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RANDOM INSPECTION SCHEDULES WITH NON-OECREASING
INTENSITY (*)

by B. VISCOLANÏ (*)

Comrmmieated by S. OSAKI

Abstract. — The problem of minimizing expected cost until détection of failure is addressed
here, using random checking (inspection) schedules. Non-homogeneous Poisson checking processes
with continuons non-decreasing intensity are investigated. An approximation of the original problem,
in the form of an optimal control problem, is discussed. An optimal solution is proved to exist and
then it is characterized, using Poniryagin's Maximum Principle.

Keywords : Reliability; random checking schedules; non-hornogeneous Poisson process;
optimal control.

Résumé. - Nous considérons le problème de minimiser le coût espéré jusqu'à la détection d'une
panne, en employant des politiques d'inspection aléatoires. Nous étudions des processus d'inspection
de Poisson non homogènes avec intensité continue non-décroissante. Nous discutons une approxima-
tion du problème original, qui a la forme d'un problème de contrôle optimal Nous prouvons
l'existence d'une solution optimale et la caractérisons par le Principe du Maximum de Pontryagin.

Mots clés : Fiabilité; politiques d'inspection aléatoires; processus de Poisson; contrôle optimal.

1. INTRODUCTION

We consider a variant of the classical problem of "minimizing expected
cost until détection of failure", which is relevant for situations in which a
human being, who may want his failure to remain undetected as long as
possible, is the subject of the possible failure. The original problem, concern-
ing an indus trial System subject to random failures, has been treated by
Barlow, Hunter and Proschan ([1]; [2], pp. 108-116), who obtained optimal
deterministic checking schedules. In their formulation, an event (failure) can
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occur at a random time and its occurrence has relevant conséquences for the
(industrial) system under study. Hence it is important to detect the failure as
soon as possible and this can be done by checking (inspecting) the state of
the system from time to time. Other authors have addressed the same problem
[10,7,8,9], with the purpose of finding approximations of optimal inspection
schedules. Now, if a human being is the subject of the possible failure, and
if his interests conflict with those of the system, then from the system
viewpoint it is désirable that the failing subject be unable to foresee the
inspection times. Therefore deterministic checking schedules are no longer
useful. As an example, let us consider the problem of inspecting the behavior
of a taxpayer, who may try to avoid paying taxes on the revenues from a
certain economie activity. We may assume that this illégal behavior begins
possibly at a random epoch and continues, unless it is detected by an
inspection. In some cases (e. g. "scontrino fiscale" in Italy) we may assume
also that the illegality which has occurred at a certain time may be detected
at that time only: afterward no trace of it can be observed, although a real
loss of taxes has occurred. If the taxpayer knew the time of an inspection
before it takes place, then he would resumé paying the tax just before the
inspection. In this way, one would pay the taxes only on a minor part of his
activity. Therefore a random inspection schedule is needed here and the loss
of taxes associated with an illégal behavior will increase (linearly perhaps)
with the delay in detecting it after it begins. In view of this sort of application,
we consider stochastic checking schedules and search for approximations of
optimal ones. The following assumptions define the system and its behavior.

The system starts working at time 0 and the first system failure occurs at
a time T, where T is a positive random variable with probability distribution
function F and density ƒ:

J
= f(s) ds,

Jo

The first failure is relevant if and only if it occurs by a fîxed fînite time
tx >0. The density ƒ is a continuous function on [0, tx] and

0<F(tl)<L (2)

Thus the event of a failure occurring in [0, f J is possible, but not certain.
Inspecting the state of the system (which can be either "failed" or "working")
has a constant cost c0, takes a negligible time and does not influence the
system performance. Moreover, let l(x) be the cost due to the delay x from
a failure to its détection, where l(x) is assumed to be a strictly increasing,
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RANDOM INSPECTION SCHEDULES 271

concave and continuously differentiable function. If Te[0, tx] and if X is the
failure détection delay, then T+ X is the time of discovery of the first failure
and we stop the checking process immediately after it. If T>t±, then the
failure need not be detected and the checking process ends on the first check
after the instant tv Thus the "détection delay loss' is

(3)

where 1£ is the indicator function of the event E.
A checking (or inspection) schedule

S={yk:k^l}y 0<yk<yk+u * * 1 , (4)

is an increasing séquence of points in time. In these terms, the final time of
the checking process is yM, where

M=M(S,T) = min{k:yk>T A tuykeS}, (5)

where A A B — min(A,B). If T^tt, then yM is the time of détection of the
first failure, yM = T+X, where X is the détection delay. Otherwise, if T>tl9

the failure is unimportant and yM can very well be less than T, or also more
than T, as it is when T^tv The éxpected total cost resulting from the
inspections and the possible (first) failure is then

(6)

and we want to détermine an inspection schedule S={yk} minimizing it.
In the following, we dénote by à {f) the derivative of any function a(t),

depending on the time /, a(t) = da(t)/dt. Moreover, we dénote by l'(x) the
derivative of the function l(x% l'(x) = dl(x)/dx.

