RAIRO. RECHERCHE OPERATIONNELLE

ABDELLAH SALHI

GEORGE R. LINDFIELD

Effects of ordering and updating techniques on the
performance of the Karmarkar algorithm

RAIRO. Recherche opérationnelle, tome 25, n°2 (1991),
p- 209-235

<http://www.numdam.org/item?id=RO_1991__ 25 2 209 0>

© AFCET, 1991, tous droits réservés.

L’acces aux archives de la revue « RAIRO. Recherche opérationnelle »
implique I’accord avec les conditions générales d’utilisation (http:/www.
numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=RO_1991__25_2_209_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Recherche opérationnelle/Operations Research
(vol. 25, n° 2, 1991, p. 209 a 236)

EFFECTS OF ORDERING AND UPDATING TECHNIQUES ON
THE PERFORMANCE OF THE KARMARKAR ALGORITHM (*)

by Abdellah SaLnr (!) and George R. LINDFIELD (1)

Abstract. — This paper will report experimental results obtained with two implementations of
the Karmarkar algorithm. In one implementation it is assumed that the optimum objective value is
available while in the other, this assumption is dropped. The study is particularly concerned with
the performance of the algorithm in conjunction with sparsity preservation techniques, namely the
nested dissection ordering algorithm of Alan George and the updating algorithm for least squares
of Heath. Standard test problems are solved with FORTRAN 77 codes of the algorithm as well as
with the well known LP package LINDO. In addition, a numerical example is given to illustrate
the algorithm and its geometric features.

Résumé. — Cet article présente des résultats expérimentaux obtenus avec deux programmes de
lalgorithme de Karmarkar. Dans l'un, il a été présumé que la valeur optimale de la fonction
objective est a priori connue, alors que dans l'autre cette supposition est rejetée. L'étude concerne
particuliérement la performance de I'algorithme en relation avec les techniques de préservation de
Péparpillement, telles que la méthode de classement d'Alan George et la méthode de mise a jour de
la solution du probléme des moindres carrés. Les deux programmes, écrits en FORTRAN 77, ont
é1¢é testés sur des problémes de programmation linéaire. Ces mémes problémes ont été aussi résolus
avec le package LINDO.

1. INTRODUCTION

The algorithm of Karmarkar (19844, 19845) for linear programming was
developed as a result of the search for a method which had polynomial
complexity like the ellipsoid algorithm but provided a practical implementa-
tion like the simplex method. It is related to classical interior point methods,
but presents original features such as the use of projective geometry and a
logarithmic potential function to measure convergence.

Moving in the direction of the gradient is the natural choice for obtaining
an improvement in the objective function when interior point methods are

(*) Received mai 1990.
(Y) Department of Computer Science and Applied Mathematics, Aston University,
Birmingham B4 7ET, England.

Recherche opérationnelle/Operations Research, 0399-0559/91/02 209 27/$ 4.70
© AFCET-Gauthier-Villars



210 A. SALHI, G. R. LINDFIELD

considered for linear programming. However, this will yield a substantial
improvement in the objective function only if the current feasible point is at
the centre of the polytope, i.e. sufficiently distant from all its boundaries.
Consequently, for an iterative process to work with these ideas, it must
alternate between centring the feasible point and taking a step in the gradient
direction.

Classical interior methods of the Brown-Koopmans type [Charnes et dl.,
1984] have difficulties near the boundaries, precisely because they lack the
centring step. The difficulties, usually, result in the loss of feasibility and
slow convergence. However, Karmarkar’s algorithm successfully combines
the two steps and thus avoids the difficulties of the classical methods.

The centring process is performed by rescaling the feasible region at each
iteration using a projective transformation. The optimization problem is
approximated by a minimization over a sphere of known centre and radius.
The minimization over the sphere is then solved by taking a step to its
boundary along a projected gradient direction. The rescaling process combi-
ned with the step along the negative projected gradient is repeated until
optimality is achieved or the problem is recognized to be unbounded or
infeasible. We now describe the basic features of the algorithm.

