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PROBLEMS OF ECONOMIC SYSTEM OPTIMIZATION
WITH QUADRATIC CRITERIA AND MONOTONE CONTROLS
SOME ALGORITHMS FOR ITS NUMERICAL SOLUTION (*)

by Laura ARAGONE (*)

Communicated by E. GELENBE

Abstract. —In this paper some numerical algorithms are présentée to solve îhe Hamilton-Jacobi-
Bellman équation associated to the optimal cost function corresponding to control problems of
economie Systems which involve the exploitation of non-renewable resources, i. e., the controls
used are monotone (non-increasing or non-decreasing), and they may also be discontinuons. An
almost complete study of this problem and ofthe theoretical characterization ofits solution has been
done in [2], In that paper the solution of the problems is reduced to the treatment of an elliptic
quasi-variational inequality in the interval [0, T). In this paper an extension of the methodology
introduced in [4] to the analysis and numerical solution of this inequality is done. We give
three numerical algorithms, convergence properties of the discretiiation procedure is proven and
comparative computational results obtained when solving the example introduced in [2] with the
methods developed are shown.

Keywords: Quasi-variational inequalities; monotone controls; numerical solution; convergence
rate; non-renewable resources; economie Systems; quadratic criteria.

Résumé. — On présente ici quelques algorithmes numériques pour résoudre l'équation de
Hamilton-Jacobi-Bellman associée aux problèmes d'optimisation de systèmes économiques où
apparaissent des ressources non-renouvelables. Les contrôles sont monotones et ils peuvent être
discontinus.

Une étude presque complète de ce problème avec la caractérisation théorique de la solution a
été faite dans [2]. Là, la solution a été réduite au traitement d'une inéquation quasi-variationnelle
elliptique dans Vintervalle [0, T].

On fait ici une extension de la méthodologie introduite dans [4] à V analyse et à la solution
numérique de cette inéquation. On présente trois algorithmes numériques. On démontre la con-
vergence de la discrétisation employée. Des résultats numériques, avec les temps de calcul sont
présentés.
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convergence ; ressources non-renouvelables ; systèmes économiques ; critère quadratique.
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2 4 L. ARAGONE

1. INTRODUCTION

An optimal control problem of a dynamic one-dimensional System de-
scribed by an ordinary differential équation is considered. The time interval
considered is finite; the functional to be optimized is quadratic and takes the
following explicit expression:

min / e-as{L[y(s) - f(s)}2 + M[p(s) - f' (s)]2}ds (1)
p(-) Jo

being

— = p(t) (2)

p is the control variable and it belongs to 7£+ = [0, oo).
a is the discount coefficient, L and M the weighting factors, and ƒ is the
trajectory to pursue.

The minimization problem studied has free initial conditions; therefore,
what we must really seek is the minimum with respect to y (0), p (.).

Consequently, we have that y is a non-decreasing variable; that is why,
this type of problems receive the name of monotone controls since we may
consider y as the control variable.

This type of problems appear in economie issues such as the control of
monetary policy, where p represents the injection of money and y is the
monetary stock. Similar problems occur when we consider the control of
the exploitation of exhaustible resources, such as pumping oil, mining ore,
harvesting fish or trees, etc. In [2] has been presented the characterization of
the solution of this problem using the methodology of variational équations
in Sobolev spaces

By defining

Y(t) = f y(s)ds F(t) = f f (s) ds (3)
Jo . Jo

the optimization problem may be expressed in terms of Y(-) and conse-
quently, the following differential équation of optimality for Y is obtained

Y" + (y - F + F")" = 0 in (0, T) (4)

with boundary conditions

y(0) - 0 (5)

Y(T) = F(T) (6)

(where w~ dénotes the négative part of the scalar w).
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ECONOMIC SYSTEM OPTIMIZATION 25

This conditions may also be obtained directly by applying the Pon-
tryaguin's maximum principle. In particular (5) is a direct conséquence of
considering the optimization with free initial conditions for y (0).

The solution of (4) has the following minimality property:

THEOREM 1.1:

Y < u m [ 0 , T], Vu eU (7)

being

U = {ue H2[0, T]/u" < 0, u" - u

< F11 - F, u(0) > 0, u(T) > F{T) (8)

(The proof is included in [2].)

