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A FAMILY OF HAMILTON TYPE METHODS FOR
COMGRESSIONAL APPORTIONMENTS (*)

by J. GONZALEZ (X) and N. LACOURLY (*)

Abstract. - Several principles have been proposed for determining whether the apportionment
of seats of a législative house by a given method is fair. In this work a certain family of methods
that satisfy the "fair share" criterion is introduced and it is shown that such methods also satisfy
other criteria like the "near fair share" and the "partial population monotonicity", The family
includes the traditional Hamilton's method which is the only one in such a family that satisfîes a
certain type of "independence".
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Résumé. — De nombreux principes ont été proposés pour déterminer si la répartition des sièges
d'un parlement obtenue par une méthode donnée est juste. Dans ce travail, une famille de méthodes,
qui vérifie le critère « entre quotas », est introduit et vérifie aussi d'autres critères importants tels
que «presque entre quotas » et la « monotonie partielle de population ». Cette famille de méthodes
contient la méthode classique de Hamilton, qui est la seule de cette famille, qui vérifie un certain
type d'indépendance.

Mots clés : Méthode de Hamilton; répartition proportionnelle; quota; entre quota.

1. INTRODUCTION

In connection with proportional représentation (PR) schemes for assigning
the seats of a législature, a number of principles have been proposed for
determining whether the apportionment as performed by a given method is
fair. Among such principles, population monotonicity, house monotonicity
and the fair share properties appear to be the most désirable (e. g., [2] and
[8]). Besides these, certain criteria have been proposed for comparing methods
and justifying the superiority of some with respect to others, e. g., binary
consistency [3], called near fair share in [2], and Droop minimum [7].
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32 J. GONZALEZ, N. LACOURLY

In this work, the importance of such principles is discussed, particularly
the population monotonicity and the near fair share in relation with the fair
property. As a resuit, a certain family of methods, that includes Hamilton's
is defined by a particular optimization problem. We show that Hamilton's
method is the unique in that family which satisfies a certain condition of
"independence".

2. PROPORTIONAL REPRESENTATION PROBLEM

Given h, the number of seats of a législature; n, the number of parties
participating in the allocation; and pp the number of votes cast in favor
of party 7, 7=1, . . ., /?, the proportional représentation problem consists of
apportioning the h seats among the n parties, or, specifically, flnding non-
negative integers a} such that Y,aj = n a nd aj is porportional to the vote of
party ƒ Further, q^pfijp with/? = £/>;, is called the quota associated with
party y, and represents the "idéal" solution, i.e., the one involving "exact
proportionality", when all the qs are integers. The rarity of that event, has
motivated the development of methods yielding solutions as approximate to
exact proportionality as possible. Among them, Hamilton's method and
divisor methods are the most well-known [2].

Hamilton's method perfoms the apportionment in two steps: fîrst, each
party 7 is assigned its lower quota \_qj\, and then each one of the r parties
having the r largest remainders O = #/~L#/J r ece^ves o n e 0I"the r = n~YL^A
remaining seats, i.e., is assigned its upper quota \qf[ If r=0, the distribution
is exact ([xj dénotes the greatest integer less than or equal to x, and
[x~|= |_x j+ 1 if x is not integer).

A divisor method based on a given divisor criterion d, which is an increasing
function defined for every integer m^O and satisfies m^d(m)Sm+l and
d(m')l{m'+ \)<d(m)/m for ail m^ 1 and m'^0, allocates the seats in n steps
(one seat in each step) according to the following rule: if Sj(k) is the number
of seats assigned to party j at the end of the A>th step, then the next seat is
given to the party with the highest value pjjd{sj{k)). The following are the
divisor methods that have been used in most of the cases to solve the
problem PR [2]:

SD Smallest divisor (Adams): d(m) = m

HM Harmonie mean (Dean): d(m) = m(m+\)/(m+ 1/2)
GM Geometrie mean or equal proportions (Hill): d(m)=/m(m+ 1)
AM Arithmetic mean (Webster, Saint-Lague):
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A FAMILY OF HAMILTON TYPE METHODS 33

GD Greatest divisor (Jefferson, d'Hont): d (m) = m+ 1.
Constrained optimization provides a basis for a gênerai approach to the

problem PR. In fact, if we let ƒ (a, g) dénote the function that measures the
"error" or "déviation" between the distribution a and the quota vector g,
then problem PR can be formulated as follows:

(PR): Min {/(a, g) : ]•>; = /*, fl^O and integer, j= 1, . . . , « } .

It can easily be seen that any solution a of Hamilton's method minimizes
Z K ~ 3 J I > X(flj~?j)2'and, generally, any norm of a -g .