2. NON-DECREASING INTENSITY POISSON CHECKING PROCESSES

Let N(t) dénote the Poisson process with intensity n(t)^0, and dénote by
Sp(n) the checking schedule

SP(n)={Yl9Y2t...,Yk,...}, (7)

where Yk is the occurrence time of the fc-th event concerning N(t). Then N(t)
is the number of checks during the interval [0, f]. We will refér to N(t) as to
the Poisson checking process (PCP). The éxpected number of checks in the
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interval (f, t + s] is (jee [4], p.48)

E[N(t + s}-N(t)]= f 5 n(w)dw, t, s^O. (8)

Here, we restrict our attention to a special family of monotonie intensity
fonctions. Assume that the Poisson checking process intensities are conti-
nuous, non-decreasing, piecewise continuously differentiable. Assume further
that the derivative of the intensities is bounded in [0, tx] and null in [f x, -+• oo).

The conditional expected number of inspections is, by (5),

(9)

whereas the conditional expected détection delay loss is, by (3),

\ \ (10)

There is no simple way of expressing (10), but the foliowing Lemma gives us
a useful upper bound.

LEMMA 2.1: If N(t) is a time-dependent Poisson checking process with
non-decreasing intensity n(t), if T is the first failure time, independent of all
checking times, then E[X\T\^\jn{T), Moreover, if Z(x) is an increasing and
concave function, then

.£[/(X)| 71^/(l/n(7)). (11)

Proof: The occurrence of the first check after t at a time y dépends only
on the intensity n(w)y we(t,y], whereas it is independent of the occurence of
other checks in the interval (0, t]. Thus the delay of the first check after an
arbitrary time instant t>0, independent of { Yk}9 has the same distribution
as an inter-checking interval which starts from the time t. Hence its mean is

E[X\T=t]= exp - n(w)dw \dx^ exp(-n(t)x)dx=lfn(t).
Jo L Jt J Jo

Now, since l(x) is concave, Jensen's inequality ([5], p. 153) implies that
E [l (X) \T\<Ll(E[X\ T\) and hence the thesis foliows, because / is
increasing. •

Notice that the smaller « ( / J — n(t), the tighter the above inequality. This
is interesting in particular in those applications, where a physical bound to
the increasing rate of the inspection intensity is present. In the special case
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in which the intensity is constant, i.e. when the PCP is homogeneous, the
equality sign holds in (11).

From Lemma 2.1, we obtain that the expected total cost satisfies the
inequality

+ f'Tco \'n(w)dw+l(l/n(i))\nt)dt. (12)
Jo L Jo J

After setting

xx{t) = n(t) and x2(t)={tn(w)dw, (13)
Jo

and

we have that (12) can be rewritten as

(15)

In the foliowing, instead of minimizing E[C\, we discuss the problem of
minimizing its upper bound, the right hand side of inequality (15). Further-
more, we assume that there exist:

(i) a fixed upper bound M > 0 to the rate of growth of the checking
intensity, x1 (t);

(ii) a fixed value a>0 for the initial checking intensity. Therefore, the
approximate inspection schedule problem may be stated as the following
optimal control problem;

NDI:max/(w)

subject to:

^ ( 0 = 1/(0, ^i(0) = fl, a>0,

vol. 26, n° 3, 1992
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Hère x1 and x2 are the state functions defined in (13), whereas the control
function u is the rate of growth of the checking intensity. From the NDI
constraints it follows that

(a) the state function x1 (t), the checking intensity, is positive, monotoni-
cally non-decreasing, has a bounded derivative and is bounded itself,

ag>xx(i)£a + üt9 O^t£tx; (16)

(b) the state function x2(t), the expected number of checks up to the
instant r, is also bounded,

at^x2-(t)^(a + ût/2)t9 O£t£tx. (17)

In the following, we will refer to the optimal solution of NDI as the
"optimal solution", although it is only an approximate optimal solution of
our original problem.