2. THE PROJECTIVE ALGORITHM OF KARMARKAR

Consider the linear programming problem in standard form
SLP, :
Minc’ x
s.t.Ax=b
x=0,

where R" is the n-dimensional Euclidean space; x, ce R", be R” and A€ R™*".
The original Karmarkar algorithm requires that the LP problem is expressed
in a special form called the canonical form, which is

PC:
Mine! x
s.t.Ax=0
efx=1
x=0

where e’=(1, 1, ..., 1).
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PERFORMANCE OF THE KARMARKAR ALGORITHM 211

In addition, it is required that the minimum objective value is 0, and the
value of the objective at any feasible and nonoptimal point is strictly positive.
The question of converting SLP, into PC will be treated in detail later.

The centring scheme of Karmarkar is based on a projective transformation
defined by

D 'x ,
Tx(x)_eTD_lx—x’
and its inverse
_ Dx’
T, (X)=———=Xx,
e Dx’

where D=diag (x™®), x® being a point in the space of PC.

Transforming PC using T !, results in a nonlinear (fractional) program-
ming problem with the objective function ¢” Dx'/e? Dx’. However, e" Dx’
being positive in the transformed feasible region and given that ¢’ x has
minimum zero, ¢” Dx’/eT Dx’ has also minimum zero. Thus, it can be approxim-
ated with ¢” Dx'. It follows that the transformed problem to be considered is

P_:

Min ¢” Dx’
s.t.ADx'=0
e’x'=1, x' =0,

which is of the required form PC.

This problem is an optimization over the intersection of the sim-
plex E={x'eR""h:x'20, ZXxj=1}, with the linear subspace
N={x"eR"*' :x'20, Ax'=0}. The centre of the simplex x5 =(1/(n+1),
l/(n+1), ...), being a feasible point, a reduction in the objective function is
likely to be achieved along the opposite direction of the projected gradient p,
starting from xj. However, to insure feasibility after the move, Karmarkar
considered the minimization over the largest inscribed sphere S, in X, as an
approximation to the minimization over the simplex X. This insures feasibility
of the resulting point. The problem is written

P

Xg*

Min ¢ Dx’
s.t.ADX'=0
e'x'=1
|x' —(e/m)||sar

x'20,

vol. 25, n® 2, 1991



212 A. SALHI, G. R. LINDFIELD

where r=1/_/(n(n—1)) is the radius of S,.

From the geometric point of view, there are 3 spaces involved: the space
of the original problem, the space of the homogeneous form of the problem
and its image resulting from the projective transformation. Call the last two
spaces respectively x—space and x’-space. A sketch of the optimization
process is given in figure 2. 1.

x-space x'-space

Figure 2.1. — An Iteration of the Algorithm.

Let x® be a point in x-space. Applying the projective transformation T,
to x® results in the centre of S, in x’-space. A new point in x’-space would
be x'® at the boundary of S,. This point is transformed back into the x-
space by the inverse projective transformation 77 !, resulting in a point x** 1.
It is easy to see that an improvement in the objective function of P, is
achieved in the direction of the projected gradient. The reduction in the
objective function of PC is harder to see, when we know that the set of
linear functions is not invariant under projective transformations. In this
respect, Karmarkar introduced the logarithmic potential function
F(x)=nln(c"x)~Z;In(x;), where In is the logarithm of base e, which is
invariant under projective transformations. To see that, we write the potential
function associated to the objective function in the transformed problem

F(x)=Z,In(c" Dx'[x)) Q2.1
and in the x-space after applying inverse transformation to x’

F(T'(x)=Z;In (" Dx'/x)—Z; In x;. 2.2)
Expressions (2. 1) and (2.2) are similar except for a constant —Z; In x;.

