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BAYESIAN TESTING OF FUZZY PARAMETRIC
HYPOTHESES FROM FUZZY INFORMATION (*)

by M. R. CASALS ( l)

Communicated by Jean-Yves JAFFRAY

Abstract. -In this paper, we perform the extension of the problem of testing parametric hypotheses
when the available expérimental information and the hypotheses considered arefuzzy subsets of the
sample space and the parameter space respectively. Such an extension will be characterized as a
special fuzzy décision problem when we assume the Bayesian framework. Furthermore, the Bayes
principle of testing will be extended and we shall analyze some of its properties.

Keywords: Bayes test, fuzzy information System, fuzzy set, fuzzy décision problem, simple fuzzy
hypothesis, test of fuzzy hypothesis from fuzzy information, Zadeh' s probabilistic définition.

Résumé. - Dans cet article, nous étendons le problème du test des paramètres au cas où
l'information disponible et les hypothèses considérées sont des sous-ensembles flous de l'espace
d'échantillon et de Vespace des paramètres respectivement. Une telle extension sera caractérisée
comme un problème spécial de décision floue lorsque nous nous plaçons dans le cadre Bayésien. En
outre, le principe bayésien des tests sera étendu et nous analyserons certaines de ses propriétés.

Mots clés : Tests Bayésiens, système d'information flou, ensemble flou, problème de décision floue,
hypothèse simple floue, test d* hypothèses floues à partir d'informations floues, définition probabiliste
de Zadeh.

1. INTRODUCTION

To test a statistical hypothesis is to perform an experiment concerning this
hypothesis and, on the basis of the outcome of the experiment, to conclude
whether the hypothesis can be considered as correct.

An approach to the Bayesian optimality criterion of testing statistical
hypotheses concerning a random experiment when the available expérimental
observations are imprécise has been studied in [1] and [2]. This extension
has been carried out under the assumption that these imprécise expérimental
observations may be assimilated with fuzzy information associated with
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the experiment (Tanaka et ai [10], [12] and Zadeh [17]), and the set of
ail available imprécise observations détermines a fuzzy information system
(Tanaka et a/., [12]). On the basis of these requirements, the use of Zadeh's
probabilistic définition (Zadeh, [16]) allowed us to extend immediately the
Bayesian optimality criterion.

In the same way, we are now going to extend the Bayesian optimality crite-
rion of testing fuzzy parametric hypotheses, when the available expérimental
information is fuzzy.

2. PRELIMINARIES

Now we remind some définitions which will be needed in the sequel.

Let X=(X, Px* Fe) be an experiment, where (X, @x) is a measurable space
and Fe belongs to a family of probability measures P={Fe/6E®} associated
with the experiment X.

DÉFINITION 2.1: A simple fuzzy parametric hypothesis with respect to
experiment X is a fuzzy subset of the parameter space © associated with X.

DÉFINITION 2.2: A fuzzy event X on X , characterized by a Borel-measurable
membership function \x,x from X to [0, 1], where (i* (x) represents the "grade
of membership" of x to X (or degree of compatibility of x with x), is called
fuzzy information associated with the experiment X.

In practice, the grade of membership [x* (x) is often regarded as a kind of
"probability with which the observer gets the fuzzy information x when he
really has obtained the exact outcome x (see [12])". This interprétation cannot
be ngourously formalized within the probabilistic framework, since x is not
identified with an ordinary subset of X. Nevertheless, it justifies intuitively
the assumption of orthogonality for the set of all observable events from X,
that is, to consider that this set is a fuzzy information system associated with
X, defined as follows.

DÉFINITION 2.3: A fuzzy information system X associated with the experiment
X is a fuzzy partition with fuzzy events on X, that is, a finite set of fuzzy
events on X satisfying the orthogonality condition Yl \JÜ* (x) = l, for all

xex
xex.

If a simple random sample of size n from the experiment X is considered
and the ability to observe does not permit one to perceive exactly the
expérimental outcomes, the following notions supply an operative model
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to express the available sample observations with fuzzy imprécision (Gil et
al [6]).

Let X^=(X", &xn> PQ) be a simple random sample of size n from X, and
let X be a fuzzy information System associated with X.

DÉFINITION 2.4: An n-tuple of éléments in X, (xu . . . , xn), representing
the algebraic product of X\9 . . . , xn, is called sample fuzzy information of
size n from X.

DÉFINITION 2.5: A fuzzy random sample of size nfrom X, X^ (associated
with the random sample X ^ ) is the set consisting of all algebraic products
of n éléments in X.