Huntington [5], established that each of the above five divisor methods is
optimal regarding certain criteria that measure some "amount of inequality"
in pairwise rankings of parties. Further, AM minimizes YjPj(aj/Pj~h/p)2> GM
minimizes Ysaj(Pj/aj~P/h)2> whereas SD and GD optimize minamax;-{pjaj)
and minamaXj(aj/pj), respectively ([2], [5]).

3. PRINCIPLE RANKING

The main goal of an apportionment scheme for a législature is that
représentation be proportionally as fair as possible. However, since the PR
problem is intrinsically related to political power, its importance and implica-
tions go beyond the purely mathematical aim of finding a suitable, just (fair)
solution. History shows that the problem has been widely addressed not only
by politicians but also by mathematicians, who have sought to support some
methods and disfavor others [2]. The discussion has given rise to some basic
properties that appear to be the most désirable and that any fair method
ought to have. Among such principles we consider the following three:

(i) Fair share (satisfying quota). The mimber of seats a,- assigned to party j
should satisfy [ ^ J ^ a ^ l " ^ ] , for ail ƒ

(ii) House monotonicity. The vote of each party remaining constant, the
number of seats assigned to each party should not decrease as the house size
is augmented.

(iii) Population monotonicity. No party that increases its vote should lose
a seat to another that decreases its.

Hamilton's method fulfîlls the fair share principle. The divisor methods
satisfy both monotonicity criteria, whereas a certain type of methods, called
Quota methods ([1], [6]), were designed to satisfy, specifically, the fair share
and the house monotonicity principles. However, it was proved that no
method simultaneously satisfies ail three of the above principles [2]. This
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implies that the distribution resulting from any method will only be "partially
fair" and, hence, the importance ascribed to a principle vis-a-vis the others
will give grounds to détermine whether a method could outrank another.

First, it can be noticed that the fair share criterion tends to neither
undervalue nor overprize each party's vote: no party should receive fewer
seats than it deserves (L e., it should receive at least its lower quota), nor
should be assigned more seats than it merits (Le., it should not go over its
upper quota).

The principle of house monotonicity was originated in the situation known
as the Alabama paradox: after the 1880 Census in the United States, the fact
was detected that if the size of the House of Représentatives were increased
from 299 to 300, the number of seats assigned to the state of Alabama by
the Hamilton apportionment scheme would decrease from 8 to 7. While this
type of occurrence should be avoided, we agrée with Birchoff [3] in the sensé
that when the size of a législature is set in advance, it is not necessary to
require that the apportionment satisfîes this principle. Further, the assertion
holds true in practice, for changes in the process of an élection, and in the
few cases were they might, it is legitimate to state that it is a different poll
that is being dealt with.

Unlike those two principles, population monotonicity does not have an
unique conception. Regardless of its interprétation, however, its importance
is self-evident, because within the parameters that define the problem, viz.
number of seats, number of parties, and the vote of each party, it is the latter
that regularly changes, and so it deserves first considération. In particular, it
is désirable for an allocation to avoid situations like the "more-is-less"
paradox [4], which consits of a party receiving fewer seats after increasing its
vote. This, among other real life situations, is far from being "...curiosities
and nothing more..." (Still [6]), and therefore some type of population mon-
otonicity must be required to any acceptable method of apportionment.

A method will be said "partially population monotonous" if no party that
increases its relative vote pjp should lose a seat to another that decreases its.

This concept effectively accounts for real-life situations (e. g., in two consé-
cutive élections of a législature, some parties increase their votes, others
decrease theirs, whereas the total vote, usually, increases). Besides, it precludes
undesirable occurrences like the population paradoxes, and, in particular,
satisfîes the following properties:

— A party that increases its vote whereas the rest remains constant, will
not lose any seats.
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A FAMILY OF HAMILTON TYPE METHODS 35

— If one and only party increases its vote whereas the total population
remains constant, then it will not lose any seats.

In addition to the above principles, there is one introduced in [3] and [2],
which is related to the fair share property. It is called the near fair share
criterion which rules out the possibility that the transfer of a seat from one
party to another takes simultaneously both parties closer to their quotas.
This means, in particular, that if a party receives more than its upper quota,
no other party can receive less than its lower quota, and similarly, if a party
receives less than tis lower quota no other party can get more than its upper
quota.

In the next section we introducé a certain family of methods, that includes
the Hamilton method, using the fair share, near fair share and partial
population monotonicity principles, and show that the apportionments given
for such methods correspond to the optimal solutions of problems that admit
a formulation of the type defined by (PR), L e., are based on the optimization
of certain functions.

4. HAMILTONIAN TYPE METHODS

We start showing that, despite the fact that both principles fair share and
near fair share are defined only in term of the quotas, none of them is
implied by the other, except for the cases of two and three parties in which
near fair share implies fair share.

Divisor methods are partially population monotonous (actually, they satisfy
a stronger population monotonicity criterion [2]). However, only one of them
fulfils the near fair share principle.

