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EFFECTS OF ORDERIIMG AND UPDATING TECHNIQUES ON
THE PERFORMANCE OF THE KARMARKAR ALGORITHM (*)

by Abdellah SALHI (*) and George R. LINDFIELD (X)

Abstract. — This paper wiil report expérimental results obîained with two implementations of
the Karmarkar algorithm. In one implementation it is assumed that the optimum objective value is
available while in the other, this assumption is dropped. The study is particularly concerned with
the performance of the algoriîhm in conjunction with sparsity préservation techniques, namely the
nested dissection or der ing algorithm of Alan George and the updating algorithm for least squares
of Heath. Standard test problems are solved with FORTRAN 77 codes of the algorithm as well as
with the well known LP package LIN DO. In addition, a numerical example is given to illustrate
the algorithm and its geometrie features.

Résumé. — Cet article présente des résultats expérimentaux obtenus avec deux programmes de
l'algorithme de Karmarkar. Dans l'un, il a été présumé que la valeur optimale de la fonction
objective est a priori connue^ alors que dans l'autre cette supposition est rejetée. L'étude concerne
particulièrement la performance de l'algorithme en relation avec les techniques de préservation de
Véparpillement, telles que la méthode de classement d'Alan George et la méthode de mise à jour de
la solution du problème des moindres carrés. Les deux programmes, écrits en FORTRAN 77, ont
été testés sur des problèmes de programmation linéaire. Ces mêmes problèmes ont été aussi résolus
avec le package LINDO.

1. INTRODUCTION

The algorithm of Karmarkar (1984 a, 1984 b) for linear programming was
developed as a resuit of the search for a method which had polynomial
complexity like the ellipsoid algorithm but provided a practical implementa-
tion like the simplex method. It is related to classical interior point methods,
but présents original features such as the use of projective geometry and a
logarithmic potential function to measure convergence.

Moving in the direction of the gradient is the natural choice for obtaining
an improvement in the objective function when interior point methods are
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210 A. SALHI, G. R. LINDFIELD

considérée for linear programming. However, this will yield a substantial
improvement in the objective function only if the current feasible point is at
the centre of the polytope, L e. suffîciently distant from ail its boundaries.
Consequently, for an itérative process to work with these ideas, it must
alternate between centring the feasible point and taking a step in the gradient
direction.

Classical interior methods of the Brown-Koopmans type [Charnes et al,
1984] have difficulties near the boundaries, precisely because they lack the
centring step. The difficulties, usually, resuit in the loss of feasibility and
slow convergence. However, Karmarkar's algorithm successfully combines
the two steps and thus avoids the difficulties of the classical methods.

The centring process is performed by rescaling the feasible région at each
itération using a projective transformation. The optimization problem is
approximated by a minimization over a sphère of known centre and radius.
The minimization over the sphère is then solved by taking a step to its
boundary along a projected gradient direction. The rescaling process eombi-
ned with the step along the négative projected gradient is repeated until
optimality is achieved or the problem is recognized to be unbounded or
infeasible. We now describe the basic features of the algorithm.

2. THE PROJECTÏVE ALGORITHM OF KARMARKAR

Consider the linear programming problem in standard form
SLPX :

Mine7 x

s. t. Ax = b

where Rn is the n-dimensional Euclidean space; x, ceRn, bsRm and AeRmxn.
The original Karmarkar algorithm requires that the LP problem is expressed
in a special form called the canonical form, which is

PC:

Mine7 x

s.t.^x = 0

e r x = l

where e r = (l, 1, . . ., 1).
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PERFORMANCE OF THE KARMARKAR ALGORITHM 211

In addition, it is required that the minimum objective value is 0, and the
value of the objective at any feasible and nonoptimal point is strictly positive.
The question of converting SLPX into PC will be treated in detail later.

The centring scheme of Karmarkar is based on a projective transformation
defined by

D~xx
eT D

and its inverse

T' ( X ) e'Dx' X'

where Z) = diag(x(fc)), xw being a point in the space of PC.
Transforming PC using T'1, results in a nonlinear (fractional) program-

ming problem with the objective function cTDx'/erDx'. However, eTDx'
being positive in the transformed feasible région and given that cTx has
minimum zero, cTDx' /e rDx' has also minimum zero. Thus, it can be approxim-
ated with crDx'. It follows that the transformed problem to be considered is

Min c r Dx'

s.t.ADx' = 0

e r x '= l , x '^0,

which is of the required form PC.
This problem is an optimization over the intersection of the sim-

plex 2 = {x'eRn +1 : x '^0, Sx)= l} , with the linear subspace
Tl = {xfeRn+l : x '^0, Ax' = 0}. The centre of the simplex xfj = (ll(n+ 1),
l/(«+ 1), . . .), being a feasible point, a réduction in the objective function is
likely to be achieved along the opposite direction of the projected gradient p,
starting from x'Q. However, to insure feasibility after the move, Karmarkar
considered the minimization over the largest inscribed sphère Sr in S, as an
approximation to the minimization over the simplex E. This insures feasibility
of the resulting point. The problem is written

Min crDx'

s. t. ADx' = 0

x'^0,

vol. 25, n° 2, 1991



212 A. SALHI, G. R. LINDFIELD

where r= \j/{n{n—\)) is the radius of Sr.

From the geometrie point of view, there are 3 spaces involved: the space
of the original problem, the space of the homogeneous forai of the problem
and its image resulting from the projective transformation. Call the last two
spaces respectively x — space and x'-space. A sketch of the optimization
process is given in figure 2 .1 .

x-space x'-space

Figure 2.1. - An Itération of the Algorithm.