The probability measure PQ on (Xn, (3x*0 induces a probability distribution
Ve on X defined (Zadeh, [16]) as follows.

DÉFINITION 2.6: The probability distribution on X induced by PQ is the
mapping VQ from X^ to [0, 1] given by

V0(x
n)= f ^n{xn)dP9{xn), ior<ù\xneX^

(the intégral being the Lebesgue-Stieltjes intégral).

Remark 2.1: It is worth emphasizing that we could use a more
gênerai définition for the concepts in Définitions 2.4 and 2.5, so that
the membership function of each rc-tuple xn G X^ would be given by
the expression /x*» {xn) = f{jJiXl (ari), . . . , pXn (xn), X\, • • •, *n) for ail
JC"=(JCI, . . . , xn)£Xn, ƒ being a function taking on values in the unit interval
[0, 1] and satisfying some natural conditions. Ho wever, in practice, when
we consider examples involving probabilities, one of the most operative
and suitable functions ƒ is the product of the first n components. This
suitability is confirmed by the fact that the probabilistic independence of
the expérimental performances implies that (in the Zadeh's sense [16]) of
the fuzzy observations from them, whenever ƒ is the product above.

3. AN EXTENSION OF BAYES OPTIMALITY CRITERION

If we consider the problem of testing a concrete fuzzy parametric hypo-
thesis about 9 on the basis of sampie fuzzy information, a natural way to
approach this problem is testing the considered fuzzy hypothesis (denoted by
the null fuzzy hypothesis) against the fuzzy parametric hypothesis determined
by the complementary fuzzy subset of the considered fuzzy hypothesis
{alternative fuzzy hypothesis).

vol. 27, n° 2, 1993
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This problem of testing the null fuzzy hypothesis 9$ against the alternative
fuzzy hypothesis #i=#o from fuzzy information (denoted by 0o I X^)) may
be regarded as a special case of the fuzzy décision problem (Tanaka et al,
[12]), the following are the four essential éléments of the problem:

- T h e fuzzy state space, 0={#o> ^ î ) -

- T h e action space A—{ao, a \ } ,

<2o="tx> accept the null fuzy hypothesis #o"

öti="to reject the null fuzzy hypothesis 0Q"

- A loss function, L: 0x^4—>[0, +oo), defined by

L 0U ao)=a>O, L (0>o, ax)=

- The information supplied by a fuzzy information System X associated
with X (or, more precisely, the information supplied by a fuzzy random
sample #<"> from X).

The considered problem of testing may be intuitively described as foliows:
Given a sample fuzzy information we wish to find a reasonable décision rule
(perhaps a randomized décision rule) that leads to the décision of rejecting
or not the null hypothesis. This choice will be carried out by means of
a test function of fuzzy hypotheses from fuzzy information, K\ X^—^[0, 1].
From now on, /C will dénote the class of all tests fonctions for the problem

0
The problem we have just described is essentially a probabilistic-

possibilistic extension of the problem of testing statistical hypotheses based
on exact information. However, the first problem can be theoretically
regarded as a particularization of the second one (this fact is one of the
main advantages of the present formulation of the fuzzy problem and the
considered approach). Consequently, the principles and procedures for testing
statistical hypotheses may be immediately established for the fuzzy case as
follows:

In the statistical décision problem a reasonable décision rule should
minimize the expected loss, risk function, in a certain sensé. Thus, Bayes
procedure require the minimization of some expression depending on the
risk function.
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Similarly, we assume that a reasonable décision rule in the fuzzy décision
problem can be characterized by a minimization in a certain sense of the
"risk function", which for a test function K E /C is defined as follows:

DÉFINITION 3.1: The mapping 11 from Ox/C to [0, +oo) defined by

for all 0 E 0 and /c E /C, is called the risk function associated with K at 0.
(£ being the conditional probability distribution on X^ given 0 E 0) .

In order to extend the Bayesian principle of reasonability to the fuzzy
framework we must assume that @ can be endowed with the structure
of a probability space, so that there exist a prior distribution g (G), ÖE©,
expressing the additional information about the expérimental distribution.
On the other hand, when the fuzzy hypothesis 0o is a fuzzy event on 0
(that is, the membership function of 6Q, \I>Q , is Borel measurable), Zadeh's
probabilistic définition, (Zadeh, [16]), let us establish the prior probability

distribution on 0, Q (ff) — \ /x̂  (0) dg (6). This assumptions will permit us

to define the prior risk of a test function as

DÉFINITION 3.2: The prior risk of a test K E /C, with respect to the prior
distribution g on @, is defined by:

On the basis of the preceding concepts we can formally describe the
proposed extension of the Bayes criterion as follows:

DÉFINITION 3.3: Given a prior distribution g on ®, a test K* E K is said
to be an optimal test with respect to g, or a Bayes test for fuzzy hypotheses
from fuzzy observations with respect to g, if: n (£, /c*) ̂ n ({?, /c) for all tests
XJ€/C.

