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A DISTRIBUTED SEARCH ALGORITHM FOR
GLOBAL OPTIMIZATION ON NUMERICAL SPACES (*)

by Pierre COURRIEU (*)

Communicated by Jacques CARLIER

Abstract. - This article présents a new algorithm that searchesfor the global extrema ofnumerical
functions ofnumerical variables, This "Distributed Search" algorithm builds an evolving "visiting"
probability distribution on the search domain, and the process converges towards states in which
the probability density is maximal on the neighborhood of the target extrema. The convergence of
the algorithm is demonstrated. Then its performance is tested on some "hard" test functions and
compared to that of a recent, well-known algorithm.

Keywords: Global optimization, distributed random search.

Résumé. - Nous présentons dans cet article un nouvel algorithme pour la recherche des extrema
globaux de fonctions numériques de variables numériques. Cet algorithme, dit de « Recherche
Distribuée », fait évoluer une distribution de probabilités de visite sur le domaine de recherche
suivant un processus convergeant vers des états ou la densité de probabilité est maximale au
voisinage des extrema recherchés. La convergence est démontrée, et les performances sont testées
sur des problèmes difficiles, en comparaison avec un algorithme récent et réputé.

Mots clés : Optimization globale, recherche aléatoire distribuée.

1. INTRODUCTION

An optimization problem usually involves a numerical function defined
on a domain of a given search space (the space of variables). The idea is
to find the point or points in the search domain where the function takes on
an extreme value (global minimum or maximum, depending on the case). A
direct algebraic solution is rarely available, and a simple approach consisting
of systematically scanning the search domain with a selected step is generally
not usable, since the size of the search domain (in précision units) increases
exponentially as the number of variables increases.
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282 P. COURRDEU

Optimization problems vary in difficulty, depending on the properties of
the function to be optimized. Uniextremal functions are generally the easiest
to optimize because "local search" procedures can be used. Such procedures
(relaxation methods, gradients and conjugate gradients [6]) are efficient, and
guarantee finding the solution. But the functions encountered in practice
usually have multiple extrema, making it necessary to use "global search"
methods, which can generally only guarantee finding the solution with a given
degree of probability. Extensive efforts have been made within the past few
years to solve hard optimization problems. Certain algorithms rely on the
principle of a converging random walk based on Markov chains and Gibbs
distributions (Metropolis algorithm [12]. Simulated Annealing [5, 10, 15]).
In other methods global distributions of probabilities represented by samples
of points belonging to the search domain are made to converge (Genetic
Algorithms, [7, 9]). In still other methods, convergence is achieved by the
global distribution control of a set of local searches (Multistart Algorithms,
Clustering and Multilevel algorithms [1, 13, 14]). Other approaches exist,
although most of them appear to be more interesting from a theoretical point
of view than a practical one (see [16]).

Presented below is a new global optimization algorithm based on a
"distributed search" principle. A previous version of this algorithm was
presented in [2] and applied with success in [3] and [11]. The present
version is more elaborate.

2. DISTRIBUTED SEARCH ALGORITHM

The algorithm presented here is applicable to the search for the global
extrema of a numerical function ƒ defined on a bounded domain x of Rn or
of a discrete subset of Rn. It is designed to take advantage of certain global
features of functions at different successive scales of analysis (these features
becoming "local" at finer scales). The basic idea is very simple: Let XI and
X2 be two points in x such that f (Xl)<f (X2). Provided the function is not
too irregular, then there exists a set of points X in a neighborhood of varying
size around XI such that f (X)<f (X2). At the limit, if the neighborhood is
reduced to XI itself, then this is necessarily true. The algorithm's task is to
sample x according to a convergent distribution of probabilities controlled
by estimation of appropriate neighborhood scales at the various stages of
the process.

