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Recherche opérationnelle/Opérations Research
(vol. 27, n° 2» 1993, p. 153 à 168)

ON THE MINIMUM DUMMY-ARC PROBLEM (*)

by David J. MICHAEL C1), Jerzy KAMBUROWSKI (2)
and Matthias STALLMANN (3)

Abstract. - A precedence relation can be represented non-uniquely by an acîivity on arc (AoA)
directed acyclic graph (dag). Tkis paper deals with the NP-hard problem of constructing an AoA
dag having the minimum number of arcs among those that have the minimum number of nodes.
We show how this problem can be reduced in polynomial time to the set-cover problem so that the
known methods of solving the^ set-cover problem can be applied, Several special cases that lead to
easy set-cover problems are âiscussed.

Keywords: Activity networks, dummy activities, set-cover.

Résumé. - Une relation de précédence peut être représentée (d'une manière non-unique) par un
graphe direct acyclique (gda) avec activités sur arcs (AsA). Cet article traite du problème NP-difficile
de la construction d'un gda AsA ayant le nombre minimal d'arcs parmi ceux qui ont le nombre
minimal de sommets. Nous montrons comment ce problème peut se réduire en un temps polynomial
au problème de recouvrement d'ensembles, en sorte que Von peut appliquer les méthodes connues
de résolution de ce dernier problème. Nous examinons plusieurs cas spéciaux qui conduisent à des
problèmes faciles de recouvrements d'ensembles.

Mots clés : Réseaux d'activités, activités fictives, recouvrement d'ensembles.

1. INTRODUCTION

The activities of a project are often constrained by conditions such as
"activity v cannot start until activity u has finished". Assuming that no
activity is repeated we can define a precedence relation -< on the activities,
so that u -< v rneans that u must finish before v starts. The relation -< can
be represented graphically in two different ways, by either assigning the
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activities to the nodes or to (a subset of) the arcs. In either case a directed
acyclic graph (dag) is defined. In an activity on node (AoN) dag each activity
corresponds one-to-one with a node, and we say that u -< v is represented
if there is a directed path of arcs leading from v's node to M'S node. Thus
an AoN dag is unique except for possible transitive arcs. In an activity on
arc (AoA) dag, each activity v corresponds to an arc, where parallel arcs
that share the same start and terminal nodes are permitted. We say u -< v is
represented in an AoA dag if there is a path from tu, the terminal node of the
arc for uy to $v, the start node of the arc for v (the path is empty if tu - sv).
Additional dummy arcs may have to be added to represent all constraints
of -<, and no canonical method for adding dummy arcs has been agreed to.
Thus an AoA dag is not unique.

This paper shows how to construct an AoA dag that has the minimum
number of dummy arcs given that it has the minimum number of nodes.
This defines what we will refer to hère as the dummy-are problem. Note that
this définition implies that AoA dags have one initial node and one terminal
node. Syslo [14] gives a good overview of the problem and provides a simple
counter-example that shows we cannot minimize both the number of arcs and
the number of nodes simultaneously. The problem of minimizing only the
number of nodes can be solved in polynomial time using the algorithm of
Cantor and Dimsdale [1], or the algorithm of Sterboul and Wertheimer [12].

The dummy-arc problem was shown by Krishnamoorthy and Deo [7] to
be NP-hard. Several heuristics have been proposed, some of which construct
an AoA dag directly, while others construct a dual graph. These include
algorithms proposed by Corneil et al. [3], Dimsdale [4], Fisher et al. [5],
Hayes [6], Spinrad [13], and Syslo [14, 15, 16]. Mrozek [10] gives an
algorithm to verify if heuristically produced solutions are optimal. Only
Corneil et al. claimed to have an optimal algorithm, but this was disproved
by Mrozek [11]. Some of the heuristics will solve the problem for very
restricted classes of precedence relations.

We solve the dummy-arc problem by showing how an instance of the
dummy-arc problem may be reduced (in polynomial time) to an instance
of the well-known set-cover problem. This allows us to solve the dummy-
arc problem, either heuristically or optimally, using established set-cover
algorithms and heuristics. Such algorithms are reviewed by Christofides and
Korman [2], while heuristics are reviewed by Vasko and Wilson [17]. Mrozek
[11] gives nearly the same réduction to the set-cover problem. Ho wever, our
réduction is much simpler in présentation, it leads to a more concise instance
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of the set-cover problem, and we show that it subsumes efficient algorithms
for several previously studied and some new special cases.

