communication networks for which reliability is paramount
(e. g. communication networks in banking). For example it may be required
that a network be designed with specified pairs of nodes connected by two
(more generally K) node-disjoint routes (Monma and Shallcross, [8]).

3. Restricted K-best route problem

It is required to find a set of K routes from s to t such that the first edge
of the k-ih best is not contained in the q-th best for \<k<q<K [14]. Such
problems arise in connection with networks subject to congestion [2, 3] and
when edges may fail.

To reduce congestion in computer networks, Rudin [13] suggested that
packets of information from node s to node t should be sent from s along
the first edges of the first, ..., ^T-th best restricted routes from s to t with
probabilities pi (s, f) satisfying

Pi 0 , t)>P2(s,t)>...> PK 0 , f).

Such a strategy might be useful in connection with the emerging dynamic
guidance Systems for road traffic [1]. A possibility for a directive System
would seem to be to take k= 2 and to dispatch traffic from s along the first
links of the first and second best routes. (If the second best route is 'too
much worse' than the first then p2 (s, t) should be set to zero otherwise
confidence in the System is likely to be lost.)

Topkis [14] discussed the restricted üT-best route problem in relation to link
failure in computer networks employing virtual circuit routing. There might
also be scope for its use in a dynamic guidance System for diverting traffic
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in the immédiate aftermath of a road being 'blocked' due to an accident
(cf. section 4).

Most networks are sufficiently reliable for the probability of more than
one edge being faulty simultaneously to be negligible. That is, the case
K-2 is particularly relevant and the associated problem will be termed the
alternative route problem. It is the all-to-all version of this problem that will
form the principal subject of this paper.

In section 2, the Nemhauser (A*) algorithm is briefly described and its
application to the single-origin single-destination alternative route problem
given. Section 3 then develops an algorithm for the all-to-all version of the
alternative route problem, and an illustrative numerical example is given.
Finally, some conclusions are given in section 4 where it is argued that the
proposed algorithm has computational advantages under conditions likely to
be met in practice.

2. THE SINGLE-ORIGIN SINGLE-DESTINATION PROBLEM

For convenience, undirected networks will be replaced by the
corresponding symmetrie directed networks with each edge i—j of length
a being replaced by a pair of oppositely directed arcs i—j andj-i each of
length a. Routes in these directed networks will be termed 'paths'. In the
subséquent development, the following notation will be used:

N=(V, A9 a) a directed network with node set V, arc set A and are
length fonction a

aij the length of are i-j from node i to node j
'd(i, j) the (shortest) distance from node / to node j
d(j) an abbreviation for d(s, j) where s is the origin
dist(j) label at node y [an upper estimate of d(j)]
CAND set of candidate nodes for scanning.

To find the (shortest) distance from node s to node t in network N the
following gênerai algorithm may be adopted. For simplicity, it is assumed
that there does exist a path from s to t, and the details of pointer manipulation
relating to shortest path calculation are omitted.
Label Setting Algorithm
STEP 1 (Setup) Set dist(s) = 0; dist(j) = ™ aüj^s; CAND = {s).
STEP 2 (Sélection for scanning)

Select ueCAND; CAND^CAND-{u}.
If u = t
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then terminate with d{s, t) = dist(t).
STEP 3 (Scanning and label update)

For each are u-v do
begin if dist{y)>dist(u) + a.w

then dist(v)^dist(u) + auv\ CAND^-CANDU{v}.
end
Return to step 2.

It will be assumed that the select operator of step 2 is such that a node
u satisfying

dist O) + h(u)= MIN {dist (x) + h (x)}
xeCAND

is chosen for some specified function h and that préférence is given to node
t when it satisfies the minimisation criterion. This yields a valid algorithm
for finding the distance from s to t if h is a consistent function [9]; that is,
it satisfies the generalised triangle inequality

h (x) < axy + h (y) for all arcs x ~ y.

Moreover, when u is selected for scanning dist(u)=d(s, u) [9].
Note that if h is a consistent function then so is h* defined by

/i* (x) = h (x) — constant for ail nodes x.

Consequently, without loss of generality, it will be assumed that h(t)=O
implying that h(x) is a lower bound to d{x, i) for ail nodes x [9],

The label-setting algorithm with node sélection as described will be termed
Nemhauser's algorithm. (This algorithm, under the name 'A*', appeared
in the artificial intelligence field in 1968 [6].) In the particular case of
h=0, Nemhauser's algorithm effectively reduces to the well-known Dijkstra
algorithm; however, taking h=0 is potentially a poor choice for h as may
be seen from the next two results.