THEOREM 1 [2]: Webster procedure is the only divisor method satisfying the
near fair share principle,

This resuit implies, in particular, that there exist near fair share methods
which do not satisfy the fair share property.

For the case of two parties, every divisor method is fair share, whereas
for the three-party case Webster's is the unique divisor method that is fair
share. For «^4 no divisor method is fair share [1].

PROPOSITION 1 : The Hamilton method satisfies the near fair share and the
partial population monotonicity principles.
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36 J. GONZALEZ, N. LACOURLY

Proof: Let (pj) and (p'j) be two vectors of the parties' vote, and assume
that p'jp'^pjp and p'Jp'^PmlP- Then qf

k^qk and q'm^qm (h is mantained
constant).

If |_<7fc]̂ [#fc]+ 1, then af
k^\_q'k\^ak and so party k can not lose any seat.

Similarly, if |_^mJ^L^m|~ U then a'm^\_qmj^am and party m can not get an
extra seat. So, the other possible case is |_#fc]=|_^J anc* L^J = L^mJ' w n i c n

implies r'k^rk and r'm-^rm. But, since a seat transfer requires that rk>rm and
r'm>rk, the Hamilton's solutions satisfy ak^ak and dm^am. Thus, Hamilton's
method satisfies the partial population monotonicity principle.

Now assume that Hamilton's method is not near fair share, and let
(h, pu . . ., pn) be a problem for which the Hamilton's solution satisfies
ai=\_qi\iaj=[qj], qj-(aj-\)<aj-qj and a^l-q^q^ a{ for some
parties i and ƒ But this implies qt — a^l/2 and q^ — a^<\\2 and hence
qt — \_qt\> 1/2 and q}-1[^-J< 1/2 which contradicts the outcome of Hamilton's
method, completing the proof. D

The next result, though it can not be generalized for more than three
parties, confirais the importance of the near fair share principle.

PROPOSITION 2: For two and three parties, the near fair share property
implies the f air share proper ty.

Proof: For the two-party case if (als a2) is near fair share and is not fair
share, say a1^[q1~\+ 1, then h-a2^h-[_q2J+ 1, and so a2^\q2 |— 1. This
implies that (al9 a2) is not near fair share, a contradiction.

We now consider the three-party case. Let (alt a2, a3) be the near fair
share apportionment for (pu p2, p3, h) and assume it is not fair share. Then,
at least one party does not satisfy quota, say 1. If fl1<[^ijs then it is not
possible that a2>\q2\ or a3>[<73] because of the near fair share principle,
and thus, neither a2 ̂  \_q2 J nor az ̂  [#3 J because a1 + a2 + a3 = h and
|_#il~H °2 J + L ^ J ^ * Öence, ci2 = \q2\ and «3

 = |~^3] . This implies
#2~|_#2 J> 1/2 and q3 — [^3J>l/2 because of the near fair share principle
and therefore, £[(?,•-1_^J) :j= 1, 2, 3 } > 1. From this it follows that

which implies |_#IJ<ÛI + 19 /.e., ai^ |_^ij5 a contradiction. If there are two
parties which are not satisfying quota, say parties 1 and 2, then either
ax<\\_qx J and a2<\_q2 J

 o r ^i >T^il an<^ a2>[^ r2] because (au a2, a3) is near
fair share. But none of these cases is possible because the former one implies
a 3 ^ [ # 2 ] + 2 and the latter implies a3^\ q2\—2, contradicting the near fair
share principle, which complètes the proof. D
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The reciprocal of the above resuit does not hold even for the two-party
case, L e., there exist fair share methods which are not near fair share. In
fact, consider the "smallest remainders" method, which we define in a way
similar to Hamilton's method but assigning the remaining r seats to the r
parties associated with the r smallest remainders rj = aj~\_^j\- The resulting
method is fair share but is not near fair share (e.g., if Â=10, and Pi = l3
and p2=107, then qx = 1.083 and #2 = 8.917, and the method gives the
solution (2,8) which is not near fair share because the transfer of one seat
from party 1 to party 2 get both parties closer to their respective quotas).

The two methods, Hamilton's and Webster's have one principle in common,
namely the near fair share. This property is shared by ail methods that
optimize a certain type of criterion, as deduced from the next resuit, whose
proof is evident.

PROPOSITION 3: Every apportionment method that minimizes X a j l û j~^ j | 5

with OLj>0 and s>0, satisfies the near fair share principle.

COROLLARY: For the two-party case, ail apportionment schemes that mini-
mize a \a2 — q2 \

s with oc^O, a 2 > 0 and 5>0, yield the same
solutions when rx # 1/2.