Karmarkar proved that a positive constant reduction is achieved in the
potential function associated with ¢ Dx, when moving from the centre of S,
to its boundary. From (2.1) and (2.2), this reduction corresponds to some
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PERFORMANCE OF THE KARMARKAR ALGORITHM 213

reduction in the image of the potential function in x-space. It follows that
F(x** )< F(x®) -3, 2.3)

where 6 is a positive constant. Based on these considerations, he established
the polynomial complexity of the following algorithm.

Algorithm 2.1

Karmarkar’s algorithm generates a sequence of points xV, x®, . .. x®, ..
with the assumption that xX®>0, k=1, ... Assume also that an interior
starting point x(¥ is available, and an arbitrarily small value ¢ is chosen,
then the algorithm can be described in the following steps.

0. £=0.

1. Set D=diag(x*) and B= (Af)
e

2. Project vector Dc onto the null space of B to find p= HDc where the
projection matrix

H=1I-BT(BB") ' B.

3. Normalize p and scale it by the radius r=1/_/(n(n—1)) of S, to find
the direction vector p'=rpf||p||-

4. Compute a new feasible point in x’-space by taking a step of length o
along p’, starting from the centre e/n of S,
x'=efn—ap, ae(0,1).
5. Apply inverse transformation to x’ to find a new point in x-space
D= Dx’ ]
el Dx’

6. Check for optimality
if cTx®*D/cT x <¢ then stop (optimum obtained)
else k=k+1, go to 1-endif.

2.1. Numerical example and geometric representation

The easiest way to illustrate some of the major features of the Karmarkar
algorithm is to use a simple numerical example.

vol. 25, n® 2, 1991



214 A. SALHI, G. R. LINDFIELD

Consider the problem
Min z=2x,—x,
s.t.3x;+x,=4
x, =0, x,20,
whose optimum objective function value is z* = — 4. By introducing an addi-

tional variable x; we may write this as:

X

Min 2 x, —x,—z% x4
$.t.3x,+x,—4x,=0:Q QN
X, tx,tx3=1:%

x, =0, x, =0, x5 =0.

471,0,3/7)

X2
Aoy OB

Figure 2.2. — Feasible Polytope Q N X.

The problem being in canonical form, the algorithm may be applied if a
feasible interior point is available to start with. For this purpose, point
xo=e/3=(1/3, 1/3, 1/3)T is interior feasible , as it belongs to the line segment
between points (0, 4/5, 1/5) and (4/7, 0,3/7) in Q" £ which is the feasible
region. It is also the centre of the simplex X as depicted in figure 2.2.

The first iteration of the algorithm requires rescaling the feasible region,
using the projective transformation T(x)=x'=D 'x/e’ D !x, and its
inverse T™!'(x")=x=Dx'/e"Dx’, where D=diag(x,)=diag(1/3, 1/3, 1/3).
However, x, being already at the centre of the simplex, the transformation
is equivalent to an identity, which leaves the region as in figure 2.2. The
objective function, however, has changed. The transformed problem is
Min 2/3 x; — 1/3 x, —(2%/3) x5 %
s.t.x;+1/3x,—4/3x3=0:Q

X;+x,+x;=1:Z

x; 20, X520, x3=0.

X3
0.0,1)
(0.16,0.57,0.27)

Figure 2.3. — A Step Along the Projected Gradient.
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PERFORMANCE OF THE KARMARKAR ALGORITHM 215

In step 2 of Karmarkar’s algorithm the steepest descent direction in the
transformed deasible region is found. The direction-p’ is found by projecting
the gradient Dc onto the polytope QM X, i.e. multiplying the projection
matrix H with vector D¢, and considering the negative of this vector (see
fig. 2.3). It is along the negative gradient that the objective function decreases
most rapidly.