Let x(fc) be a point in x-space. Applying the projective transformation Tx

to x(k) results in the centre of Sr in x'-space. A new point in x'-space would
be x'<fe) at the boundary of Sr. This point is transformed back into the x-
space by the inverse projective transformation T~x, resulting in a point xik+i).
It is easy to see that an improvement in the objective function of PXs is
achieved in the direction of the projected gradient. The réduction in the
objective function of PC is harder to see, when we know that the set of
linear functions is not invariant under projective transformations. In this
respect, Karmarkar introduced the logarithmic potential function
F(x) = n\n(cTx) — ltj\n(xJ), where In is the logarithm of base e, which is
invariant undef projective transformations. To see that, we write the potential
function associated to the objective function in the transformed problem

F(x') = Z;ln(crDx7x;) (2.1)

and in the x-space after applying inverse transformation to x'

F(T; * (x')) = 2 , In (cT Dx'/xj) - Z,- In xt (2.2)
Expressions (2.1) and (2.2) are similar except for a constant — S7- In x;-.

Karmarkar proved that a positive constant réduction is achieved in the
potential function associated with c rDx, when moving from the centre of Sr

to its boundary. From (2.1) and (2.2), this réduction corresponds to some
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PERFORMANCE OF THE KARMARKAR ALGORITHM 2 1 3

réduction in the image of the potential function in x-space. It foliows that

) - 5 , (2.3)

where 8 is a positive constant. Based on these considérations, he established
the polynomial complexity of the following algorithm.

Algorithm 2 . 1

Karmarkar's algorithm générâtes a séquence of points x(1), x(2), . . ., x{k\ . . .
with the assumption that x(fc)^0> fc=l, . . . Assume also that an interior
starting point x(0) is available, and an arbitrarily small value e is chosen,
then the algorithm can be descnbed in the following steps.

0. jfc-0.

2. Project vector De onto the null space of B to find p = HDc where the
projection matrix

H=I-BT(BBTy1B.

3. Normalize p and scale it by the radius r— \//(n(n— 1)) of Sr to find
the direction vector p' = r p/|| p ||.

4. Compute a new feasible point in x'-space by taking a step of length a
along p', starting from the centre e/rc of Sr

x' = e/n — a p', a G (0,1).

5. Apply inverse transformation to x' to find a new point in x-space

(k+i)__ Dx'
erDx'

6. Check for optimality
if crx(fe+1)/crx(0)g£ then stop (optimum obtained)
else k = k+ 1, go to 1-endif.

2.1. Numerical example and geometrie représentation

The easiest way to illustrate some of the major features of the Karmarkar
algorithm is to use a simple numerical example.

vol, 25, n° 2, 1991



2 1 4 A. SALHÏ, G. R. LINDFIELD

Consider the problem

Min z = 2x1 — x2

s.t.3x1+jc2 = 4

whose optimum objective function value is z* - — 4. By introducing an addi-
tional variable x3 we may write this as:

x i
Min 2 xx — x2 - z* x3 * (ito.o)

(4/7,0,3/7)

(0. 0,1)

— (0,1,0) <°'4/5'1/5>

Figure 2.2. - Feasible Polytope QnX.

The problem being in canonical form, the algorithm may be applied if a
feasible interior point is available to start with. For this purpose, point
xo = e/3 = (l/3, 1/3, l/3)r is interior feasible , as it belongs to the line segment
between points (0, 4/5, 1/5) and (4/7, 0,3/7) in Qp |£ which is the feasible
région. It is also the centre of the simplex E as depicted in figure 2.2.

The flrst itération of the algorithm requires rescaling the feasible région,
using the projective transformation T(x) = x' — D~L x/eTD~1 x, and its
inverse T'1 (xf) = x = Dx'/eT Dx', where Z> = diag(xo) = diag(l/3, 1/3, 1/3).
However, x0 being already at the centre of the simplex, the transformation
is equivalent to an identity, which leaves the région as in figure 2.2. The
objective function, however, has changed. The transformed problem is

Min 2/3 x\ - 1/3 x2 - (z*/3) x3

(0.1,0) ( 0 - 4 / 5 - 1 / 5 ) X

"(0.16,0.57,0.27)

Figure 2.3. - A Step Along the Projected Gradient.

Recherche opérationnelle/Opérations Research
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In step 2 of Karmarkar's algorithm the steepest descent direction in the
transformed deasible région is found. The direction-p' is found by projecting
the gradient De onto the polytope O H 2, L e. multiplying the projection
matrix H with vector De, and considering the négative of this vector (see
fig. 2.3). It is along the négative gradient that the objective function decreases
most rapidly.

In step 4 a move in the direction-p' is made. However, to guarantee
feasibility after the move, a sphère Sr of radius a [«(w— 1)]~1/2 centered at
e/3 is inscribed inside the triangle £ of above figures, and the minimization
is over Q P E n Sr which is a sphère but of lower dimension. Ail the points
of this lower dimension sphère are feasible. In figure 2.3 it is the segment
which is delimited by Sr in Q P S. Notice that r = [n(n— 1)]~1/2 is the radius
of the largest sphère that can be inscribed in Z. A fraction oc of r is only
taken to avoid infeasibility, with 0 < a < l . The move is then of length ar,
with a = 0.9 and results in point (0.16, 0.57, 0.27). The point is not optimal
as it does not reduce the objective function to zero. Note that if the move
was long enough, we would have reached the optimum solution, which is
the end point (0, 4/5, 1/5) of segment Q Pi £. However, this is so because the
feasible région is a segment and the solution is one of its two vertices. In
higher dimensions it would not be so easy to identify the solution.