3. OPTIMAL SOLUTION

The Hamiltonian function of the problem NDI is

H(x9u9p9t)=pofo(x,t)+pxu+p2xX9 (18)

where p (t) = (px (t),p2 (0) is the adjoint function and p0 e {0,1} is a constant.

THEOREM 3.1: If (x*(/),u*(t)) is an optimal pair of the problem NDI,
then we have that

p(/1) = 0- and po=l; (19)

* ( ) l (20)
O, if Pi(t)<0;\

if u* is continuous at t, then

fà i-pt, (21)

(22)

Proof: The conditions in the statement of the Theorem are Pontryagin's
necessary conditions ([11], P-85), after some straightforward simplifications.
In particular, p0i) = 0, because x( /J is free, and then />0 = l, because we
must have (po,pl (tx\p2 (tt)) # (0,0,0). •
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From (19) and (22) we get

. (23)

Hence the adjoint équation (21) becomes

/J1 = c0(l-/ Ï I(/))-/ '(l/x1)//xï. (24)

We notice that

px (0 * 0 iff c0 x\ (t)/r (1/Xl (0) è r (/), (25)

where r(t)=f(t)/(l-F(t))9 known as the "failure rate function" ([12], p. 10),
is defined for all i e[0, tx]9 because of (2).

The équations (19) to (22) are only necessary conditions for an optimal
solution and Pontryagin's maximum principle does not guarantee that a
couple (x* (0, u* (/)), satisfying them, is optimal, nor that an optimal solution
exists at ail. The theorems of Arrow ([11], p. 107) and of Filippov-Cesari
([11], p. 132) give positive answers to the last two questions.

THEOREM 3.2. (suffïciency): If (x* (/), u* (/)) satisfies the necessary condi-
tions stated by. Theorem 3.1 and if g(y) = l"(y)/y+2r(y)^Q, y^0, then
(x* (/), «* (t)) is an optimal solution of the checking schedule problem NDI.

Proof: We verify the assumptions of Arrow's suffïciency theorem ([11],
p. 107):

If (x* (/), M* (/)) is a solution to the Maximum Principle necessary condi-
tions, with the adjoint function p(r) and the constant p0, then

(i) Po=U
(ii)

The second derivatives of H w, r. t. x are

d2 Hjdxx dx2 = d2 H/dx2 - 0,

d2Hldxl=-f(t)g{x1)lx\.

Thus if g(y)^0 O>^0), then H is concave in x for ail t. •

Remark: If l(y) = c1 y (ct >0), then g(y)>0, for ail j>^0.

THEOREM 3.3. (existence): The checking schedule problem NDI admits an
optimal measurable solution w* (i).
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Proof: We verify the assumptions of the Filippov-Cesari theorem ([11],
p. 132):

(i) (x(f),u(t)) = (a,at,0) is an admissible pair,

(ii) For each {x,1) e (0, + oo) x [0, + oo) x {0, f J, let w e N(x, t) a M3 iff

Then N(x,t) = (-öo,fo(x,t)) x[0,w] x [Xl} and it is clearly convex for all

(x,/).
(iii) The control région [0, ü] is closed and bounded.

(iv) There exists a number b such that x(t)^b for all refO,^] and all
admissible pairs (x (/), u {t)).

In fact, from (16) and (17) we obtain

x (O2 ̂  (a + ütj2 + (at1 + M/2/2)2. •

4. COMMENTS

(ût) A very special solution is the constant intensity one,
(x(t),u(t)) = ((a,at),0), because the resulting inspection schedule is a homo-
geneous Poisson process. In this case, the expected cost of the constant
intensity schedule is E[C] = c0 — /(O). From the Maximum Principle condi-
tions, given by Theorem 3.1, it follows that the constant intensity schedule
is optimal if and only if

c0a
2/l'(l/a)^r(t), forall re[0,/J. (26)

(b) If the choice of the initial inspection intensity x1 (0) is not restricted to
a given value, as in the problem just discussed, then we are led to formulate
the "free initial intensity" version of problem NDI: let us dénote it by FNDI.
In FNDI, the initial condition

x1(0)>0 (27)

substitutes the old xx (0)~a, a>0 fixed.

If (x* (/), w* (f)) is an optimal pair of FNDI, then it has to be admissible,
in particular x*(0)>0, it has to satisfy the necessary conditions stated by

Recherche opérationnelle/Opérations Research
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Theorem 3.1 and the further condition (fil}, p. 185)

77,(0) = 0. (28)

(c) A constant intensity solution (x (t), u (t)) — ((a, at), 0) is optimal in the
free initial inspection intensity problem if and only if

(i) the condition (26) holds;

(ii) there exists a solution px (t) of the adjoint équation

p^Ctiy-Fim-l'Wdifla*, (29)

which satisfies the boundary conditionsp1 (0)=p1 (t^ — 0.