Set U is called the set of supersolutions. By virtue of the characterization
given by theorem 1.1 for the element F, the original problem is reduced to
détermine the minimum element of U. To find it numerically, a discretization
procedure is developed by applying the methodology introduced in [5]. The
method is based on the use of linear finite éléments and on the use of a
suitable discretization of the conditions which appear in (8).

2. THE DISCRETIZED PROBLEM AND ITS SOLUTIONS

We use an external approximation of the space H2 [0, 71 given by linear
finite éléments (we dénote with Wh the set of those éléments, which belong
to H1 [0, T]). Consequently, these approximating functions are determined
by the values they assume in the nodes of the discretization. In this one-
dimensional case those values will be (for a uniform partition of [0, 7]):

T
Qh ~ {U/U = ih] i = 0, 1, . . . , n} a partition of fî, h — —

n

DÉFINITION 2.1: Let uh G Wh

We define S C Nh = {0, 1 ,2 , . . . , n}

• %-(S) - m a x ( j / j <i,je S) (10)

• i+(5) = min(j/j>i,jG5) (11)

• YL(uh, 5, i)
- ((ï+ - i) uh(ti-) + (i - i~) uh{tt+))/{i+ - i~) (12)
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26 L. ARAGONE

G(uh,S, i) = «D2(F, N\i)

- ti-)(tn- - U) + (ti+ - U-)) (13)

The discretization of the restrictions which define U détermine a set of
discrete supersolutions Uh which has the following form:

Uh = {uh G Wh/uh vérifies (15) - (18)} (14)

uh(t0) > 0 (15)

«*(««) > F(T) (16)

D2(uh, Nh, i) < 0 , i = l , . . . , n - l (17)

uh(ti)>G(uh,Nh,i), i = l,...,n-l (18)

Function Yh, minimum element of Uh is characterized by the conditions:

Yh(t0) = 0 (19)
Yh{tn) = F(T) (20)

Yh(ti) = max {YL(Yk, Nh, i), G(Yh, Nk, «)},

i = l, . . . , re-1 (21)

Operator P : Wh —> Wh is introduced in the following way

(Pwh)(t0) = 0 (22)

(Pwh)(tn) = F(T) (23)

Pwh(U) = iWLx{YL(wh, Nh, i), G(wh, Nh, *)},

t = 1, . . . , n - 1 (24)

This operator is monotone and increasing and leaves set Uh invariant.
Moreover, it can be proved that although P is not contractive, pt"/2l is
contractive and consequently, P has only one fixed point, which coïncides
with the unique fixed point of pln/2\ That is, if we dénote with Yh the
unique solution of the équation:

Yh — p[n/2\ Yh (25)
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ECONOMIC SYSTEM OPTIMEZATION 27

it also results Yh — Yh and therefore, it is also a solution of équation

Yh = PYh (26)

In conséquence, the solution of the discretized problem, /. e. the minimum
element of Uh, is characterized as the solution of équation (26). At the same
time, operator P allows the définition of an algorithm to calculate Yh.

Discretized problem:

Find Yh e Hn, suchthatPYh = Yh

3. CONVERGENCE OF APPROXIMATE SOLUTIONS

The functions Yh, solutions of the discrete problem, converge in a uniform
way to function Y which is solution of (4), when n —> oo(h —>• 0).

In effect, by virtue of the type of discretization used, we have that a discrete
maximum principle holds, which in turns, implies the uniform convergence
of the approximations (see [3]).

Let

Yh the solution of the discretized problem (i. e, PYh=Yh)

Y the analytical solution

Yh the interpolation of the analytical solution (/. e. Yh(U) — Y (U))

THEOREM 3.1: ïf F e i/3[0, T] then

\\Yh -Y\\ <KVh (27)

The proof of (27) is a direct conséquence of remark 3.1 and of lemmas 3.1
and 3.3.

PROPOSITION 3.1: If a G iî3[0, T] and ah is its linear interpolation then
3 C > 0 such that

\D2{ah, Nh, i)-a"(ti)\<Cy/hy
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2 8 L. ARAGONE

Proof: If a G # 3 [0 , T], we have the following Taylor's expansion:

a(t + h) = a(t) + a!{t) h + a"(*) ^ + ^ f r2 aw(r + t) dr
j o

a(t - /») = a(*) - a!{t) h + a"{t) ^ + ^ f r2 a"'{T + t) dr
J 0

Thus

D2(ah, Nh, i) = afe+) + Qfe-)

By the Hölder inequality and considering that a'" e L2[0, T]

h \ 1/2
2 )/ T2a'"{r + t^dr <[ [a'"(T+ U)]2 dr)

J—h \J—h , /
/ M

In conséquence

|Z?2(aft, iNTA, i)-a"(tt)\ < CVh D

Remark 3.1: In [2], the following results is proved: if F e # 3[0, T] then
Y G JÏ3[0, T].