Having obtained a new point, we can proceed with the next itération. The
problem is first transformed into

Min 0.32 x\ - 0.57 x2 + 1.08 x3
1 2 3 1(1.0,0)

5.1.0.48x1 + 0.57x2-1.08x3 = 0 : 0 _. _ , , x
1 Z ó ^ 7 ' \(0.7,0,0.31)

X i ~i X-j ~T~ X i 1 . 2~è

^ ( 0 , 1 . 0 ) (0.0.66.0.35)

Figure 2.4. - Rescaling of the Feasible Région.

Again, the search direction is computed by multiplying the projection
matrix H and the gradient of the objective function in above problem. The
optimization process over Q H ^ H ^ produces point (0.07, 0.59, 0.35) as
depicted in figure 2.5. When transformed back to the space of the canonical
form, point (0.11, 3.56, 1.0) is obtained which is close to the optimal solution
x* = (0.0, 4.0, 1.0). The corresponding objective function is z = 0.67, which is
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still much larger than zero. One more itération is necessary to get a good
approximation to the optimum solution.

u n i

Figure 2.5. - Resuit of Itération 2.

Many problems arose with the efficient implementation of the original
Karmarkar algorithm including the choice of a more efficient step length in
the direction pt relaxing the requirement that the optimum objective function
be known in advance and the effective application of the algorithm to sparse
problems. In the foliowing sections we consider these problems in more
detail.

3. EXPERIMENTAL APPROACH TO KARMARKAR'S ALGORITHM

An important characteristic of large linear programming problems, is
sparsity. To achieve efficiency when solving these problems it is important
to exploit it. In the following discussion we shall describe how a variant of
the projective algorithm [Karmarkar, 1984 a, 1984 b] was implemented to
solve Klee-Minty and Hilbert type problems as well as real world sparse LP
problems. We shall examine the performance of the algorithm in conjunction
with the form in which the problem is handled and the technology available
for least squares problems. Issues related to the coding of the aigorithm in
Fortran 77 such as data structures and input data (MPS format) will be
discussed.

Two implementations of the algorithm are considered: LPKAR1 and
LPKAR2. In LPKAR1 it is assumed that the optimum objective value z*
of the problem is a priori known whîîe in LPKAR2 the assumption is
dropped. The canonical form in which the problem is handled differs for
both cases. The first code works on a canonical form in which the objective
function is included as a constraint with z* as its right-hand side. It works
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in a single phase and pro vides only the primai solution. The second code,
LPKAR 2 works on the canonical form described in Lustig (1985). It is a
two-phase method and générâtes dual solutions.

Aspects of sparsity exploitation such as ordering and partitioning will be
discussed and numerical results obtained using LPKAR 1 and LPKAR 2 will
be presented.

3.1. A variant of the Karmarkar algorithm

The original algorithm of Karmarkar (1984 a, 1984 b) was implemented
and did not perform as efficiency as expected. The difflculties encountered
were partly due to the inflation of the problem size after primal-dual combina-
tion to put the problem in the required form, and also to ill-conditioning in
the projection matrix which involves inverting a cross-product matrix of the
form BBT. Ho wever, this implementation provided valuable insights to the
properties of the algorithm and lts behaviour. The steplength, for instance
does not have to be 1/4 as suggested by Karmarkar to insure convergence.
Indeed, values closer to 1.0 and even larger, greatly improve the speed of
convergence. We also noted that the number of itérations is generally low,
which confirmed Karmarkar's claim. In the light of these observations and
expérience, we present a variant of the algorithm on which our codes were
based. NB the prime notation used in the algorithm description and through-
out this paper does not dénote transpose but indicates the matrix or vector
is modifïed in the way defmed.

Algorithm 3 . 1

The following algorithm handles problems in standard form, i. e. {x G Rn | min
c rx, Ax = b, x^O}. Assume that an interior feasible point is at hand, then

1. Transform problem into the form

min c'Tx'

s.t. A'x=0,

wherec'T = [cr, -z],A' = [A, -b] andx' r = [xr
s 1].

2. Initialization

fc = 0, e=1.0E-06,

z = M, where M is a large value, D = diag (x(0), 1).

vol. 25, n° 2, 1991



218 A. SALHI, G. R LINDFIELD

3. if c' rx' ( f c )<£stop.

4. Compute y = (DA'T)îDe'.

5. Compute p = De' - (DA'T) y - (c r x{k)/n) e.

6. Normalize p, Le. p' = p / | |p | | .

7. ^(fe + 1) = e —ap', where a is the steplength.

8. Compute

9. Compute

10. D = diag(x'ik+1)\c'T = [cT, - c r x ( f c + 1 ) ] , k = k+l9 go to 3.

Note that x is made up with the n first entries of x'. Also f dénotes the
pseudo-inverse of the matrix and T dénotes the transpose of the matrix or
vector. The Nag subroutine FOI BLF can, for, example be used to compute
the required pseudo-inverse.