THEOREM 1: If {by} i-jeA is any set such that bij<aij for ail arcs i~j\ then
hb is a consistent function where

hh (x) = db (x, t) for ail nodes x G V.

db (x, t) dénotes the distance from node x to node t when the set {by} i-j^A
is used to provide arc lengths.
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Proof: The result is true since, for any are jt-y,

hb (x) = db (z, t) < dh (x, y) + db (y, t) < a ^ + db (y, t) = a ^ + /ib (y).

THEOREM 2: If{btj} i-j^A and {czy} »_J^A are rvw sets ofnumbers satisfying
Cij<bij<aij for all arcs i-j, then Nemhauser's algorithm with consistent
function hb results in no more nodes being scanned than if consistent function
hc were used.

Proof: When t is selected for scanning the set of nodes that have been
scanned is ([6], [9], [10])

S (h) = {x\dist (x) + h(x) < dist (t) + h (t)}

= {x\dist(x) + h(x) < dist(t)}.

The desired result follows by noting that S(hb)ÇS(hc).

It is thus seen that, providing the effort expended on calculating h(x) is not
too great, it is advantageous to choose h to be as 'strong' a consistent function
as possible [that is h(x) should be as near as possible to da(x, t)—d(x, i)].

A consistent function is easily obtained for networks carrying non-linear
flow with the cost a^-fy {yij) of flow in are i-j being an increasing function
fij of the flow intensity i/y in i—j. Setting bij-ftj (0)<aij and using hb provides
a consistent function (cf theorem 1) which we will call the zero intensity
function. Spécifie examples are: fij{vij)-bijl{\-Vij) when the cost (delay)
is modelled as an (M/M/l) queuing system; fij(vij)=bij + kijv$ for the cost
(delay) in a road network, ky being a constant.

We now turn to the problem of finding the shortest and alternative routes
from node s to node t. First, the shortest path, 7r say, may be found by
a shortest path algorithm (e.g. Dijkstra's algorithm or, preferably, a label-
correcting algorithm [5]) applied to find the shortest route from every node
to node L Then the alternative path is found by 'removing' the first are
of 7T and applying Nemhauser's algorithm with the zero-intensity function
providing a consistent function.

3. THE ALL-TO-ALL ALTERNATIVE ROUTE PROBLEM

For the gênerai restricted Asbest route problem Topkis [14] introduced
an algorithm based on Dijkstra's algorithm. lts complexity is 0(KD) where
O(D) is the complexity of Dijkstra's algorithm. The Topkis algorithm could
indeed be used to solve the all-to-all alternative route problem (^=2).
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However it requires a relatively large amount of initialisation with K+1
labels having to be set at every node x. Consequently, it seems that it might
be worthwhile seeking an alternative algorithm. A description of one such
attempt follows.

The approach consists of two phases:

Phase (1) : first, for each node x, détermine shortest paths frorn every
other node.

Phase (2) : for each node x, find the restricted second shortest path to
every other node.

Phase (1) may be effected by using a Dijkstra-like algorithm or, preferably,
a label-correcting algorithm based on deques (Gallo and Pallottino, [5])
applied for each node x Alternatively, an integrated scheme may be used [4].
However» whatever the overall scheme used, the effort of finding all first
shortest paths must be embedded somewhere in the calculations. Applying
the simple scheme of section 2 would require Nemhauser's algorithm to
be applied for every pair of nodes. This would be time consuming and it
seems there should be scope for utilising the information gained in phase (1)
to reduce the effort of finding alternative paths. A description of how this
might be realised will now be given.

First, the set of nodes V-{s} is partitioned into sets F(j), with one for
each neightbour j of s, such that x is in F(j) only if are s—j is the first are
on a shortest path from s to x. This is achieved by setting F(J) to be the set
of descendants of j relative to some shortest path tree rooted at s. Figure lb
shows an example of such a partitioning for 5 = 16

F(12)={1,2, 5, 12}

F(13)={4,7, 8,9, 13}

F(17)={3, 6, 10, 11, 14, 15, 17, 18}.

Note that there are two distinct shortest path trees and node 3 could equally
have been included in F (12).

For nodes in the set F (f) the alternative path may be found by applying a
shortest path algorithm from origin s with link s-j removed (or, equivalently,
its length set to oo). Note that if link s-j does not pro vide the shortest path
from s to j [that is, j^F(j)] then the shortest path calculations from s with
5-7 removed are redundant and may be omitted. It is, therefore, assumed
from now on that s—j is the first shortest path from s to j . Then j becomes,
in a sense, the most 'inconvenienced' node when link s - / i s removed. This
is formalised in theorem 3 [3].
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(a)

Figure 1. - With regard to the network of (a) and origin node 16, (b) shows F (12), F (13)
and F (17). In (c) is given the tree obtained using Nemhauser's algorithm to find the
restricted second shortest path from node 16 to node 13; the numbers beside nodes are
of the form dist(x) + h(x).