After developing some simple notation at the end of this section, we present
a simple construction of the minimum set of nodes for AoA dags in section 2,
and develop the réduction in section 3. Section 4 describes special cases for
which the dummy-arc problem can be solved in polynomial time.

We let G refer to the AoN dag of a given precedence relation. We assume
that G is transitively reduced, i.e., (u,v) £ G implies there exists no activity
(node) w such that (u,w) G G and (w,v) G G. The transitive closure of G is
denoted by tc(G)9 where (u,v) € tc(G) if there is a (possibly empty) path in
G from node u to node v. Let F(v) and S(v) dénote the sets of immédiate
predecessors and successors of activity v:

Let P*(v) and S*(v) be the sets of all (not necessarily immédiate) predecessors
and successors of v:

S* (v) = {w\(v,w) £tc(G)}.

Note that />*(«) C P*(v) iff S*(v) Ç S*(u), but that this is not necessarily
true for P(v) and 5(v). We extend our terminology to say that a constraint
(u,v) £ G is représentée in an AoA dag D if there is a path in D from tu to $v.

2. CONSTRUCTION OF THE MINIMUM SET OF NODES

The construction of the minimum set of nodes was first developed by
Cantor and Dimsdale [1], Their construction can be simplified as follows.
Another version of this algorithm can be found in Syslo [16]. Recall that
(sv, tv) is the arc of an AoA dag corresponding to activity v 6 G. For each
v e G, we define two pairs of activity-sets, denoted (P*(,sv), S*(sv)) and
(P*(tv), S*(fv)), where

P*(Sv) = P*(v) and S*(sv)= f] S*(u),
ueP(v)

5* (tv) = 5* (v) and P*(tv) = f) P* (w),

vol 27» n° 2, 1993
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provided that the intersection over an empty set is equal to the set of all
activities.

The minimum set of nodes is defined by the set of distinct pairs of activity-
sets. There is then a single activity-set pair, denoted (P*(/)> •$*(/))» for each
node j . The set P*(j) is the set of activities that précède node j , while S*(/) is
the set of activities that follow node j . The construction of the minimum set
of nodes is illustrated using the dag G shown in Figure 1. Table I lists the
pairs of activity-sets for each of the ten activities, while Table II lists the nine
distinct pairs defining the minimum set of nodes. By construction we have
sv = i if P*(J) = P*(sv), and tv = j if S*(j)=S*(tv). The (AoA) framework,
depicted by the solid arcs in Figure 2, is the set of activity arcs on the
minimum set of nodes, but does not include any dummy arcs. In gênerai, the
frame work may have many initial nodes and many terminal nodes. However,
it always has a single initial node S0 with P*(s0) = 0» and a single terminal
node t0 with S*(t0) = 0. The nodes % and t$ represent the project initiation
and the project termination in every AoA dag having the minimum number
of nodes. In Figure 2, S0 = 1 and t0 = 9.

Figure 1 Figure 2

3. REDUCTION TO THE SET-COVER PROBLEM

A constraint (u,v) G G is not represented in the framework defined by G
if tu ^ sv. In order to represent (urv)r a dummy path tt{tm sv) (a path of
dummy arcs which leads from tu to sv) must be added to the framework.
Identifying all unrepresented constraints can be inefficient because two or
more activities may share the same start and/or finish nodes. Therefore, we
will instead identify the set R of all node pairs (/, j) of the framework that
must be represented (i.e.f connected) by dummy paths,
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R = {(^ j) | i jz j and 3 (u, v) G G such that tu = i and sv = j } .