The function need not have any special properties for the basic algorithm
to be applicable, and it suffices to be able to evaluate the function at all
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points in the search domain. The présentation given below includes a variant
of the algorithm, which can be selected via the Boolean variable DLS
(Directional Local Search). This variant theoretically requires the fonction
to be C1 continuous, but in practice this is not necessary since the gradients
used can be replaced by simple approximations for non-smooth functions and
empirical functions. Indeed, it is quite sufficient to approximate the partial
derivatives with the corresponding finite increase ratios since, by définition:

ƒ O i , •••, xk + h, ••-, xn) - ƒ (xi, ---, xk, •••, xn) df
Iim - = —— .

h -> 0 h OXk

The algorithm is presented in Pseudo-Pascal. The following conventions
are used: intervais are shown in the usual notation, real interval bounds are
separated by two periods (..). The term "random" followed by an interval
dénotes a random value taken from a uniform distribution of probabilities
on the specified interval. The algorithm shown hère concerns the search for
minima, but it would of course apply to a search for maxima if the opposite
of the function were used (i. e. f : = - ƒ ).
{ Parameters: DLS: Boolean selector of the secondary régulation type; M: sample size; a>0 :
speed parameter; e>0: arbitrarily small constant; }
{ Sample initialization: use an Mxn cell matrix and an M f-value vector }
opt :=1;
for j : =1 to M do

begin
for i: =1 to n do xi(J) := random [min *,-, max x{\\
evaluate ƒ(*(ƒ));
if ƒ(*(/))<ƒ (X(opt)) then opt :=y ;
end;

{ Scale initialization (in order to correctly cover the search domain) }
„ . 1 A max Xi ~- min Xi
for i: =1 to n do Si := 2M1/"tg(7r(0.5)1/772) *
{ Progression}
b =0; T :=M/10;
repeat

w :=0; k :=0;
for i :=1 to n do di : =0;

repeat
k :=Jk+l;
p :=random [l.Jlf]; q :=random [1..M];
if ƒ (X(p))>f (Xq)) then swap q and p values;
if random [0, l[<b then begin { variant }

X := X(p) - rVf(X(p));

{ Détermine the step length r using a standard bisection
method (see [16], pp. 21-22). This procedure returns ƒ (X) }

end { variant }
else begin

for /' :=1 to n do
xi :=st tg (7T random]-l/2, l/2[)+jc/(p);

{ if necessary replace X by its projection in the search domain }
evaluate ƒ (X);

vol. 21, n° 3, 1993



284 P. COURRIEU

end;
if ƒ (X)<f (Xq)) then begin { winning trial }

X(q):=X; f(X(q)):~f(X).
w :=w+l;
for i ; = 1 to n do di :=4+(^(p)-x{)2;
end;

if ƒ (X(q))<f (X(opt)) then opt : =q;
untU (w=T) or (k=M);

if DLS then begin { variant } b :=(T~w)/2 T; c :=1; end {
else c :=w/r;

if w>0 then for i ;=1 to n do s, :=(dna) (4/w)1/2+e;
until (stopping raie);

2.1. The parameters

The Boolean parameter DLS sélects a secondary régulation approach which
occasionally enters into the process, The régulations are explained below.
The parameter M is the size of the sample of points used by the algorithm to
encode a distribution of visiting probabilities on the search domain %* The
greater the sample size M, the more complex the encodable distributions, so
the complexity of the function to be optimized must be considered when the
value of this parameter is chosen (a minimum of 100 or so is recommended
for multiextremal functions). Note that function complexity should not be
assessed solely on the basis of the number of local extrema. We shall see
in the expérimental section below that there are functions with an infinité
number of local minima which are easy to optimize with a distributed search»
provided that good global properties are available. The parameter a controls
the overall progression speed, and also affects the activation probability of
the secondary régulations (usual range: 0.5<a< 1). The parameter e has little
effect in practice, but it guarantees that the s,- scales will not drop to zero
and thereby prevents the process from freezing indefinitely. e is generally
chosen to be smaller than the desired précision for the resuit.

2.2. Génération of points

The coordinates of the visited points are ordinarily generated independently
by means of the generating function: JC,-=J,- tg (TT Ui)+mu with u\ taken at
random from a uniform distribution on ]-l/2, 1/2 [. The random variable
defined as such obeys an n-dimensional Cauchy law with density:

gn(X; m, 5 ) - f[ —
i = i TT Si 1 + ((xi~mi)/si)2 '

The point m is the center (mode and médian) of the distribution, and the
scale parameters, the s^'s, are the quartile déviations. Cauchy's law has no
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moments, and in particular its variance is infinité, which is a reflection of
the fact that the density decreases slowly and is never negligible. Cauchy
variables have properties which seem particularly favorable for the method.
In particular, we tested exponentially decreasing densities (e. g. logistic or
Gaussian) and found that the algorithm was difficult to tune and that its
performance was not as good. However, other point-generating methods
can be effectively used when the problem exhibits certain constraints. In
particular, the generating density can have a bounded support, provided it
never goes to zero on the search domain. And it does not necessarily have
to be isotropic.