Algorithm 3.1 differs from the original Karmarkar's algorithm and the
variant described by Lustig (1985) in the way the projection matrix and the
search direction are computed. This approach is more suitable as the sparsity
of the original problem is only slightly disturbed by adjoining the column
correspong to the right-hand side. When optimum objective value z* is
available, it can be shown that Algorithm 3.1 retains the polynomial com-
plexity of Karmarkar's algorithm. On the other hand, if z* is not supplied,
then updates of z, Le. cTx{k+1\ after each itération can be used instead.
However, while it is possible to establish that c rx (k + 1 )<cTx (k ), which implies
p' is a descent direction, it is difficult to show whether the algorithm is
polynomial in time. To make sure that Algorithm 3.1 has polynomial com-
plexity while dealing with unknown optimum objective value, the strategy
that finds ever better lower bounds on z*, described by Todd and Burrell
(1986) and Ye and Kojima (1987), must be used.

4. I M P L E M E N T A T I O N S OF ALGORITHM 3 . 1

LPKAR 1 and LPKAR2 are two different ways of applying Algorithm 3.1
to a linear programming problem depending on assumptions made and
information available about the problem. In LPKAR 1 sparsity exploitation
is the central issue. This will involve symbolic factorization, ordering and
updating techniques. In LPKAR 2 we investigate the possibility of sol ving
LP problems without supplying z* and by using the Moore-Penrose pseudo-
inverse [Ben-Israel & Greville, 1974] to solve the least squares problem of
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step 4 in Algorithm 3.1. First, let us look at the form under which the
problem is handled by LPKAR 1.

Assuming that z* is available, it is possible to transform the original
problem in standard form into the following equivalent form accepted by
Algorithm 3.1.

min X

s.t. Ax-b-(Ae

x, Jl£0,

where X is an artificial variable.

This problem is in Rn + 2 and admits en+2 as an interior feasible point.
Algorithm 3.1 is readily applicable. One advantage this form of the problem
offers is that the optimum solution is obtained in one phase. Indeed, when X
is reduced to zero, the resulting point x* satisfies the constraints in the
original space, Le, Rn, and also the extra constraint c T x - z * = 0. It follows
that x* is optimum solution.

The other advantage of above canonical form is that the objective vector
is zero except for one entry corresponding to the artificial variable X. In
LPKAR 1 this sparsity is used to reduce the work in an itération of
Algorithm 3.1. The way this is brought to effect will be shown later. Note
that LPKAR 1 is a primai only method as with the original algorithm of
Karmarkar. Results are obtained using LPKAR 2, later in this paper, giving
the dual and primai solutions which in addition does not require advance
knowledge of the optimum value of the objective function.

4.1. Details of LPKAR1

LPKAR 1 uses Cholesky method to deal with the least squares problem of
step 4 in Algorithm 3.1 augmented with sparsity préservation steps compris-
ing the Nested Dissection Ordering algorithm of George [George & Liu,
1981], and a version of the updating technique for least squares of Heath
(1984). Symbolic factorization is also used to set up appropriate data structu-
res. With these steps added, Algorithm 3.1 can be described as follows.

Algorithm 4.1

Assume that a feasible point x(0) is available and that the problem is in
the canonical form (4.1) accepted by Algorithm 3.1.

vol. 25, n° 2, 1991
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1. Initialization

k=0, e=1.0E-06,

z = M5 where Mis a large value, Z) = diag(x{ \ 1).

2. ifc'Tx'(fc)<EStop

3. Compute y as follows

(a) Remove the full rows of matrix DAtT.

(b) Find symbolic représentation or adjacency structure of A' D2 A'T.

(c) Find a permutation matrix P using the Nested Dissection Ordering
Algorithm.

(d) Find a symbolic factorization of PA'D2A'TPr, Le. find the non-zero
structure of the Cholesky factor L of the cross-product.

(e) Fill the structure with the actual numerical values by applying Cholesky
or Givens method.

(ƒ) Apply a forward and a back substitution to get the solution y' to the
incomplete least squares problem.

(g) Apply inverse ordering to get incomplete solution in the original order-
ing.

(h) Add effect of the removed rows to the solution y' by updating it using
the algorithm of Heath (1984), resulting in y.

4. Compute p = De' - (DA'T) y - (cT xik)/n) e.

5. Normalize p, le. p' = p/|Jpj|.

6. %(fc+1) = e —ap', where a is the steplength.

7. Compute x'<fc+i) = D^ ( f c + 1VeT i )^+ 1 ) .

8. Compute xr(k+i)/x'n%\1}.

9. D = diag (x'(&+1)), c ' r = [eT, -eTx ( f c + 1 )] , * = * + l , go to 2.

Note that this extended version of Algorithm 3.1 may be simplified due to
the very sparse cost vector of problem (4.1).

4.1.1. Adjacency structure of A' D2 A'T

Ordering algorithms are graph techniques and are known to be sensitive
to the way the graphs are represented. In our case, to proceed with the
reordering of the cross-product A'D2 A'T and set up the data strutures for
the Cholesky factor, it is essential to efficiently store its nonzero structure
and retrieve adjacency relations. Thus, the adjacency structure of a matrix is
the représentation of its graph.
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Let G(x, E) be a graph with N nodes. The adjacency list of a node xeX
is a list containing all adjacent nodes to x and the structure of G is the set
of such lists for all its nodes. The implementation of the structure is done by
storing the adjacency lists sequentially in a one-dimensional array ADJNCY
along with an index vector XADJ of length N+ 1 containing pointers to the
beginning of the lists in ADJNCY (see/ïg. 4.1). The extra entry XADJ(N+ 1)
points to the next available location in ADJNCY [George Se Liu, 1981].