TABLE I

Activiîy-set-pairs

V

a
b
c
d
e
ƒ
8
h
i

j

- —

-

b
a
b

ab
a b c d
a b c e

abcdf

S*(sv)

abc de f g h ij
a b cdefg h ij
abcdefghij

dfghij
e g hij

dfghij
8 hij

hj
î
j

P*(tv)

a
b

abc
a b c d
ab c e
abcdf

abcdefghij
abcdefg h ij
abcdefghij
a b cdefg h ij

PS*(tv)

e g hij

dfghij
hij
hj
i
j
-
-
-
—

TABLE n

Minimum Set ofNodes

i

1
2
3
4
5
6
7
8
9

_
a
b

ab
abc

ab c d
ab c d e
abcdf

ab c d e f g h ij

S*(i)

abcdefg h ij
e g hij

dfghij
g hij
hij
hj
i

j
-

Labels

Sa Sb Sc

ta Se

tb Sd Sf
S8
te

td Sh
te Si
tfSj

tg th H tj

A set of dummy arcs D is a (feasible) solution to the dummy-arc problem if D
represents ail pairs in /?, Le., if there exists a dummy path TT(/,/) in D for every
(i,j) e R. An optimal solution is a solution D for which |D| is minimum.
A pair (/,;) is feasible if P*(ï) C P*(j) (equivalently S*(/) C S*(i)). In other
words, a pair is feasible if it can be added as a dummy arc without introducing
any constraints not consistent with -<. This définition of feasible allows
redundant pairs (/, j) for which there is a path in the framework from /
to y, but it is evident from subséquent définitions that such pairs are not used
in our réduction.

For each pair (**, j) e R we define

X(i, j) = {k | (fe, j) € iîand(i , k)is feasible},
Y (h Û) = {l I (h l) € #and (/, j) is feasible}.
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If (i,j) € R and both (i, k) and (k,j) are feasible, then k = tx for some activity
x implies k G X(i, 7), and / = sy for some activity y implies / G Y(i, j).
Therefore, each dummy path ir(/, j) representing (z, j) G R can cross only
the nodes of X(i, 7) Ü y(ï, 7). The nodes of Y{i, /)-X(i, 7) and X(Ï, 7>F(z, 7)
are initial and terminal nodes in the framework, respectively.

The set R may be divided into three mutually exclusive subsets as follows:

RS = R- (Rx U

For k e X(i, f) n F(/, ;*), both (t, jfc) and (k} f) belong to R. Therefore, the
pairs (z, &) and ( ,̂ 7) must be represented by dummy paths ir(z, ^) and TT(A;,

7). Since the path tr(i,j) = ir(z, fc) ̂ (ktj) represents (/,;), we can say that R\
is the subset of those pairs in R that are "automatically" represented. When
X(i, 7) U Y(i, 7) = 0, the pair (/, f) can only be represented by the dummy
are (z, 7) and R% contains such pairs. The set R3 contains all pairs not in R\
or R2, and it is these pairs that make the dummy-are problem intractable. In
Figure 2 we have Rx = {(2,8), (5,8)}, R2 = {(2,4), (3,4), (5,6), (5,7), (6,8)},
and * 3 = {(2,6), (3,7)}.

For each (z, 7) G R3 we define the foliowing set of dummy arcs:

F (h 3) - F1 {i} j) U F2 (iy 3) U F3 (i, j ) ,

where

^3 (ï, j ) = {(«, *) I (I, A;) is feasible, fc G X (t, j ) , le Y (*, j)}

For example, for (2,6) G i?3 we have X(2,6) = {5} and 7(2,6) = {4}, so
Fi(2,6) = {(2,5)}, F2(2,6) = {(4,6)}, F3(2,6) = {(4,5)} and F(2,6) = {(2,5),
(4,5), (4,6)}.

The set F(i,j) consists of dummy arcs associated with the pair (i,j) e R3 that
are sufficient to represent this pair, under the assumption that the remaining
pairs are already represented. Figure 3 show how the three types of dummy
arcs in F(i, J) (shown as dashed Unes) interact with paths representing other
pairs in R (shown as wavy Unes). For example, if k G X(i,j) then (k, j) G R
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and assuming that (k, j) is already represented, it suffices to add (/, k) to
represent (/, j). Note that the dummy arc (i, j) is not included in F(i, y),
although there may exist optimal solutions to which this arc belongs. Leaving
(i, j) out of F(i, j) allows us to reduce the dummy-are problem to a more
concise instance of the set-cover problem, and the following lemma validâtes
this approach.