In conséquence, by virtue of proposition 3.1, for Y we have:

ï = 1, . . . , n - 1 (28)

LEMMA 3.1:

Yh(U) - Yh(ti) < ChT2/^ V U E Nh (29)

Proof: In a ftrst place, we will prove that 3 <f>h /Yh + <f>h is a supersolution,
i. e. we must prove that Yh + <fih = uh vérifies (15-18).

Let <j)h be the linear interpolation of the concave function

(t>{t) = CVh t(T-t)

then, it results

<f>"(t) - 4>(t) < -2CVh, t G [0, T]

[note that D2(<ph, Nh, i) = ^"(ij)], andobviously (15) and (16) are verified.
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ECONOMÏC SYSTEM OPTIMIZATION 29

Easily it can be proved that

i = 1, . . . , n — 1.

To prove (18), we consider that, by virtue of (28):

D2(Y}\ Nh, i) - Yh{U) - D2(F, Nh, i) + F(U)

< Yf'(U) + CVh- Y(U) - {F"(U) -CVh) + F(U)

Then

D2(Yh + (j>h, Nh, i) - (Yh + <f>h){ti) - D2(F, Nh, i) + F{U) < 0

Finally, Yh + <j>h is a supersolution and as Yh is the minimum element of
the set Uh of supersolutions, it results

and in conséquence (29) holds. •

LEMMA 3.2: Let gh be a finite element defined in Clh, such that

9h(0) > 0

9h(T) > 0

and Vti G iïh at least one of the following inéquations is verified

D2(gh, Nh,i) < 0 (30)

D2(gh, Nh,i)-gh(U)<0 (31)

then

9h(ti) > 0, Vti e nh (32)
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3 0 L. ARAGONE

Proof: If we suppose that (32) is not valid, i. e. there exists a négative
minimum; then there would exists t-t such that

g\tt)<o

9h{ti) < gh(tt+1)

9h(k) < gh(tt+1)

which implies

\ N\ t) = ̂ -1) +

Therefore

D2{gh,Nh,£)-gh(ti)>0,
which contradicts the hypothesis. •

LEMMA 3.3:

Yh(ti) - Yh{U) >-^T2Vh, Vti G Nh (33)

Proof: We will prove that gh — Yh - Yh + 4>h satisfies conditions (30)
and (31), with

Let we define

Cf = {*,- e Qh/Y"(u) = 0}

C\ = {U e nh/Y"(tz) - Y(ti) + F"(U) - F(ti) = 0}

If U G C\, we have

Y"(U) = 0

therefore, by remark 3.1

D2(Yh, Nh, i) > -CVh,

by (21)

D2(Yh, Nh, %)<0
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ECONOMIC SYSTEM OPTMZATION 3 1

and, by the définition of $h

By virtue of these inequalities, we have

D2(g, N\ i) < 0.

If U e C2\ we have Y"(ti) - Y{U) - F"{U) + F{U) = 0 then

D2(Yh, Nh, i) - Yh(ti) - D2(F, Nh, i) + Ffa)

> Y"(ti) -CVh- Y(U) - (F"(ti) + CVh^)+ F(U) > -2(7

having in mind that

D2(Yh, Nh, i) - Yh(ti) - D2(F, Nh, i) + F(U) < 0

and

D2((f>h, Nh, i) - <f>h(tt) = -2Ch}l2 - ChWtiiT-U) < -2C

results

D2(g, N\i) - g(ti) < 0

and due to Lemma 3.2

9(U) > 0

which implies

Yh(U) - Yh(ti) + <t>h(U) > 0

That is,

Yh(ti)-Yh(U) > -<t>h(ti) = -Ch1'2U(T - U) > -CVhT2/4. D
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3 2 L. ARAGONE

4. NUMERICAL SOLUTION OF THE DISCRETIZED PROBLEM

First algorithm

The proof of the fixed point theorem hints us the following algorithm to
compute Yh.