(d) A remark is needed for the case in which the density function ƒ vanishes
on some interval. Let

/ ( 0 = 0, for all <€[afp]c[0,f1}, (30)

so that F(t) — F(ot), /e[oc, p]. In this case and for te (a, p), the adjoint équation
(24) reads

Px(t) = co(i-F(*)). (31)

By (2), F(a)^F(ti)<\, so that px (t) is a positive constant, and px(t) is
strictly increasing, on [a, P],

The case where ^=t1 is particularly interesting, because we obtain by (19)
that

tetf,^), (32)

for some ye[0,a). Therefore, (20) implies that

j^iajj, (33)

Le,, the checking intensity jq (t) must be constant on [a, + oo). Thus we may
reformuiate the probiem equivalentiy by considering it on the smaller interval
E0,a].

5. EXAMPLES

In order to actually détermine the optimal solution of the problem NDI,
we are usually forced to resort to numerical techniques. Ho we ver, a few
interesting qualitative results may be obtained analytically in some cases.

vol. 26, n° 3, 1992
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This happens, in particular, when the failure rate distribution belongs to the
"decreasing failure rate" (DFR) family ([2], pp. 22-41), [3], In the following
examples, we first discuss the gênerai features of the optimal solution when
the failure rate distribution is DFR; then we analyze a special case of strict
DFR distributions, the Weibull distributions with a < 1; next we consider the
case of the exponential distributions, which belong to the intersection between
DFR and "increasing failure rate" (IFR) distributions ([2], pp. 22-41), [3].
Finally, we discuss a special case of strict IFR distribution, the Weibull
distribution with a = 3, which, among the Weibull distributions with a> 1, is
subject to a particularly easy analysis. In all of the examples we assume that
the loss function is linear,

l(y) = ct y, where cx > 0. (34)

As a conséquence, we have that the condition (25) reads as

pt (0^0 iffcoJtï t t /c^rW, (35)

where c0 x\ (0/^i is a monotonie non-decreasing function.

Example 1: Decreasing Failure Rate distributions

If F is a DFR distribution, Le. if the function r(t) is a monotonie non-
increasing function, then one of four cases may occur:

then/?1(0<0, 0<t<t1.

2. c0a
2lCl>r($)\

then/?! (0>0, 0<t<tx.
3. coa

2JCl=r(0y,
then Pi (t) = 0, 0 ̂  t ̂  t2, and px (t) > 0, t2<t^t1, where

4. Co^/c^riO) and rit^
then/>! (*)<(), t<t2, and px (0^0, t^t2J for some t2e(O,t1], such that

c0x\{t2)lCl = r{t2) and ^xl^j

Case 1: from px {tx) = Q it follows that/?1(0>0, ail t. Then W*(/) = M and

The characteristic condition is

Recherche opérationnelle/Opérations Research
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The initial value of the first adjoint function is

Case 2: from px (tx) = 0 it follows that px (/)<0, for all t<tx. Then u* (t) = 0

The initial value ofp1 (t) isp1 (0)<0.
Case 3: if r (tx) < r (0), then

CoAifùlc^rih) (36)

and fromJp1(/1) = 0 it follows that/?1(0<0, for all t<tx. Then M*(0 = 0 and
JCÎ(0 = Û, te[O,tx].

The same result holds if r(tt) = r(O)9 i.e. if r(f) is constant. In fact, if
M * ( 0 > 0 for some t9 then x%(tx)>a and the same condition (36) would hold,
giving u* (t) = 0 for all /.

The initial value of px (f) is px (0) ̂  0 and px (0) = 0 iff r (t) is constant.
Case 4: from px (/1) = 0 it follows that there exists a

^e[0,r2], such that

Then «*(/) = 0 and xf(0 = * î ( ' i
If ?3 = 0, then w* (/) = 0 and x* (/) = a9te [0, /J .
In the opposite case, if /3>0, then px(t3) = 09 because px is a continuous

function, and Pi(t)<0 for fe[0, /2), which is a neighborhood of /3. Hence
we obtain that/?1(/)>0, ?G[0,/3) , SO that

/) = M and xf(0 = a + w>, for

= 0 and xî(0 = o + ïZf3, for

The characteristic condition is

c0 a
2/c1 < r (0) and c0 (a + ûtx)

1jcl > r (tx).