Figure 3

LEMMA 1: IfD is a solution to the dummy-arc problem, there exists a solution
Df with \D'\ < \D\and D' DR3 = 0.

Proof: Suppose D n Ü3 ^ 0 for a solution D, It suffices to show that
there exists a solution D" such that |Z>"| < |D| and |Z>"njR3| < \DnR$\.
Let (/, j) e D n R3. This implies

X(i, j) H 7(if j) = 0 and X(i, j) U 7(Ï, j) # 0 .

If k G X(i, j), the dummy arc (/, k) 0 R3 because otherwise k G 7(z", j).

Letting D" = D - {(i, j)} U {(i, *:)} we have

\D"\ < \D\ and 1^' n R3\ < \D n R3\.

To see that D" is a solution, we need only verify that the pair (Ï, j) is
represented by D". Since (k, j) G R, there must exist a dummy path n(k, j) in
D. This path is also in D" and together with arc (i, k) represents (1,7) in D"

A symmetrie argument can be made if / G Y(i, j), and then we let
D" = D- {(i,j)}u{(l,j)}. M

Recall that an arbitrary instance of the set-cover problem is defined by a
collection C of subsets of a finite set Q. A solution is a subset Cf Ç C such
that every element of Q belongs to at least one member of C'. The subset C
is optimal if C' is a solution and |C"| < |C"| for ail solutions C" C C.
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We define an instance of the set-cover problem as follows:

Q = -Rs,

QPg= {(i,j) € R3\(P>q) € F(i,j)},

C = {Qpq | (p, q) 6 F},

where

F= U F.(i,j)

In other words, the éléments of Q are the pairs of R^ If a pair (i, j) € R3,
there is a set Qpq G C for each dummy are (p, <y) G F(i, 7). The set Qpq

contains all pairs of R^ with which the dummy are (p, q) is associated. The
éléments of F are those dummy arcs that can be useful in representing the
pairs of/?3, and \Qvq\ > 1 for every (p, q) G F. Mrozek's réduction [11]
includes sets for which Qpq - 0. In the example of Figures 1 and 2, dummy
are (4,8) with Ô48 = 0 is considered by Mrozek's réduction but not by ours.

A solution of size K to this set-cover problem is a subset Cf Ç C such
that \C'\ = K, and for every pair (i, j) E R$ there exists Qpq G C' which
contains the pair.

THEOREM 1: The set-cover problem has a solution C1 with \Cf\ < K if and
only ifthe dummy-are problem has a solution Df with \D*\ < K + \II2V

Proof: Suppose Cf is a solution to the set-cover problem with |C"| < K.
We show there exists a corresponding set of \C'\ + |J?2| dummy arcs,
D' = {(p, q) I Qpq £Cf}uR2, such that every (i,j) e Ris represented. We
use induction on the following containment relation among the pairs in R:

(i, j) E Rcontains(k, l) G R if (fc, /) # («, j ) ,

5* (ft) Ç S* (i) and P* (0 Ç P* (j).

Note that if k G X(i,/), then (itf) contains (k,j), and if / G K(i,», then (i,y)
contains (i, /)• Note also that the containment relation defines a strict partial
order on /?; hence the induction is valid.

For the basis case we consider all pairs (i, j) that contain no other pairs,
so X(i, j) U Y(i, j) = 0 . By définition, (/, j) G Ri and (/, j) is represented by
the dummy are (i, ƒ).

For the induction step we now suppose that all pairs contained by (/, j)
are represented. Suppose there exists a k e X(i, j) n Y(i, ƒ), so (/, j) G R\.

Recherche opérationnelle/Opérations Research
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Since both (it k) and (k, y) are représentée by hypothesis, there exist dummy
paths TT(/, k) and tt{k, y). Therefore» the dummy path ir(i, y) = TTO', k) ir(k, y)
represents (i,j).

Otherwise, we have (i,j) E R3 and Qpq € C' for sorne arc (p, q) E F(i, y). If
(pf q) = (if k) E Fi(i,j), then (*\y) contains (A:, j) and since (k,j) is represented,
there exists a dummy path ir(fc, y). This path together with the arc (i, it)
represents (i, j). A similar argument can be made to show (i, y) is represented
if (p, 4) = (/, y) E F 2 ( Ï , i). If (p, «) = (/, «:)•€ F3O', j) then (if j) contains
both (i, ï) and (k, j) and there exists dummy paths ir(i\ 0 and or(fcf j). These
paths together with arc (/, k) represent (Ï, j). Thus D' is a solution to the
dummy-arc problem.