G:

ADJNCY :

XADJ:

Ij *
h

1

3

3 *\
/

6

2 5 | 2

8

3

9

6 h

11

5

13

1 2 3 4 5 6 7

Figure 4.1. - Adjacency Structure of Graph G.

The attractive feature of this approach is that the structure of (^4' D) (A' D)r

is found without explicitly forming the cross-product.

4.1.2. Symbölic factorization and storage scheme

After applying the nested dissection ordering algorithm, a permutation
matrix P is returned which will help reduce fül-in during the factorization
process of PA' D2 AtT PT. We should note, however, that the nested dissection
algorithm has been proved theoretically efficien only for planar network type
adjacency structures.

Before proceeding with the actual numerical factorization, a simulation of
it, or symbölic factorization is carried out to set up the data structures to
contain the Cholesky factor in sparse form. The advantage of this approach
is that the data structures are static; thus they are set up once and for all, as
the structure of the matrix does not change from iteraction to itération. Not
that at this stage the numerical vaues of the Cholesky factor are not explicitly
computed.

The data structures returned by the symbölic factorization are presented
in a sparse storage scheme known as the compressed scheme of Sherman,
cited in [George & Liu, 1981]. The scheme has a main one-dimensional storage
array LNZ which will contain all nonzero entries in the lower triangular
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222 A. SALHI, G. R. LINDFIELD

factor of PAfD2A'TPT eohimn-wise, an INTEGER vector NZSUB which
will hold the row subscripts of the nonzeros, and an index vector XLNZ
whose entries are pointers to the beginning of nonzeros in each column in
LNZ. In addition, an index vector XNZSUB is also use to hold pointers to
the start of row subscripts in NZSUB for each column. The diagonal éléments
are stored separately in vector DÏAG.

4.2. Input data for codes of aïgorithm 3.1

Real world problems usually are stored in MPS format which is standard
in industry. The format, mainly, consists of three sections: constraints type,
constraints entries stored column-wise including the cost vector and the right-
hand side. Other sections may be added such as bounds on variables and
free constraints.

Example 1:

NAME
ROWS
N FOB00001
G ROW00001
G ROW00002
G ROW00003

COLUMNS
COL00001
COL00001
COL00002
COL00002
COL00003
COL00003

RHS
RHS
RHS

ENDATA

PR0B1

FOB00001
ROW00002-
FÓB00001
ROW00002
FOB00001
ROW00002

ROW0Q0Q1
ROW00003

-5.000000
-4.000000
-4.000000
-1.000000
-3.000000
-2.000000

-5.000000
-8.000000

ROWO'0001
ROW00003
ROW00001
ROW00003
ROW00001
ROW00003

ROWÖÖGÖ2

-2.000000
-3.000000
-3.000000
-4.000000
-1.000000
-2.000000

-11.000000

The problerû under MPS format is read into a one-dimensional array
ALIST of length NZ, which is a column-wise storage of the problem matrix.
Slack variables are added according to the type of constraints encountered
as well as the two columns, — b-and—(y4e-b) required by the canonical
forai. ALIST is accompanied with two INTEGER vectors, ICOL and IT,
with lengths NZ: and N-h 1, N being the number of total variables in the
canonical form. ICOL contains the row subscript of each nonzero in ALIST,
while IT contains pointers to the beginning of each column.

Our implementation requires that we repeatedly form the matrix A' D2 AtT

as JD changes from itération to itération, Thuss to avoid searching for the
rows of A' in ALIST, we preferred to store the matrix in row-wise form.
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This may seem inefficiënt regarding space, however, it makes sense from the
time point of view. Consequently, we have another trio of vectors RA {N2^)i

IA (NZ) and NA (Af +1) containing A' row-wise. These arrays are filled in
once only by performing a fast sparse-matrix transposition after ALIST,
ICOL and IT have been constructed.

4.3. Computational expérience

LPKAR1 was tested on the problems listed in table I whose origins are as
folio ws:

Chvtll and Chvtl2, respectively, are a farm planning LP model and a case
study in forestry described in Chvâtal (1983). Alfaut and RandD were
borrowed from ICL LP3 manual (1973), The remaining problems are stan-
dard test problems supplied to us by Dr. Etienne Loute of the Catholic
University of Louvain, Belgium and described in Ho and Loute (1980).

TABLE I

Test Problems Statistics.

Problem

Chvtïl
Chvtl2
Alfaut
RandD

Scsdl
Scagr7
Scsdó

Sc205
Sctapl
Scfxml

Scagr25

Original Form

Rows

16

17
38
39
77

129
147

205
300

330
471

Cols

11

13
33
15

760
140

1350

203
480

457

500

Rows

17
18
39
40
78

130
148

206

301

331
472

Canonical Form

Cols

28
32
72
56

762
187

1352

319
662
602

673

Nonzeros

142
114
301
396

3268
782

5824

911

2688

3203
2852

Density %

29.83
19.79
10.72
17.68
5.43
3,22

2.91

1.39
1.35
1.61
0.90

z*

-14021.04
-273382.1
-12233742

-9474.4845
8.666667
-2331390
50.50000

-52.20206
1412.250
18416.76

-14753433

The results reported below (table II through 5) concern the performance
of Algorithm 3.1 in conjunction with the nested dissection ordering algorithm
and the updating algorithm for least squares. Four versions of LPKAR1
were run on all the test problems. The versions differ in the ways sparsity is
exploited. Four cases arise:

Case 1 ; Ordering and partitioning were not implemented in LPKAR1
(table II).
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TABLE II

Performance of LPKARl (Case 1).