Algorithm AO

Step 0: Compute YQ e Wh, set v=0.

Step 1: Set Y^+i = PhYu.

Step 2: If Yv — Y^+i, go to step 3; else, v=v+l and go to step 1.
Step 3: Set Yh=Yv and stop.
This algorithm finishes in a finite number of steps or it générâtes a séquence

of éléments Yv which converges to Yh\ in addition the following inequality
is verified:

being J3 < 1 and v — int(i//n).
It can also be observed, by virtue of the properties of Ph, that if a initial

point YQ G Uh is chosen, the séquence Yv vérifies:

YueUh

Yv > y^+i > Yh

5. AN ACCELERATED ALGORITHM

5.1. Foundations of the method

When applying algorithm AO, it can generally be observed that after few
itérations, the sets of nodes where conditions (17) and (18) are respectively
satisfied with the sign=remains invariant, and the algorithm simply tries
to solve in an itérative way the corresponding associated linear system.
The following accelerated algorithm makes use of the observation of this
phenomenon. Also, it uses the fact that in the régions where (17) is satisfied
with the sign=, the solution fonction is obviously a linear function of the
values at the extreme points of these régions.
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ECONOMIC SYSTEM OPTIMIZATION 33

5.2. Detailed description of the algorithm

DÉFINITION 5.2.1: Let Y G Wh, we define TEST(Y, S)=TRUE if either
Card(S)=2 or

Card(S) > 3,

D2(Y, S, i) < 0, Vz e S/i = 1, . . . , n - 1

D2(Y, 5, i)-Y(U) < D2(F, Nh, i)-F(U), Vz e S/i = 1,..., n - 1

Algorithm Al

Step 1: Set

î i = 0, 1, . . . , n

= 0, z/ = 1

Step 2: Set j=l

Step 3: Set m=m+l

If - y£( YU) ra_i, 5V, m _ i , i ) < Z?̂  (F, JVft, j) - ^(t ,) , then
<^i/, m — ^f. ??i — 1 \J f

Jv, m — J
YVjm(U) = Y^m-liU), V« ^ j V i m

If ƒ ̂ £ 0, then go to step 3; else, go to step 5
else, go to step 4

else; go to step 4

Step 4: Set

Ju, m ~ 3

, m—1

vol. 27, n° 1, 1993



3 4 L. ARAGONE

Step 5: Set j = j+(S„,m)
If j < n — 1, then go to step 3; else, mv=m and go to step 6
Step 6: Set

• If Card(5^m) > 3 solve the linear system:

= D2(F, Nh, i) - F(U), V i e S^o/0 <i<n

, 771)

Step 7: If TEST(Y^m, 5v ,m) = TRUE stop and Yv,m is the solution
else go to step 2.

5,3. Properties
The special properties of this algorithm are described in detail in the

following paragraphs.

Remark 5.1:

D2(YUjm, S„,m , i) - ^ ( l ^ ^ , Nh, i)
VzG 5 ^ m \ {0 , n}, Vm, V^

ii/,

since Y^m{tj) is linear Vj

LEMMA 5.1:

Vt G Su>m \ {0, n} , Vt/ > 1, V0 < m < m» (34)
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ECONOMIC SYSTEM OPTIMIZATION 35

Proof: It will be given by induction on m. So, for m=0, we have:

D2(Y^ Sufi, i) - YvAU) = D2(F, N\ i) - F(tt)

Vz E SUio/O <i<n

and this is equivalent to

Y„,o(U) = G(Y„t07 5^0, i), Vz G Sufii ^ (0, n), V v > 1

We suppose (34) is satisfied for m — 1 > 0 and we will prove it for m.

The values of YUi7n(ti) are identical to those of Y^m-i(U) for all
i € S^m, i 7̂  j'^rn then, due to définition 2.1, for i < (ju,m)~ and for
i > (>5m)+ , we have:

since for these values of /

*±(5 ï / )m_i) = i±(5 I / im)

We are going now to show that

Y^m{tjv,m) >YUtm-i{tjVtm) (35)

• If 2v, m G 5!/îTO we have by the induction hypothesis

and so, (35) is valid.

• If ji/,m £ S^m => D 2 (y^ m _ i , S^m-i, j^m) > 0 then

^i/, rn\tjU)rn) — ̂ -^(^i / , m—1) &i/,m—1) Jv,m)

and so, (35) is valid.