Conversely, suppose Df is a solution to the dummy-arc problem with
\Df\ < K+ \R2\. By lemma 1 we can assume wlog that Df H R$ = 0 . Let

Note that |C"| < i^ because F does not include the dummy arc (/, j) for
(i, j) E /?2« To show that C' is a solution to the set-cover problem we need
only verify that for every pair (i,f) E R3, there exists an arc

(p,q)€&nF(itj).

Let 0> /) ̂  ̂ 3- Then there exists a dummy path ir(i, y) in D', and
1*0'»./) # 0"»y)» because otherwise DfnR%^0. Moreover, each intermediate
node of ir(i,j) belongs either to X(i,j)9 or Y(i,f), but not both. Let (i, k) and
(/,;) be the fixst and last arcs of ir(i\ ;). If it € X(i, j) then (i, k) E F\(i, j).
If l £ Y(i, j) then (/, j) E F2O, /).• The on^Y remaining case is k e Y(i, j) and
/ E X(i,j). In this case the subpath of ir(i,j) leading from k to / must contain
an arc (p, q) with p E Y(i, j) and q E X(Ï, 7), and hence (p, q) E F3O*, y).
Thus, we have shown that some arc of ir(i, y) is in F(/, y), which complètes
the proof. •

From Theorem 1 we have immediately

COROLLARY I; The set-cover problem has an optimal solution of site K if
and only if the dummy-arc problem has an optimal solution of size K + |f?21-

An optimal solution to the dummy-arc problem may be computed using
the following algorithm:

1. Find the distinct pairs (ƒ>*(/)» S*(j)) of the activity-set pairs (P*(SV),
S*(JV)) and (P*(/v), S*(tv)). The activity-set pair for a node y is (P*(/), S*(f)).
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2. Construct the framework by assigning to each activity v an arc (i, j) for
which P*(0 = P*(sv) and 5*0) = S*(fv).

3. Add (i, j) to R if i ^ j and 3 {u, v) E G such that i = tu and j = sv.
4. For each pair (/, j) E Rf calculate the sets X(i, j) and Y(i, j)> and use

them to assign this pair to one of the subsets R\, R2, R3.
5. For each pair (i, j) G R3, calculate F(i, j) and add the pair (i, j) to ail

Qpq sets for which (p, q) € F(i, j).
6. Find an optimal solution Cf to the set-cover problem, Le., find the

minimum number of Qpq sets that cover ^3 . The set of dummy arcs
{(P> 4) I Qpq € C'} U î 2 is an optimal solution to the dummy-are problem.

For Figure 2 we have R3 = {(2,6), (3,7)}, Q47 = {(3,7)}s Q46 = {(2,6)},
Ô45 = {(2,6), (3,7)}, Ö35 = {(3,7)}, Ô25 = {(2,6)}, so an optimal solution is
to choose Ô45- Therefore, the dummy arc (4,5), together with the dummy
arcs (2,4), (3,4), (5,6), (5,7) and (6,8) defined by i?2, form a unique optimal
solution to the dummy-are problem.

The time complexity of the transformation (steps 1-5 of the algorithm) is
O(n4), where n is the number of activities. Steps 1-4 can be done in time
O{r?) (in step 4, begin by Computing the set of feasible arcs: for each pair
(i, j), check whether P*(ï) C P*(J) in O(n) time), and step 5 is easily done
O{râ). Although careful implementation can reduce the time for step 5 in
typical cases, the worst case size of the set-cover problem is O(«4) and this
puts a lower bound on the time for step 5. For example, consider a set of
activities W U X U Y U Z, where

W = {wo, ..., Wk-i}, X = {x0, . . . , a?*_i},

Y= {s/ö, • • • , 3/jb—1}, Z= {zOj . . . , ^fc_i},

and assuming k is even,

S (wi) = Y U Z - {yt} for i = 0, . . . , k - 1,
u ^ - W for * = 0, . . . ,*-

Given a particular i, we have S(JCI) C S(WJ) for exactly ü/2 values of j . Ail
successor sets of W and X (predecessor sets of Y and Z) are distinct, so let

There are k2/2 pairs (ô,-, cj) in /?. Each such pair is in F^a^ d^) for le*f4
pairs (a/î, <4): (a^, i>/) is feasible for exactly k/2 values of h and (cy, <4) is
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feasible for exactly k/2 values of L Thus the total cardinality of all the F3
sets is £4/8 (recall that the nurnber of activities is 4&).