Proof: Let (a[, a'2) and (a'/, a2) be the optimal solutions obtained by two
given methods M' and M" associated with (ai, a2, s') and (oc", oc2, s"),
respectively. By Proposition 3, M' is near fair share, and hence the following
inequalities must hold |a[ — qx \^|a" — qx | and \a2 — q2\^\a2 — q2\. Since the
same argument holds for M", it follows that | d{ — qx \ S \ a\ — q± \ and
I ai ~~ °21 = I a2 ~ $2 |> a n c ^ therefore | a[ — q1 \ = | a" — qx \ and | d2 — q2 \ — | a'2' — q21.

Furthermore, since r1 + r 2 =l , these two equalities imply that a\ — a" and
a'2 = a2\ when ^ # 1 / 2 (note that if r1 = l/2, then a":=q1±l/2 = a'1±l and
a2=q2±l/2 = a2±\). D

From this Coroliary it follows that for the two-party case, the Webster's
and Hamilton's methods coincide.

We end this work by considering the set of all the apportionment methods
whose solutions satisfy Proposition 3 and the condition that they also have
to be fair share, Le., those methods that solve

P (a, s): Min £ {a, | aj - q} |
s : £ a} - A, [_0j]= ÛJ ̂  ï<lj\> aj integer, j = 1, . . . 9 n }

where s>0 and a7->0 for j = 1, . . ., n. a*(a, s) will dénote the optimal
solution of P(a, s).
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38 J. GONZALEZ, N. LACOURLY

First, we note that by letting xj'
sstaj-[_qj\ and rj = qj-\_qj\> the objective

function of problem P(a, s), denoted by F(a, s), associated with the para-
meters g = (ctj) and s, bëcomes

and therefore, problem P (ge, s) is equivalent to the following:

(P): Min £ { $JXJ: ^ x - r , Xj = 0 or 1}

where P; = o c , { ( l - r / - ^ } and r=/ï —
(P) corresponds to a particular Knapsack problem, whose solution x = (Xj)

can easily be obtained by giving the value 1 to the r variables Xj having the r
smallest coefficient p,. If a, = 1 for all j , then the resulting optimal solution
of (P) corresponds to the solution given by the method of Hamilton.

Given a > 0 and s > 0, we dénote by M (a, s) the apportionment method
whose solution for the problem (pu ...,ƒ>„; h) is a*(a, s), and by MH the
set of all such methods.

A method M(a, s) in MH is called independent of s if and only if for any
problem {p1, . . . , / ? n ; h) it satisfies a* (a, s') = a* (a, s") for all s '>0 and
s">0.

It is apparent that the method of Hamilton is independent of s. Moreover,
we have the following result.

THEOREM 2: Hamilton's is the unique method in MH that is independent of
the parameter s.

Proof: Let M (ge, s) be any method in M^ different from Hamilton's. We
will show that there exists a problem (pu . . *,ƒ?„, h) and / > 0 , / ' > 0 for
which a(a, s')^a(%, / ' ) •

Assume that a 1 ^ a 2 ^ a 3 ^ . . . ^oc„ and let (pl9 . , .,pn\h) be a problem
whose remainders r, are defined as follows

rx = {\~z)l2; rk=lf2(n-l), for A: = 2, . . ., n-1; and r„ = r „_ 1 +-

where 0 < s < l / 2 .

The définition of the remainders r,- implies that >* = /*-£[_#,•]= 1, and so,
method M(a, s) assigns |_9j-J + l seats to some one party j0 and [_4j\ seats
to each party j^j0.
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We claim that there exist positive values of e. (e< 1/2) for which (a)jo = n
if s' = 2, and (b) j0 = 1 if s" = 3. The définition of the objective function of (P)
implies that the former case is obtained when aM(l — 2r„)<otfc(l — 2rk) for ail
k^n, whereas the latter holds when

for ail fc/1. Further, the assumption on the otfc's together with the définition
of the rk's imply that case (a) holds for ail values of e satisfying
aB( l -2r r t)<a 1( l -2r 1) , Le., for e>e0 = anp/(ttl + an), where p = (n-2)/(«-l) .
Furthermore, the same argument implies that case (b) is equivalent to

(ii)
Since ƒ (x) — x (3 + x2) (x e R) is a continuous and strictly increasing

function (and so is one-to-one), there exists an unique £>0 satisfying ë
(3 + ë2) = an_ iP(3 + P2)/ot1. But, an^OLn.l implies/(eo)</(ë) and hence,
e o<i. Therefore, condition (i) is satisfied for £0 =

 s = *̂ Moreover, since
OLn<OLl and e o<p —eo<l/2, it follows that e0 also satisfies (ii), and by
continuity, there exists 8>0 such that condition (ii) holds for e* = eo + 8 with
8*<i, completing the proof. m

5. CONCLUSIONS

In this paper we have considered some criteria in the context of the
apportionment problem which allow us to introducé a certain family of
methods that work similarly to Hamilton's which is the only one in that
family satisfying some type of independence.
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