Problems

Chvtll

Chvtl2

Alfaut

RandD

Scsdl

Scagr7

Scsd6

Sc205

Sctapl

Scfxml

Scagr25

R Nonzeros

136

153

741

780

3003

7232

10878

20914

45150

54519

94244

Itérations

10

9

16

14

13

20

15

23

28

25

29

CPU(s)

0.23

0.20

1.94

2.32

66.21

35.25

264.41

157.25

669.00

797.36

1948.77

TABLE III

Performance of LPKARl (Case 2).

Problems

Chvtll

Chvtl2

Alfaut

RandD

Scsdl

Scagr7

Scsd6

Sc205

Sctapl

Scfxml

Scagr25

R Nonzeros

136

153

741

780

1390

6230

3167

20317

45150

54047

79994

Itérations

10

9

16

14

12

18

14

22

27

25

25

CPU(s)

0.26

0.23

2.12

2.26

64.29

30.25

240.45

157.95

672.69

839.53

1404.74

Case 1 : The nested dissection ordering algorithm was implemented, but
no partitioning was considered (table III).

Case 3 : The partitioning or updating Algorithm 1 was implemented, but
no ordering was performed (table IV).

Case 4 : Both ordering and partitioning were implemented in LPKARl
(table V).

Beside the CPU time (in sec.) and the number of itérations taken by the
four versions of LPKARl on all the test problems, a column containing the
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TABLE IV

Performance of LPKARX {Case 3).

Problems

Chvtil

Chvtl2

Alfaut

RandD

Scsdl

Scagr7

Scsdó

Sc2O5

Sctapl

Scfxml

Scagr25

R Nonzeros

136

124

196

771

1408

1250

2779

1574

8286

12075

4922

Itérations

10

9

16

15

13

18

14

22

28

25

28

CPU(s)

0.24

0.16

1.16

2.13

42.05

9.56

217.32

17.92

153.56

204.31

177.99

TABLE V

Performance of LPKARl (Case 4).

Problems

Chvtil

Chvtl2

Alfaut

RandD

Scsdl

Scagr7

Scsd6

Sc205

Sctapl

Scfxml

Scagr25

R Nonzeros

136

61

104

690

1393

1116

3119

1507

3736

6812

4848

Itérations

10

9

17

14

12

19

14

22

27

26

25

CPU(s)

0.24

0.14

1.25

1.88

49.52

10.59

219.35

19.39

128.90

180.13

170.59

number of nonzeros in the Cholesky factor for each problem is included.
This column, with the heading « R Nonzeros », clearly shows advantages
and disadvantages of both ordering and updating techniques. Please note
that in tables 2 to 5 of this section the small différences in the number of
itérations taken to solve some of the problems are due to rounding errors.

In these experiments, the potential function as well as the objective function
X of the canonical form (4.1) are monitored for some of the problems of
table I. These functions are represented in the graphs below. The potential
function is the logarithmic function of Karmarkar (1984 a, 1984 b).

vol. 25, n° 2, 1991



226 A. SALHI, G. R. LINDFIELD

0 T<

-3000 -12
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Figure 4.2. - Decrease in the Potential and Objective Functions for Problem Scagr7.

20

-10000

0 5 10 15 20 25 30 Q -JQ 20 30

Itérations Itérations

Figure 4.3. - Decrease in the Potential and Objective Functions for Problem Scagr25.

4.3.1. Hilbert-type LP problems

A version LPKARl which does not take account of spar si ty was tested
on a set of LP problems whose constraints matrix is based on the Hilbert
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Figure 4.4. - Decrease in the Potential and Objective Functions for Problem Sc205.
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Figure 4.5. - Decrease in the Potential and Objective Functions for Problem Scfxml.
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Figure 4.6. - Decrease in th Potentiai and Objective Functions for Problem Sctapl.

matrix, They are of the form
mincrx

s.t

where xeRn
y AeRnxn, ceRn and bejR". Matrix A has entries [ûy-] = [l/(ï+./)L

for i = 1, . . ., n and y = 1, . . ., n. The RHS is given by

" 1
b Z 1 2

The cost vector is given by

2

The primai optimum solution to these problems is x* = (l, 1, . . ., 1)T. Prob-
lems with w = 4, 6, 10, 15, 20, 25 and 30 were solved and the results depicted
in figure 4.7.

As one would expect, the number of itérations is approximately the same
for problems with n>6. Around itération 16, the potentiai function levels
out and shows hardly any noticeable improvement.
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Itérations

Figure 4.7. - Résulte from LPKARl on Hilbert-Type Problems.

4.3.2. Klee-Minty problems

The class of problems originally proposed by Klee and Minty (1972) is
well known as linear programming problems with n variables for which the
simplex method with various pivot rules takes an exponential, in n, number
of pivots to reach the optimum. The following form due to Avis and Châtal
(1978) is considered in our experiments, as well as in [Iri & Imai, 1986].

max \i "~J

S.t. ( j = l , . . . , B ) ,

0 = 1 , • • - , « ) ,

Xj=0where 0<fi<0.5. The optimum solution of this problem is
(j=\, . . . , / ï - l ) and x„=l . We performed experiments for the cases with
\i = 0A and n = 6, 12, 18, 24, 30 and 40. The results are shown in figure 4.8.