A second type of generating process can occasionally be used when the
DLS variant is selected. In this case, a new point X is generated simply by a
directional local search step from a point X(p) selected from the sample. Note
that in this case, it is perfectly useless if not undesirable to do a complete
local search, since it would most likely, and laboriously, lead to a local
extremum. Moreover, this does not correspond to the régulation function the
process was supposed to fulfill.

2.3. Régulations

The primary régulation is done by the estimation of neighborhood scales
(square roots of the mean dt's), which outputs "winning trials" at each step of
the process. This estimation makes it possible to adjust the scale parameters
(the si's) of the generating functions while also taking the chosen progression
speed into account (determined by the parameter a). The smaller the a, the
larger the génération scales relative to the progression scales, such that the
number of winning trials tends to decrease and the exploration of the domain
is less dependent on the current sample, and thus less risky. Choosing a
small a also increases the probability that the secondary régulations, which
are useful in case of difficulty, will be activated.

It can just so happen that at a certain analysis scale, the function to
be optimized exhibits some "bad" properties such as numerous poorly
differentiated basins. In this case, the scale values are generally overestimated
by the primary régulation. The process tends to stagnate for some time, and
then start up again, but time has been uselessly wasted and the resulting scale
estimations are based on winning samples which are too small (the normal
sample size is set at T-M110). The secondary régulations take effect when
the winning try rate goes below 10%. These régulations force the process to
probe basins whose scale is smaller than the current analysis scale, efficiently
solving the stagnation problem. In the basic version of the algorithm, this is
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simply done by multiplying the génération scales by the ratio (c) between
the observed number of winning trials (w) and the expected number of wins
(T). In the DLS variant, the secondary régulation is obtained by increasing
the probability (b) of the directional local search steps as a fonction of the
failure rate (the upper limit of b is set at 0.5). This variant can be used
to process the fonction's directional local properties when they are relevant
(which, by the way, is not the gênerai case for multiextremal fonctions).

2.4. Stopping rules

Various stopping rules can be used, depending on the requirements for
the application in question. One can simply limit the number of fonction
calls (consumption criterion), or wait until the génération scales are close
to e (précision criterion on x). One can also wait until the dispersion of
the fonction values in the sample is close to zero. The advantage of this
last stopping criterion is that it avoids unwanted triggering of secondary
régulations in cases where the process is coming to an end and the sample
is still concentrated on one or more extrema with the same value.

2.5. Convergence

Although of minor interest from a practical stândpoint, it might be useful
for theoretical clarity to study the limits of convergence of the process. A
simple and quick démonstration based on some gênerai concepts found in
[16] is given below.

Assume the search domain x ha s a foute measure JU(X), and that x i§

either discrete or the fonction is continuous at at least one optimum. Note
that the first two conditions are always satisfied in practice since numbers
are represented in finite form in the computer.

Assume that the visiting probability density at all points of x has a non-
zero lower limit of À as the calculation time tends towards infinity. Let ft be
the value of the fonction at the point visited by the process at time t, and
let x$ t>e the subset of points in x o n which the fonction differs from the
optimal value by some quantity less than 8, where 6>Q. Under the gênerai
conditions stated above, this subset has a non-zero measure. The stochastic
convergence can be expressed as:

P r o b { 3 t < fc; | ƒ* - min ƒ (JQ | < * }

(Replace min with max for a maximum search)
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It suffices to show for the Distributed Search that the limit À is not equal to
zero. For the basic version of the algorithme the visiting probability density
associated with any point X in x a t time t is:

M o
Vt(X) = £ jjPtifiXïïgniXiXj, St).

Pt is the cumulative probability function of the values of the function in
the sample at time t if we are maximizing, and is its one's complement if
we are minimizing. Multiplying by 2/M, we obtain the probability that the
y'-th point in the sample will be taken as the center of the génération, the
sum of the probabilities obviously being equal to 1. Since the search domain
is bounded, it follows directly from the above expression that the density
V has a non-zero limit À on x> provided none of the components of the
scale vector S of the génération density gn has a zero limit. But precisely
this limit is set at e>0.