Now we will prove that the thesis is satisfied for ( j ^ m ) ~ , j ^ m , (jj/,m)+*
For i = (j i / ,m) -
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36 L. ARAGONE

• If ju7 m G S^m we have by virtue of (35)

u,m—i-i Su^m—i, ï)

• If jUi m & S^m we have

(* (^i/,m) — (jï/, m)

Note that proving the thesis is equivalent to prove that

£>2(y„,ra, s , m , o - y,,m(^) > D2(f, Nh, i) -

which by the induction hypothesis is valid for m-1.
As

it will be enough to see that

Z?2(y„,m-i, 5 ^ - 1 , 0 < D2(Y„i7n, Su,m, i

Due to remark 5.1, the left side of this inequality becomes

/, m—l

Ju/, m—l
^X~ "2~

In the same way for /=/+ (5V) m)

Now, let z — jUi m. We must deal only with the case j K m G 5^ m . But
in this case it is

LEMMA 5.2: 77Ï£ algorithm is increasing, i. e.

y^m+ifc) > y^m(*t)» V i € AT̂ , Vi/ > 1, VO < m < m , (36)
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ECONOMIC SYSTEM OPTEVUZATION 37

Proof: 1. Since in the algorithm the values of Yi/,m(*o) and Y^m(tn) are
not modified, (36) is trivially satisfied for all v, m.

2. We will prove that

YUim+i(U) > Y^m{U), VO < i < n, Vv > 1, VO < m < mu

By construction of Yv. m , we have

y«,,m(*i) = n ; m - l ( ^ ) , VO < i < n/iï jUtm

For i — 2v, m we divide the analysis in two cases

• Ju, ra T- *-V,m

Yvim\J'jUtm) — Y Li\Yu^ rn—li ^i/,m—1) Ji/, mj

As it is evident that

implies YI/)m-i(ijl/ifn)

then, we have

/, m

but, due to (36)

therefore

3. We define the auxiliary fonction

g(U) = Yu+li0(U) -YUtmt,(ti)

Then, by virtue of (36), remark 5.1 and the définition of step 6, we have that

D2 (5, Nh
7 i) - g(U) < 0, Vi € iVVi = 1, . . . , n - 1
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Therefore g(U) > 0,Vi <E Nh which in turn implies (37). D

THEOREM 5.1: The algorithm finishes in a finite number of steps.

Proof: 1. We will prove that if Y^ o is not the solution, then

3m/Card(S^ m ) = Card(S^o) - 1 (38)

In fact, if Yv^ o is not the solution, then

• Card(51/)ö) > 3

• 3 at least one i / l < i < n - 1 A D2{ Y^o, SVj0, i) > 0 (39)

Let î be the minimum index with the property (39). While jUit m < Î, the
vector Y^m remains invariant, Le. Y^m ~ Yl/.m-iï in conséquence, the
index j ^ m will be increasing with m; therefore it will exist m such that
jjsfa = l, Then, we have that:

YUi^uS^^uî) >0 (40)

YUi^u Su,iH-l7 £) - Yu^{tt) - D2(F, N\ t) ~ F(tt) (41)

from (40) we obtain

From (41) and (42)

-YL{Y^rn_u S»,*-!, l) < D2(F, N\ l) - F(tt)

and by the définition of Step 3 we obtain

which implies (41)

2. By virtue of (42):

„,m) - Card(5f
I/;0) - 1

therefore v < n — Card(S'i7o)ï and in conséquence the algorithm finishes
in a finite number of steps. D
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ECONOMIC SYSTEM OPTIMIZATION 39

6. ACCELERATED ALGORITHM OF SHOOTING TYPE

The two-points boundary value problem which must be solved is the
following

Y" + (Y - F + F")" = 0 in (0, T) (43)

with boundary conditions

y(0) = 0 (44)
Y{T) = F(T) (45)

Equation (43) is transformed into a first-order System of ordinary differ-
ential équations

Y1 = YD
YD1 = -{Y -F + F")- ( 4 6 )

with initial conditions

y(0) = 0
YD(0) = p

The method is based upon solving by discretization the system (46) with
initial conditions Y (0)=0 and upon adjusting initial condition YD (0) so as to
satisfy the final condition Y(T) = F(T). This search is done with a Newton
type algorithm (see [6, 7]).