THEOREM 3: d2(s9j)—di(s,j)>d2(s,x)—d\(s,x), for all x£F(j), where
dm (a, b) dénotes the length of the m-th best restricted path from node a to
node b. [Thus, d\ (a, b) = d(a, b) for all node pairs (a, b).]

Proof: By the définition of F(j),

(s, x) = dx 0 , j) + d i ( j , x). (1)

The second best restricted shortest path from s to j foUowed by the shortest
path from j to x provides a path from s to x which is not the designated
first shortest path. Hence

x). (2)
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The desired result follows immediately from (1) and (2).
Note that the stronger result dm (s9 J)-d\ {s, j)>dm (s, x)-d\ (s, x), for all

x£F(j), is in fact true. The proof is almost identical to that of theorem 3.
Consider now the application of Nemhauser's algorithm from origin s with

a consistent function h defined by h(x)-da (x9 j) for all x (that is, b^-a^ all
i-jEA in the notation of theorem 1). Suppose the algorithm is terminated
as soon as a node u satisfying

h(u) (3)

is selected for scanning.

THEOREM 4: Let CAND be the set of temporarily labelled nodes when
application of Nemhauser' s algorithm is terminated by condition (3), Then,
for all xeF(J)

d2 (s, x) — min {dist (v) + d\ (z/, x)}. (4)

Proof: Let w be any value of v for which the minimum of (4) occurs
with the restriction that if there is a tie and u minimises (4) then w-u, Now
suppose there is a shortest path TT from w which goes to x via s. Firstly, w
cannot be equal to u for then

s is on 7T and w = u

(j,x) xeF{j)

by(3)

by the triangle property

d\ {u, x) = di (n, s) + di (s, x)

= di(u, s) + di(s,j) + .

> di O, j) + dx (i, x)

> dx (u, x)

which is impossible. Hence, W / M and

dist(u) + di (u, x)

> dist (w) + di (w, x)

= dist(w) + di (tu, 5) + di (5, x) by assumption

= dist(w) + di (w, s) + dx (s, j) + dx (j\ x) x G F(j)

> dist (w) + di (wy j) + di (j, x) by the triangle property

> dist (u) + di (u, j) + di (j, x) by définition of u

> dist(u) + di (uy x). by the triangle property

But this is a contradiction and therefore no shortest path from w goes via s.
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Let 7Ti be a shortest path from s to w not including s-j, and ir 2 be a
shortest path from w to x. Then, x' = 7rj 7r2 is a path from s to x which does
not include s-j. Suppose 7r' is not a shortest such path there being a shorter
one 7T*. If m is the first node on TT* which does not belong to CAND, then

dist (m) + h(m) — length of TT* predecessor of m has been scanned

= c?2 (5, x) définition of 7r*

< length of TT' définition of 7r*

<dist(w)+h(w) lengthof 7Ti < dist(w)

< dist (m)+h(m) définition of tu.

Therefore, the inequalities must be equalities; in particular,

x) - dist (w) + h (w).

Moreover, 7vf pro vides the alternative path from s to JC.

When Nemhauser's algorithm is terminated in this way, it is unlikely
that j will have been labelled and the number of nodes scanned will often
be very small. In section 4, it is shown that, under reasonable conditions,
the computational effort required in phase (2) is essentially quadratic in the
number of nodes in the network; that is, the calculation is asymptotically
dominated by phase (1).

Example 1: For the network of figure lût, find the alternative paths from
node 16 to all nodes in F(13).

Solution'. After nodes 12 and 17 have been labelled node 17 is selected for
scanning. Since the termination criterion (3) is not met, node 17 is scanned
and nodes 14 and 18 become labelled. At this point node 14 is selected
for scanning but

h(lA) = 7 < 8 - dx (14, 16) + di(16, 13).

It can be concluded that the alternative path from node 16 to node 13
is via the first shortest path 16-17-14 from 16 to 14 followed by the first
shortest path 14-9-13 from 14 to 13.

When Nemhauser's algorithm terminâtes CAND-{ 12, 14, 18} and, by
theorem 4

J2(16, 4) = min(6+8, 5 + 9, 6 + 12) = 14, alternative path is 16-12-5-7-4 or
16-17-14-9-8-4
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d2(l6, 7) = min(6+5, 5 + 10, 6 +13) = 11, alternative path is 16-12-5-7
J2(16, 8) = min(6+12, 5+5, 6 + 8) = 10, alternative path is 16-17-14-9-8
d2(l6, 9)=min(6+12, 5 + 3, 6+6) = 8, alternative path is 16-17-14-9

, 13)=min(6+8, 5 + 7, 6 + 9) = 12, alternative path is 16-17-14-9-13.