Then, we set up two properties of the proposed extension which guarantees
that given any finite set of fuzzy events on X we can improve a fuzzy partition
of X, so that for any fuzzy event in the first set there exists one element in
the fuzzy partition leading to the same inference, when an optimal test is
applied. We conclude that the orthogonality constraint assumed for the f.i.s.
associated with the experiment does not entail a relevant loss of generality
for the Bayes criterion established in this paper. In order to set up such
properties, we next introducé a previous concept:

vol. 27, n° % 1993
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DÉFINITION 3.4: We say that K G K is a scale invariant test with respect to
the membership function ofthe sample fuzzy information, whenever there exist
a positive constant a such that: K (x™)=K (xg) if /A*» (xn) = a . / ^ (xn),
for ail

THEOREM 3.1: Given a test K £ K there exist s an almost sure scale invariant
test with respect to the membership function ofthe sample fuzzy information,
K G tC, such that its risk function equals that ofthe former test.

Proof: Let x? be a sample fuzzy information, /=1, . . . , r, whose
membership functions differ from each other almost sure in positive
constants a i , . . . , ar_i, that is: (j,xn (xn) = ai ./A*» (xn) for almost ail
xneXn

J Ï = 1, . . . , r - l and K(XV>)^K(XV'\ i9j=l9 . . . , r, i^j.

We can define the test ic as follows:

f - r - l r-l

and K — K,, otherwise.

Then:

a)

i = l, ..., r - l
i, j = l, ..., r - l ;

ï.s.) f or all Ö G G.

(a.s.) for ail 0 G 6 .

and consequently: 7J(Öo, ic) = U(9o, K).

Analogously, the relation Tl(9\, K) = 1 9i, /c) is proved. •
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THEOREM 3.2: Given a prior distribution g on @, an optimal test, ifit exists,
is almost sure scale invariant with respect to the membership function of the
sample fuzzy information.

Proof: This theorem is obvious in virtue of Theorem 3.1. and the optimality
criterion in Définition 3.3. M

The following theorems connect the optimal tests based on exact informa-
tion with the optimal test based on a fuzzy information System.

THEOREM 3.3: Given a test function based on afi.s. X, there exist a test
function of the same fuzzy hypothesis, based on exact information, for which
the risk function coincides with the risk function ofthefirst test function.

Proof. Indeed, if K dénotes the test function of an arbitrary test of a fuzzy
hypothesis, which is based on the fuzzy random sample X^n\ we now define
a test of this fuzzy hypothesis, based on the random sample X ^ \ where the
test function is

kfC(xn) = } ^ K(xn)iixn(xn) for all xn€Xn

Then, for all 9 in G,

Tl (9, kK) = ƒ [L(9,

+L(0, ai)Ax:(a:n)]dL(a;n;Ö) = %(Ö, /c) •

THEOREM 3.4: Given a prior distribution g on ®, if an optimal test for fuzzy
hypotheses based on exact information and an optimal test ofthe same fuzzy
hypotheses based on afi.s. exist with respect to g, then thefirst test does not
provide more prior risk than the second test.

Proof: Indeed, Theorem 3.3 implies that the optimality criterion proposed
in this section is a restriction of the Bayesian criterion in the subset of the
tests of fuzzy hypotheses based on exact information with tests functions kK.
Then, minimizing n ((?, K) is equivalent to minimizing H (g, fcK), and if the
minimum of n (ç?, kK) is achieved it is greater than the minimum of n (ç, k)
over all the tests based on exact information with test function L •

4. TESTING OF SIMPLE FUZZY HYPOTHESES FROM FUZZY INFORMATION

Next, there will be stated a theorem providing the structure of the optimal
test given by the criterion proposed above.

vol. 27, n° 2, 1993



1 9 6 M. R. CAS ALS

THEOREM 4.1: Given a prior distribution g on ©, for testing the null fuzzy
hypotheses 0$ against the alternative fuzzy hypothesis 6\ front the fuzzy
random sample X&\ there exists a Bayes test with respect to g given by:

0 otherwise

where c*=b/a.

ÇP being the joint probability distribution on X^ and 0).