Although the itération count is still low for the Klee-Minty problem, the
number of itérations seems to grow slightly with the size of the problem. But
it is nothing like the simplex method. For the Klee-Minty problem of
order 40, for instance, the Standard simplex would take approximately 1012

itérations, as compared to 27 itérations the Karmarkar algorithm takes to
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fïnd the optimum solution. The growth with the size is logarithmic and not
exponential.

1

-500-

-1000-

-1500

-2000
30

5. APPLYING ALGORITHM 3.1 WHEN z* IS NOT A PRIORI KNOWN

This feature is implemented in the program LPKAR2. Ho wever bef ore
dealing with the unknown optimum objective value, it is necessary to fïnd a
starting feasible point. This can be done by solving a feasibility problem,
otherwise known as the Phase 1 problem. This problem is similar to the one
solved by LPKAR1. The unknown optimum objective value is dealt with by
updating the initial value of z in Algorithm 3.1 with crx(fc) after itération k.
This approach is known as the cutting objective function method.
Algorithm 3.1 with the cutting objective is a primal-dual algorithm. The
vector y computed in step 4 is dual feasible. At the end of Phase 2, y is the
true dual optimum solution if the problem is nondegenerate, i. e. x* has at
least m+ 1 positive entries, where m is the number of constraints. Otherwise
the dual solution is not unique and a number of alternative dual feasibie
solutions provide the same optimum objective function.

LPKAR2 is a FORTRAN 77 code for this algorithm. Step 4 of
Algorithm 3.1 is carried out using the Nag subroutine FOIBLF for Computing
the pseudoinverse.

The code was run on a subset of the problems listed in table 1. The results
of these runs are given below. For each problem 5 columns were produced,
which respectively are: the itération number, the optimum step a taken at
that itération, the primai objective value, a lower bound on the dual objective
function and its value. The bank entries to the last two columns correspond
to Phase 1 itérations in which an interior feasible point is found.
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Problem Name: RandD
ITERAT.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

a

6.441861428
4.559867337
1.445073937
4.621143626
3.841302410
3.682589382
3.033384722
2.566412224
2.358197628
1.669588275
2.635119288
1.636255498
6.255412489
2.247326661
6.222729319

PRIMAL

0.6531709614
0.820182E-01
0.771727E-03
-8884.832099
-9320.974037
-9412.218261
-9436.795379
-9450.617668
-9463.677588
-9466.686918
-9467.923004
-9468.274640
-9472.807924
-9477.173856
-9475.909702

L.BOUND

-16428.78711
-13733.94824
-11239.68359
-11637.96973
-.100000E+21
-9715.130859
-9491.047852
-9471.314453
-9468.140625
-9467.330078
-9565.544922
-9474.494141

DUAL

-16175.50098
-13591.17871
-11188.44922
-11584.12500
-.975998E+20
-9708.828125
-9490.426758
-9471.197266
-9468.111328
-9467.324219
-9563.179688
-9474.494141

Problem Name : Chvtll

ITERAT.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

vol. 25, n°

a

2.865809331
3.966572662
2.050811475
1.008751969
9.301639104
2.452507189
1.972840325
14.74104330
2.797717475
4.927777042
5.805054359
21.45803992
10.02461707
4.149567088
20.14787443
20.12815984
25.84468262
30.98095870
108.0583358
4.082054439
7700.428266
4.081874178
24228.34324
2371190485.
70.28025742
44.80198279

2, 1991

PRIMAL

0.9934241435
0.7941611308
0.290249E-01
0.287112E-03
-11483.16638
-13027.91157
-13286.31012
-13651.34425
-13771.54418
-13778.51607
-13779.43317
-13791.03023
-13878.35165
-14012.74683
-14015.04564
-14015.08041
-14015.08173
-14015.08194
-14015.07551
-14015.33463
-14015.08186
-14015.08029
-14015.05874
-14015.22800
-14021.00474
-14021.03772

L.BOUND

-19023.27539
-17058.04688
-17406.45898
-16813.26172
-16001.35547
-16125.33691
-16142.97949
-16141.19727
-15772.87598
-14595.31836
-14152.19531
-14123.12012
-14122.71289
-14122.70898
-14122.70898
-14122.70898
-14122.70801
-14122.70898
-14122.70703
-14122.57227
-14117.38281
-14021.04102

DUAL

-18619.72656
-16811.80273
-17182.81641
-16627.70703
-15872.47559
-15988.55273
-16004.45898
-16002.74707
-15660.45605
-14553.69141
-14144.03809
-14116.76367
-14116.38184
-14116.37793
-14116.37793
-14116.37793
-14116.37695
-14116.37793
-14116.37598
-14116.25000
-14111.38184
-14021.04102
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Problem Name : Chvtl2

ITERAT.

1
2
3
4
5
6
7
8
9
10
11
12
13

a

4.403545515
2.450272242
1.131387576
1.005887171
2.147604523
3.016425300
2.819401851
3.022792842
4.931871498
6.209180867
9.077869172
29.57530165
29.02232090

PRIMAL

0.9944982521
0.5077499693
0.965917E-02
0.944669E-04
-228535.2657
-250208.7442
-263412.8438
-267849.2021
-269401.4924
-269913.1435
-273307.8685
-273377.0912
-273381.8568

L.BOUND

-642805.9375
-317029.2813
-312417.2500
-315956.2188
-315477.8438
-314532.0625
-309012.2813
-273385.5000
-273382.0000

DUAL

-626204.3125
-314349.6250
-310173.6875
-313710.1875
-313141.0000
-312117.5000
-306870.6875
-273385.3125
-273382.0000

The stopping criterion used is based on the gap between the primai objective
and its lower bound. Steplength a is computed at each itération using the
blocking variable technique described in Lustig (1985). Comments on the
following results can be found in the conclusion.