In the DLS variant of the algorithm, the density Vt is expressed in a similar
manner by replacing the density gn by a combination of the following type:
i\-bt) gn(X; Xj, St)+bt prob { XeDLS (XJ) }, where ör<0.5 and DLS(X,)
is a set of nearly zero measure. Given that the density gn always has a
non-negligible weight, the conclusions are the same for the variant and the
basic version.

CONCLUSION: The Distributed Search is stochastically convergent.

3. EXPERIMENTAL STUDY OF PERFORMANCE

3.1. Test functions

Presented below is an expérimental study of the performance of the
distributed search algorithm on some hard minimization problems. Most test
functions used in the current literature usually only have a small number
of local extrema, which severely limits the scope of the tests. We were
nevertheless able to find two families of standard hard functions for the
test: Csendes functions [4] (see also [16], p. 16) and Griewank functions [8]
(see also [14], p. 76). Since these functions have extreme, highly contrasted
properties, a third family of functions with more balanced properties was
selected. This family will be called here the "wave" functions. The three
families of functions were used with 2 and 10 variables.
Csendes test functions:

Cn(X) = £ xf (2 + sin —Y -1 < Xi < 1.
i=l \ xi )

vol. 27, n° 3, 1993



2 8 8 P. COURRŒU

Contrary to what might appear, this function is defined at X=0, precisely
where it has its unique global minimum (0). The function possesses a
countable infinity of local minima on the search domain, and the oscillation
frequency tends towards infinity on the neighborhood of the global solution.
This property makes it practically impossible to minimize by applying
local searches. Ho wever, Csendes functions have very favorable global
characteristics: they oscillate between two 6-degree convex hulls which
approach each other on the neighborhood of the solution.

Wave functions:
1 n

Wn} k(X) = - J2 1 ~ cos (k Xi) exp(-ar?/2), -TT < Xi < TT.
n i—i

Wave functions have their unique global minimum (0) at X=0. The number
of local minima on the search domain is Jâ (for k odd) or (£+1)" (for k
even). Only Jb=10 was used in this study, which gave 121 local minima
for n=2, and 2.5937x 1010 local minima for n=lO. The function oscillâtes
between two exponential hulls of constant mean (1) whose distance from
each other is maximal on the neighborhood of the solution. This is not a
favorable global characteristic, although the lower hull is potentially a good
source of information, provided the search process manages to move far
enough into the basins.

Griewank test functions:

Gn(X) = 1 + E xj/dn - ft cos {xi/y/%),

For n=2: dn=200, -100<Jcf<100. For n=10: ^=4,000, -600<JC,-<600.

These functions have their unique global minimum (0) at X=0, and have
a large number of local minima. They have many "trap" basins on a
large area around the solution, where the global properties of the function
seem to be quite unfavorable. However, in the neighborhood of certain
points, Griewank functions have some special directional local properties.
To get an idea of these properties, assign one of the variables a value like
Xi = (2 k + 1 )TT\ /^ /2 5 k G Z. In this case, the partial derivatives for
ail other variables point to the solution, which is a stable attractor for the
variables that reach its neighborhood.

3.2. Référence algorithm

Because the expérimental results for problems like these are rare in the
literature, a référence algorithm was used; We chose the Dekkers and Aarts
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algorithm [5], which is a recent version of the Simulated Annealing algorithm
adapted to numerical spaces. It is like a sequential Multistart algorithm in
that it uses multiple directional local search steps, whose global distribution
is governed by a simulated annealing rule. The algorithm was implemented
in compliance with the indications provided by the authors except that the
stopping rule was simplified. This rule was replaced by a "température"
thresholding, involving a complete local search starting from the best point
found whenever the température fell below 10~8. For the test functions used,
this order of magnitude for the température was indeed found to correspond
to a "stalling" point in the process, after which no progress was observed. We
used the tuning values proposed by the authors (namely: mo=lOO, xo=O-9>
£o=lO, /=0.75), except for the speed parameter that usually had to be
reduced since a S of 0.1 proved to be unsuitable to problems this diffieult
To détermine 6, a trial and error procedure was used to obtain 10 successive
runs with no error in the resuit for each problem. This search succeeded
for three out of six problems (W2, G2» G10), but it was impossible, even
once, to obtain an exact resuit for the remaining problems. The value used
for «5, then, was simply the minimum value found in those problems which
were solved (0.005).