6.1. Equations of the discretized system

Y(tk+1) = Y(tk) + YD(tk) h - (F"(tk) - F(tk) + Y(tk))~ h?
YD(tk+1) = YD(tk) - (F"(tk) - F(tk) + Y(tk))~ h

k = l, 2, 3, . . .

(47)

YD(h) = YD(t0) ) K }

Remark 6.1.1: If we dénote p the initial slope YD (0), équations (47) and
(48) define an operator

Z : 7 l ->f t
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40 L. ARAGONE

then, the problem consist in finding p such that Y(tn) = F(T). This non-
linear équation is solved with a Newton method suitably modified so as to
be globally convergent.

Remark 6.1.2: It can be easily proved that Z is non-decreasing and
piecewise linear, with a finite number of discontinuities of the derivatives. We
define operator Z' which coincides with the ordinary derivative on the points
where it exists, and we extended it to all Tl so that it be right continuous.
In this way, we have the operator Z' necessary for the construction of the
following Newton-type algoiithm.

Algorithm A2

Step 0: Choose p° e TL, v = 0
Step 1: Compute Z(p")
Step 2: If Z{pu) = F(T) then stop

f + {Z\vu))\
Step 3: If

\F(T) - Z(pu+l) | < \F(T) - Z(pu)\ then v = v + i and go to Step 1
= (p" + pu+1)/2 and restart Step 3.

Remark 6.1.3: Taking into account the previous remarks and the gênerai
theory presented in [6], the convergence of this algorithm can be easily
obtained.

Remark 6AA: In gênerai, algorithm A2 is the most performant one as
regards computational time. Nevertheless, for long time intervals, function
Z (p) is extremely sensitive with respect to parameter p, which implies
Z?(p)œ oo and algorithm A2 may be not convergent due to numerical
accuracy problems in Step 2. We can remark, however, that these cases can
be solved by applying algorithm AO or Al, which has, in conséquence a
spécifie field of application.

7. APPLICATIONS

7.1. The numerical solution for an example with exact solution

We consider one of the problems given in [2] where:

T-7T

ƒ(*) = sen(t)
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Then
F(t) = 1 - COS (t)

The numerical solution was calculated by taking a partition of [0, TT] with
«=100

The exact solution is

Y(t) =
et if t e (0, x)
ci(et - e27r-*) + 1 - cos (t) if t e (x, TT)

being

x=l.753,508... the switching point of the optimal policy [p=0 en (0, x)]

c=0.777,523,3...

c;=-0.002,089,587,7...

The maximum error between the numerical solution Yh and the exact
solution Y is 0.338,9 E-04.

7.2. Comparison of the computational time of algorithms A0, Al,
A2

n

10
20
30
40

T

10
100
150

TABLE I

algorithm A0

11.69 sec.
1 min. 07.88 sec.
3 min. 33.55 sec.
7 min. 68.73 sec.

TABLE!

algorithm A0

4 min. 49.34 sec.
3 min. 28.48 sec.
3 min. 14.60 sec.

(r=ir)

algorithm Al

3.07 sec.
4.22 sec.
5.71 sec.
7.57 sec.

[ («=40)

algorithm Al

6.26 sec.
4.44 sec.
4.66 sec.

algorithm A2

3.02 sec.
3.78 sec.
4.44 sec.
5.27 sec.

algorithm A2

6.09 sec.
13.07 sec.

***

*** In this case, it was not possible to obtain the final resuit due to the effects of problems
mentioned in remark 6.1.4.
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4 2 L. ARAGONE

CONCLUSIONS

In this paper, foUowing the suggestion mentioned in [2], page 305, we
have done an application to the problem of continuous optimal control with
quadratic criteria and monotone controls of the methodology stated in [5]. A
previous version of these results have been presented in [1]. The method is
based upon linear finite éléments and discretizations which satisfy a Discrete
Maximum Principle {see [3]), and it is an extension of the procedure presented
in [4], The f ast algorithm above denoted Al is based upon the methodology
used in [8].

The principle results are the following:
• By virtue of the special regularity (C2 'a) of the exact solution Y it holds

an estimate of the discretization error of the type

• The procedure is globally convergent. Moreover, the convergence is
monotone when we choose a discrete supersolution YQ1 as initial point for
the itérative algorithm.

• Accelerated algorithms have been obtained making use of the simple
structure of the system (15)-(18). They are based upon the techniques
introduced in [8] and in the methods of shooting type [7].
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