It is interesting to note that our réduction to the set-cover problem acts as
an inverse of the réduction used by Krishnamoorthy and Deo [7] to prove
the NP-completeness of the dummy-are problem. Their proof reduces from
an arbitrary instance of the vertex-cover problem to a particular instance of
the dummy-are problem. When our réduction is applied to their dummy-
are problem, we recover the original vertex-cover problem in its equivalent
set-cover form.

4. SPECIAL CASES

The special cases of the dummy-are problem that can be solved in poly-
nomial time are those precedence relations that produce set-cover problems
solvable in polynomial time. These special cases can be derived from either
special cases of the set-cover problem, or from precedence relations that
produce easy set-cover problems. In fact, most of the special cases that we
address produce empty set-cover problems.

©

©
Figure 4

An AoN dag G is N-free (also réversible or a line digraph) if it does not
contain the Af-subgraph of Figure 4 as an induced subgraph. The case of
iV-free dags is well-known and has been characterized in several ways. The
following characterization was used by Syslo [15] to show that N-free dags
can be represented without any dummy arcs, which implies that R = 0: A
dag G is Af-free iff for any two activities, u and v,

P (u) O P (v) ^ 0 implies P (u) = P (v);

or equivalently

S{u) n S (v) £ 0 implies S (u) = S {v).
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Af-free dags can be generalized as follows. An AoN dag G is frame-connected
if

(i) for every activity v with S(v) ^ 0 tlkere exists w G 5(v) such that

p*(w)= n p*(z),
zeS(v)

(ii) for every activity v with P(v) ^ 0 there exists u G P(y) such that

5*(u)= H S*(z).

The term frame-connected is used to indicate that in the framework for
G, every activity are is on a path from S0 to t0, This can be seen when
we note that a dag G is frame-connected iff (i) for every activity v E G
with tv ^ t0, there exists some w G G such that tv = sw, and (ii) for every
activity v e G with sv ^ S0, there exists some u G G such that f„ = 5V. (This
follows from Theorem 1.2 of [1]). We now show that frame-connected dags
define an empty set-cover problem, which implies the dummy-are problem
for frame-connected dags can be solved in polynomial time.

THEOREM 2: If an AoN dag G is frame-connected, then R$ is empty.

Proof: Given (1,7) G Rt if X(i,j) U Y(i,j) = 0, then (ij) G R2. Otherwise,
suppose k G X(i,j), so k = tx for some activity x because (k,j) e R. Since G
is frame-connected» there must also exist an activity y such that k=sy, which
implies (i,j) G R\. A symmetrie argument can be made of / G Y(i, j). Thus
R3 = 0. •

The converse of theorem 2 is not true, however, as the example dag in
Figure 5(a) illustrâtes. Figure 5(è), which gives an optimal AoA représenta-
tion of Figure 5(a), clearly shows that this dag is not frame-connected, but
defines an empty set-cover problem. Specifically,

R = {(2,3), (2,4), (2,5), (3,5), (4,5)} = ^ U R2,

where Rx = {(2,5)} and R2 = {(2,3), (2,4), (3,5), (4,5)}.
A proper subclass of frame-connected dags is interval orders, where a

precedence relation -< is an interval order if every activity v corresponds
to an interval (v~~, v+] Ç R, and u -< v iff u + < v~. The dag G for an
interval order is derived from -< by transitive réduction. To show that an
interval order is frame-connected, first note that P* (v) = {u \ w+ < v~ }
and 5* (z/) = {w\ v+ < « ; - } . Also P* (u) C P* (v) for all v with vT < v~,
and 5* (w) C 5* (v) for all w with v+ < w+. Since all activities can be
ordered according to their Lh. endpoints, there must be some w G S(v) for
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Figure 5

which w~ is farthest from v+. Therefore, P* (w) Ç P* (z)y V z G S (v)
and P* (ri;) = f] P* (z). A symmetrie argument can be made for the

existence of a u G P(v) as required. Given the minimum number of nodes,
the heuristic of Spinrad [13] finds an optimal solution in the special case
of interval orders. Interval orders are incomparable with iV-free dags. The
forbidden subgraph G/- {(a,c), (b,d)} for interval orders is cleary Af-free,
while the forbidden subgraph for JV-free dags (Fig. 4) is an interval order.