The initial value of px (/) is /?x (0)^0 and px (0)-=0 iff t3 = 0.
We recall that the condition px (0) = 0 is the additional necessary condition

for the problem FNDI, the free initial inspection intensity one (Section 4).
There are only two possible ways in which the optimal solution of NDI is
also the optimal solution of FNDI. These are Case 3 with a constant r(t),
i.e. with exponential failure distribution, and Case 4, with /3 = 0. In both
cases the optimal solution with free initial inspection intensity is necessarily
homogeneous and then it must be the optimal homogeneous PCP, with
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intensity [6]

Example 2: DFR Weibull failure distributions

Let f(t) = Xat*~1exp(-Xta), X>0 and 0<oc<l. The failure rate function
is r{i) = X<xf~1: it is a decreasing function and lim r{i)= +oo. From the

analysis of the Example 1, we obtain that

(i) a ^ C c ^ a ^ - 1 / ^ ) 1 ' 2 - ^ ! , then

u*(t) = ü and xf(i) = a + üt, te[0,t3],

u*(t) = 0 and xf(t) =

As for the time parameter t3 we have that
either t3 ̂  0 and <p (/3) = 0,

or /3 = 0 and q)(0)>0,
where

9 (0 = fH { Co [1 - F(w)} - cj(w)l{a + ut)2} dw.

(ii) a<(c1Xatl~1/c0)
1/2-ütu then

u*(t) = ü and x*(0 = a + M>5 for /e[0s/J.

The (sub-) optimal PCP is homogeneous iff (i) occurs with *3 =

Example 3: Exponential failure distributions

This is the case of Weibull distributions with oc= 1.

Xe'l\ \>Q;

the failure rate function is r (t) = X, constant. From the analysis of Example
1 we obtain that

(0 a^ic.X/c^2, then

w*(0 = 0 and xf(t) = a, fetfUj].
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(ii) a<(c1
 fkjc0)

xl2<a + ut1, then

u*(t) = ü and x1[(t) = a + üt9 7e[0,/3],

w*(/) = 0 and xî(t) =

where t3 = ((c1X/c0)
1/2-a)/ü, so that

(iii) ^ ( q t y c o ) 1 ' 2 - ^ , then

«*(/) = « and ^Ï(O =

The optimal solution of the free initial inspection intensity problem is

«•(0 = 0 and

Example 4: IFR Weibull failure distributions (a= 3)

Let f(t)=3Xt2Qxp( — Xt3), \>0. The failure rate function is increasing:
r(t)~3Xt2. The condition (25) is equivalent to

=̂ 0 iff xx(t)^t9 p

We obtain that
(i) if a^Pfi, then

«•(0 = 0 and x*(t) = a,

Pi(0)<0.

(ii) if a < P t! and ü^ P (a > 0), then

«*</)=0 and *Ï(0 = a,

«*(/) = P and jc*(O =

(iii) if a< P t1 and i/< P (a>0), then

for some /2 < ft; hence it follows that

Jp1(0<0,

/»1(/)>0, /e (f3,0,

vol. 26, n- 3, 1992
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for some t3<*2. Now, either ^ = 0, and then

Pi (0)^0,

W and jcf(

or f 3 > 0, and then

px(t)<09

«•(0 = 0 and *Ï(0 =

« • ( 0 = M and *J(0

The condition px (0) = 0, which is necessary for the problem FNDI (free initial
inspection intensity), can only be satisfied if w < p. Then we must have that

u*(t) = ü and xî(t) =

There exists at most one a<fitl9 such that these conditions hold.

6. CONCLUSIONS

The problem of minimizing expected cost until détection of failure, using
random inspection (checking) schedules, has been the subject of the present
paper. We have investigated the behavior of non-homogeneous Poisson
checking processes with continuous non-decreasing intensity and obtain a
rather natural approximation of the original problem, in the form of an
optimal control problem. From its discussion we find that it admits an
optimal solution and that the necessary conditions, given by the Pontryagin's
Maximum Principle, are also sufficient to characterize any optimal solution.
Then these conditions are used in a number of examples, where the distribu-
tion of the first failure time has a monotone failure rate function. The most
interesting results concern the class of "decreasing failure rate" distributions.
On the other hand, a more complex discussion is required by "increasing
failure rate" distributions.

In order to obtain effective solutions in practical problems, numerical
procedures should be investigated and tested by simulation.
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