3.3. T\ining the distributed search

The distributed search parameters DLS, M, and a were also initialized
by trial and error until we obtained 10 successive runs with no error in the
resuit of any of the problems. This criterion obviously did not imply that
the probability of error was equal to zero, which a priori is impossible in
finite time. The results were considered exact (for ail algorithms) when the
process found a function minimum equal to 0, within the précision range
of the compiler (Turbo-Pascal 5.0 on a Compaq 486/33L computer). The
parameter e was set at 10"20

3.4. Results

The results are presented in Table. For each algorithm and each problem,
the table gives the values of the parameters and the mean number of function
calls for the 10 runs ( ƒ calls). Each gradient calculation was counted as a
calculation of the function. Also given are the mean error on the function
value (/error) and the mean eucHdean distance between the best point found
and the global minimizer (X error). Standard déviations (with 9 degrees of
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freedom) are shown in parentheses to the right of the corresponding means.

TABLE

Parameters, and mean performance on 10 successive runs.

Algorithm

Problem

C2 parameters
/calls
/error
X error

CIO parameters
/calls
/error
X error

W2 parameters
/calls

W10 parameters
/calls
/error
X error

G2 parameters
/calls

G10 parameters
/calls

Dekker & Aarts
(1991)

5=0.005
46,549 (13,149)

3.38E-15 (l.OlE-14)
2.42E-03 (1.65E-03)

6=0.005
430,301 (41,406)

1.30E-10 (U8E-10)
3.76E-02 (4.76E-03)

5=0.005
29,485(11,534)

No error

«5=0.005
221,752 (29,660)

0.210 (0.028)
2.927 (0.494)

5=0.005
52,793 (4,741)

No error

5=0.01
251,870 (10,208)

No error

Distributed
Search

DLS false, M=100, a=1.00
7,028 (949)

No error

DLS false, A/=200, a=1.00
89,453 (2,304)

No error

DLS false, M=100, a=0.75
4,161 (371)

No error

DLS false, M=250, a=0J5
119,799 (2,617)

No error

DLS true, M=150, c*=0.80
5,712 (393)

No error

DLS true, M=300> a=0.60
205,584 (4,084)

No error

The results are quite clear and highly predictable, given the properties of
the various functions. The functions which exhibit the best global properties
are the easiest ones for the distributed search, regardless of their local
properties. The secondary régulations were never activated for functions C2,
C10, W2, and G2, such that the choice of true or false for the DLS option
had absolutely no effect on the results. For function W10, the secondary
régulation was activated quite early in the process but the chosen option
only had a minor effect, the only différence being that convergence was
obtained an average of 10% f aster with the "DLS true option". The most
difficult function for the distributed search was G10 whose optimization
clearly required the DLS true option for the secondary régulation. With
DLS false, the process frequently became trapped by local minima where
the function is approximately equal to 0.01. Note that the minimization of
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Griewank fonctions is relatively easy for the Dekkers and Aarts algorithm;
this is logical given its strong directional local component. Note finally
that Rinnooy Kan and Timmer [14] reported some disappointing results
conceming the minimization of the same Griewank functions by a "Multi
Level Single Linkage" algorithm. The exact reasons for their failure are not
very clear, however.

4. CONCLUSION

The above global optimization algorithm based on a distributed search
principle appears to be well-suited to handle the global characteristics of
functions at different scales. Moreover, the algorithm's DLS variant also
efficiently handles the directional local characteristics of functions. The high
performance levels obtained clearly surpass current standards in this field.
Further research efforts are needed to develop an efficient way of determining
the best parameter values for each problem and the constraints spécifie to
each application. One potential approach would be to estimate and analyze
the frequency spectrum of the fonction, but to date, the only available
parameter estimation method is trial and error. Furthermore, attempts to
generalize the distributed search method to various topological spaces such
as the ones encountered in combinatorial optimization have not given rise
to truly convincing results.
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