4. DISCUSSION

What of the complexity of the method when the zero-intensity function
is utilised? It would be inappropriate to treat the are lengths as being
unrestricted since:

(1) routing tends to even out are loads;
(2) if an arc does become heavily overloaded then access to it is likely

to be restricted in some way: in a computer network this is achieved by
congestion and flow control [2]; in a dynamic guidance System a seriously
overloaded are could be regarded as being failed when the next shortest path
computation [phase (1)] is carried out.

Consequently, the length of any are might be expected not to exceed a
'smal!' multiple of its minimal length. Accordingly, the set of are lengths will
be said to be of M-bounded variation if for every arc i-j, H<aij(i)<MH7

where aij (t) dénotes the value of atj at time t and H is a constant for the
network in question. In essence M-bounded variation means that there are no
very short arcs and that no arc becomes very congested. Since the problem
is linear, cost units may be chosen so that H=l. For simplicity therefore
M-bounded variation will be assumed to mean l<aij(t)<M.

THEOREM 5: Let N be a network satisfying
(1) no node has more than A outgoing arcs (Le. the outdegree of no node

exceeds A)
(2) the set of arc lengths is of M-bounded variation
(3) for each arc i-j there is a path with no more than e arcs from i to j

and which does not include i-j
(4) A, e and M are independent of n and constant.

Then phase 2 of the all-to-all alternative route algorithm can be executed
in O (h) time.

Proof: The length of the second shortest path is at most e M in length.
Consequently, this may be found by scanning no more than AeM nodes even
if Dijkstra's algorithm is used. Since Dijkstra's algorithm will require at least
as many nodes to be scanned as Nemhauser's (theorem 2) it follows that the
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second shortest path from node i to node y may be found in 0(1) time (if
Perko's device [11] is used for label initialisation). A node has at most A
neighbours and so it follows that all applications of Nemhauser's algorithm
can be carried out in O (1) time. Finally, the application of theorem 4 requires
the comparison of 0(1) terms for O (ri) nodes and so requires O(ri) time.
This complètes the proof.

The essence of the above result is that provided the stated conditions are
satisfied, the application of Nemhauser's algorithm involves only a local
search whatever the size of the network. Thus, if calculations are distributed
it is only necessary to have knowledge of local arc lengths and, for test (4),
distances from local nodes only are needed. It follows that at any node only
O(nQ) items need be stored where Q is independent of n. The magnitude
of Q is indicated by the proof of theorem 5, but in order to get a better
feel for the amount of computation involved the special case of a square
grid network will be considered for M-1, 2, 3. The worst case occurs when
all the arcs on the second shortest path are at maximum length and all
others are at minimal length. Results are given in the table below in which
v is the number of permanently labelled (/. e. scanned) nodes using (3)
as termination criterion andJ? is the number of temporarily labelled (i.e.
labelled but unscanned) nodes.

TABLE 1

(Square grid: A =4, e = 3).

M

V

B

1

4

7

2

7

9

3

12

11

Corresponding results for an hexagonal grid are shown in table 2.

TABLE 2

(Square grid: A =3, e = 5).

M

y

B

1

7

7

2

10

9

3

10

9

It thus appears that the amount of computational effort required to find ail
alternative paths by the proposed algorithm is very modest.
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The use of the zero-intensity fonction in connection with non-linear
network flow can result in a 'weak' consistent function if the network is
fairly congested; perhaps we can do better. If the optimal flow pattern/or the
system is being considered, we may expect that the removal of an arc will lead
to some are flows being increased but none being decreased This is likely
to be the case for computer network networks and for dynamic guidance
Systems with a strong directive element. If this supposition is justified then
bij may be taken as the value of a^ before are failure. Moreover, the values
of h(x) = da(x, t) are already available from phase (1).

In any case, since the system is dynamic the ay will be changing so that
information is always a little out of date. Also, it is likely that few alternative
paths will come into opération between successive shortest path calculations.
Consequently it is better to perform the alternative path calculation only
as necessary. This is quite feasible as only one application of Nemhauser's
algorithm is necessary together with some minimisations (cf. example l).

Finally, is the restriction to K-2 essential? The answer is no» since
theorem 4 généralises readily. This time Nemhauser's algorithm is applied
m-1 times with at application q, the first arcs of the first q restricted paths
barred.

THEOREM 6: Let CAND be the set of temporarily labelled nodes when
application of Nemhauser's algorithm is terminated by condition (3), Then,
when the q-th application of Nemhauser' s algorithm terminâtes

dq+i (s, x) — min {dist(u) + dq (V, x)} for all x E F (j).
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