Marchioro et aL [8] introduced two classes of directed but not necessarily
acyclic graphs called adamant and inflexible. A directed graph G is adamant
if for any two activities, u and v,

S(u)DS(v)^0 implies S (u) Ç S (v) or S (v) Ç S (u).

An adamant dag G is also inflexible if the reverse of G is also adamant, Z.e.,
if for any two activities u and v we also have

P(u)nP(v)^0 implies P(u)ÇP (v) or P (v) Ç P (u).

It is easy to show that N-free dags are inflexible, and inflexible dags are frame-
connected, where these inclusions are proper. However, the set of interval
orders is incomparable with the set of inflexible dags. Other new classes
of dags may be obtained by variations of the adamant conditions. We define
closure adamant and closure inflexible dags by substituting tc(G) for G in the
previous définitions, so £(•) is replaced by £*(•) and P(*) is replaced by P*(#).
Closure inflexible dags form a proper subset of frame-connected dags, while
forming a proper generalization of both inflexible dags and interval orders.
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We say a dag G is anti-adamant if the complementary condition holds,
Le., if for any two activities u and v,

S(u)nS(v)^0 implies S(u)£S(v) and S(v)£S(u).

Anti-inflexihle, closure anti-adamant, and closure anti-inflexible dags are all
similarly defined. Anti-inflexible dags generalize closure anti-inflexible dags
(which must be bipartite) but are incomparable to frame-eonnected dags. Yet
they also define empty set-cover problems. An interesting open question is
an alternate characterization of ail dags for which the set-cover problem is
empty. Examples and further discussion can be found in Michael [9].

Another interesting open question is a characterization of precedence
relations for which a greedy solution to the set-cover problem is optimal. A
greedy solution is one in which the Qpq subsets are first sorted in decreasing
order of \Qpq\^ the size of the subsets, and then each subset is added to the
(partial) solution provided it increases the number of éléments covered. The
heuristic of Spinrad [13] is similar to this greedy approach, except that the
subsets are first sorted by the type of arc, and then by size. Spinrad showed
that this heuristic finds and optimal solution for two-dimensional (2-D) partial
orders, where a precedence relation is 2-D if every activity v corresponds to a
point (VJC, Vy) €E R2, and u -< v iff ux < vx and uy < vy. However, Michael [9]
shows that it is not necessary to first sort by the type of arc. Hence, this class
of dags can be included among those that have optimal greedy solutions.

Adamant dags, and their generalization as closure adamant dags, also
belong to the class of dags for which greedy solutions are optimal. It is easy
to show that for every activity v, either there exists an activity u such that
tu = sV9 or sv = S0, TMs implies Y(i,j) = 0 for ail (i,j) G R3. Furthermore, it
is easy to show that for ail k G X(i, j) there exists some td G X(i, j) for which
S*(k) C S*(kf). Hence there is an optimal solution that includes the arc (ƒ, k!)y

the greedy choice. Adamant and closure adamant dags are incomparable with
2-D partial orders.

5. SUMMARY

We have presented an algorithm that reduces the NP-hard, dummy-arc
problem to the set-cover problem in polynomial time. Thus optimal or
heuristic solutions to the dummy-arc problem can be found using known
methods of solving the set-cover problem. The réduction is derived from
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and is closely related to the Cantor-Dimsdale algorithm for constructing the
minimum set of nodes: it is based on the predecessor and successor sets for
the minimum set of nodes. Our analysis not only allowed us to show that
many known special cases correspond to easy set-cover problems, but also
to give efficient algorithms for entirely new families of special cases derived
from adamant and inflexible dags.
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