Proof: Of course, whatever the test fonction K G K may be, we have

n, Oi)\K{xn)

Then, the minimum of n(ç^ ie) over all K G K is achieved by the test
given by

1 if

O otherwise •

The following theorems establish other properties of the Bayes tests.
THEOREM 4.2: Let X be a f A.s. associated with X, and let g be a prior

distribution on ©, and assume that the null hypothesis 6Q is a completely
fuzzy event (fuzzy event with constant membership function). Then, the Bayes
test function with respect to g is independent of the available sample fuzzy
information.

Proof: Jf fiSo (9) = c0o), VÔ e e, we have V (xnj0)=c(00) .V (xn)
and V(xn, 0i°) = (1 -c(9Q)).V(xn)9 V x n G #(">. Then (Theorem 4.1),
the Bayes test function is given by (a.s. (V))

otherwise •

THEOREM 4.3: Let g be a prior distribution on ®, and let X^ be a fuzzy
random sample on Xn that only provides completely fuzzy information (or
uniformly imprécise information). Then} the Bayes test function for fuzzy
hypotheses with respect to g is independent of the available sample fuzzy
information.
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Proef. If iixn (xn) = c{*n) > O for all f€Xn, xn e X^n\ we have
V(xn, ë)=c{xn).g(e), \lxn e AfW and 0 e 6. Then (Theorem 4.1),
the Bayes test function is given by

0 otherwise •

COROLLARY 4.1: a) Let X^n\ y^ be fuzzy random samples on Xn that only
provide completely fuzzy information, and let K* (X^), K* ( 3 ^ ) be Bayes
test functions for testing #o ügainst 6\ based on X^ and y^ respectively,
with respect to a prior distribution g on ©. Then, /C* (X^) = K* (3^n)).

b) Let K* (X^)f *cg, be Bayes test functions for testing 9Q against 6\
with respect to a prior distribution g on®, based on a fuzzy random sample
X^ that only provides completely fuzzy information and without sampling,
respectively. Then, K* (X^) = /C*.

c) Given a prior distribution on ®, a Bayes test function from an arbitrary
fuzzy random sample provides less Bayes risk than a Bayes test function from
a fuzzy random sample that only provides completely fuzzy information.

Proof: This corollary is obvious, in virtue of Theorem 4.3 and the
optimality criterion in Définition 3.3. •

5. EXAMPLES

EXAMPLE 5.1: Consider a large population of insects, a proportion p of
which is infected with a given virus. From further information we assume
that we know that the parameter p follows a uniform distribution on [0, 1].

In order to test the null hypothesis "p is small" (identified with a
fuzzy event v0 on P=[0, 1] whose membership function is defined by
{IVQ (p) = l -p, pEP), against the alternative fuzzy hypothesis "/? is not
small" (identified with a fuzzy event Vi on P whose membership function is
defined by fj,Vl (p) — 1 — /xPo (p), pGP), we take a sample of 20 insects an
examine each insect independently for présence of virus. Suppose we do not
have a précise mechanism for an exact discrimination between the présence
and the absence of virus, but rather they can inform us whether ^^"with
much certainty the insect présents infection" or else ;t2="with much certainty
the insect does not present infection".

A proper mathematical model for this problem takes up the Bernoulli
experiment X associated with the présence of virus an identifies the in-
formation x1 with a fuzzy set on X={0, 1} (for instance, one where the
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membership function is \xXx (0) = 0.1, iiXl (1) = 0.9) and the information x2

with another fuzzy set on X= {0, 1} (for instance, one where the membership
is pX2 (x) = 1 - nXl (x)9 x=0, 1).

If we consider the loss function with a=ï9b=2 and the membership func-
20

tion of each sample fuzzy information of the type /i*2o (a;20) = J^ fix. (x%)

then, Theorem 4.1 leads to the following test function
1 if v = 13, ..., 20
0 otherwise

(\j=the observed frequencie of x{).

EXAMPLE 5.2: Consider the example 5.1 and we assume that the expér-
imental observation is exact, that is, X\ = 1 (jiXl (0) = 0, fiXl (1) = 1) and

Then, the particularization of theorem 4.1 leads to the test function

20{ 201 if£^
0 otherwis0 otherwise

6, CONCLUDING REMARKS

An alternative different way (see [4]) for solving a Bayesian testing fuzzy
hypothesis when the information supplied by the expérimental sampling is
exact, may be to establish an optimal fuzzy acceptance région.

The particularization of results in this paper to the case when the available
information is exact, leads to an optimal nonfuzzy acceptance région (see
example 5.2), and consequently procedures and results for both approaches
cannot be compared.
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