6. COMPARATIVE RESULTS BETWEEN LPKARl (Case 3) and LINDO

LINDO (Linear INteractive Discrete Optimizer), [Schrage, 1983], is a
commercial package which does Linear as well as Integer and Quadratic

Problem Name : Alfaut

ITERAT.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

a

5.020584304
5.016395983
1.224532672
0.997201850
7.701221428
3.943619602
2.934036697
3.248521773
7.467750399
4.741095164
5.997308168
8.387838113
13.59068778
27.19466703
65.21966319

PRIMAL

0.9987008107
0.7061022659
0.226881E-01
0.228803E-03
-9256687.028
-10490237.48
-11106791.07
-11658852.95
-12046247.56
-12171514.61
-12218466.46
-12230475.94
-12233368.10
-12233714.86
-12233741.39

L.BOUND

-36732648.00
-31063900.00
-16443347.00
-14401056.00
-13226854.00
-12525954.00
-12263207.00
-12236620.00
-12234132.00
-12233751.00
-12233742.00

DUAL

-36303604.00
-30724012.00
-16347721.00
-14348024.00
-13200235.00
-12517692.00
-12262387.00
-12236546.00
-12234121.00
-12233751.00
-12233742.00
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Problem Name : Seagr7

233

ITERAT. <x PRIMAL L.BOUND DUAL

1
2
3
4
5
6
7
3
9
10
11
12
13
14
15
16
17
18
19
20

7.405831680
6.199722355
3.120554655
1.987366289
.9975537117
9.235479623
3.001158895
3.235121117
4.528271088
6.289297716
10.90774247
7.018505189
9.477241468
7.012442289
8.106021664
7.107331053
18.04304854
14.72354161
21.64842011
109.6028688

.9981415303

.9863109023

.9243653430

.988973E-01
0.108856E-02
-2023372.180
-2171044.627
-2250286.867
-2293157.895
-2319053.392
-2328609.473
-2329835.032
-2330885.659
-2331150.209
-2331280.375
-2331328.956
-2331369.400
-2331381.338
-2331386.993
-2331389.556

-21206690.00
-10496797.00
-3377933.750
-2505680.500
-2383567.750
-2354395.750
-2335393.000
-2334042.250
-2333566.750
-2332203.250
-2331503.750
-2331467.000
-2331431.750
-2331391.500
-2331389.750

-21084080.00
-10442040.00
-3370697.250
-2504344.000
-2383144.500
-2354224.000
-2335359.000
-2334019.500
-2333549.250
-2332196.750
-2331502.750
-2331466.500
-2331431.500
-2331391.500
-2331389.750

Programming. It is available on Aston University's VAX 11/750 computer.
To have an idea about the performance of our codes, we ran a version
LPKARl (case 3) and LINDO on nine of the test problems given in table I.
The resuit s are recorded in table VI.

From the iteraction count point of view, LPKARl is superior to LINDO
except on the small problems Chvtll and Chvtl2. However, LINDO requires
less CPU time to solve all the problems.

TABLE VI

Comparative Resuïts: LPKARl (Case 3) v LINDO.

Problem

Chvtll

Chvtl2

Alfaut

Scsdl

Scagr7

Sc205

Sctapl

Scfxml

Scagr25

LPKARl (Case 3)

CPU(s)

5.79

5.60

13.30

428.62

81.18

148.73

1171.95

1614.57

1514.95

IT

15

14

15

12

18

21

26

24

27

LINDO

CPU(s)

3.69

3.48

5.91

84.23

26.89

54.89

89.61

191.56

377.13

IT

11

9

43

454

213

207

412

654

1284
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Note that the différence in CPU times required by LPKAR1 (Case 1)
given in table IV and in the above table, is due to the computers used; the
results of table IV were obtained on a VAX 8650 machine (6.5 mips), while
the above results were obtained on a VAX 11/750 machine (0.7 mips).

7. CONCLUSION

Throughout these experiments, it is confirmed that Karmarkar's algorithm
preserves its attractive features on various types of problems especially the
real world ones listed in table I. These features, namely, are its low itération
count (logarithmic in the size of the problem) and its acceptance and use of
the duality aspects of linear programming. Althrough the work in an itération
of the algorithm is substantially higher than that of the simplex [Tomlin,
185], it may be effectively reduced when existent sparsity techniques, such as
ordering and patritioning, are used. In this way, large real world LP problems
can be solved in realistic times as shown in table II through 5. The dependence
of the performance of the algorithm on least squares techniques
[Lindfîeld & Salhi, 1987] is also shown in those tables. This may be held a
against the algorithm. However, any improvement in the solution of the least
squares problem can readily be used in Karmarkar's algorithm.

The lower bound returned by LPKAR2 at itération 8 for problem RandD is
a pre-set value returned when the procedure fails to converge. The algorithm,
nevertheless, recovers after this failure to converge to an acceptable solution.
The problem of how accurate the solutions are is resolved by comparing the
results with the true objective function values given in table L The relative
accuracy of the values achieved by the primai solutions and optimum objective
values for all the problems is 10~6.
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