In step 4 a move in the direction-p’ is made. However, to guarantee
feasibility after the move, a sphere S, of radiusa[n(n—1)]” '/ centered at
e/3 is inscribed inside the triangle X of above figures, and the minimization
is over QM XN S, which is a sphere but of lower dimension. All the points
of this lower dimension sphere are feasible. In figure 2.3 it is the segment
which is delimited by S, in Q N . Notice that r=[n(n—1)]"*/? is the radius
of the largest sphere that can be inscribed in X. A fraction o of r is only
taken to avoid infeasibility, with 0 <a<1. The move is then of length ar,
with «=0.9 and results in point (0.16, 0.57, 0.27). The point is not optimal
as it does not reduce the objective function to zero. Note that if the move
was long enough, we would have reached the optimum solution, which is
the end point (0, 4/5, 1/5) of segment Q M Z. However, this is so because the
feasible region is a segment and the solution is one of its two vertices. In
higher dimensions it would not be so easy to identify the solution.

Having obtained a new point, we can proceed with the next iteration. The
problem is first transformed into
Min 0.32 x; —0.57 x, + 1.08 x; %
s.t. 0.48x, +0.57x,—1.08 x;=0:Q
xX;+x,+x3=1:Z

x; 20, X520, x3=0.

X3
x -
: 0,0.66, 0.3 ©.0D
A, 1.0 (0.0.66,033)

Figure 2.4. — Rescaling of the Feasible Region.

Again, the search direction is computed by multiplying the projection
matrix H and the gradient of the objective function in above problem. The
optimization process over QX (M S, produces point (0.07, 0.59, 0.35) as
depicted in figure 2.5. When transformed back to the space of the canonical
form, point (0.11, 3.56, 1.0) is obtained which is close to the optimal solution
x*=(0.0, 4.0, 1.0). The corresponding objective function is z=0.67, which is
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216 A. SALHI, G. R. LINDFIELD

still much larger than zero. One more iteration is necessary to get a good
approximation to the optimum solution.

*

X3

X3

-
_ ©.0.1)
A0

(0.07, 0.59, 0.35)

Figure 2.5. — Result of Iteration 2.

Many problems arose with the efficient implementation of the original
Karmarkar algorithm including the choice of a more efficient step length in
the direction p, relaxing the requirement that the optimum objective function
be known in advance and the effective application of the algorithm to sparse
problems. In the following sections we consider these problems in more
detail.

3. EXPERIMENTAL APPROACH TO KARMARKAR’S ALGORITHM

An important characteristic of large linear programming problems, is
sparsity. To achieve efficiency when solving these problems it is important
to exploit it. In the following discussion we shall describe how a variant of
the projective algorithm [Karmarkar, 19844, 1984 5] was implemented to
solve Klee-Minty and Hilbert type problems as well as real world sparse LP
problems. We shall examine the performance of the algorithm in conjunction
with the form in which the problem is handled and the technology available
for least squares problems. Issues related to the coding of the algorithm in
Fortran 77 such as data structures and input data (MPS format) will be
discussed.

Two implementations of the algorithm are considered: LPKAR1 and
LPKAR2. In LPKAR1 it is assumed that the optimum objective value z*
of the problem is a priori known while in LPKAR2 the assumption is
dropped. The canonical form in which the problem is handled differs for
both cases. The first code works on a canonical form in which the -objective
function is included as a constraint with z* as its right-hand side. It works
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PERFORMANCE OF THE KARMARKAR ALGORITHM 217

in a single ‘phase and provides only the primal solution. The second code,
LPKAR 2 works on the canonical form described in Lustig (1985). It is a
two-phase method and generates dual solutions.

Aspects of sparsity exploitation such as ordering and partitioning will be
- discussed and numerical results obtained using LPKAR 1 and LPKAR 2 will
be presented.

3.1. A variant of the Karmarkar algorithm

The original algorithm of Karmarkar (19844, 1984 ) was implemented
and did not perform as efficiency as expected. The difficulties encountered
were partly due to the inflation of the problem size after primal-dual combina-
tion to put the problem in the required form, and-also to ill-conditioning in
the projection matrix which involves inverting a cross-product matrix of the
form BBT. However, this implementation provided valuable insights to the
properties of the algorithm and its behaviour. The steplength, for instance
does not have to be 1/4 as suggested by Karmarkar to insure convergence.
Indeed, values closer to 1.0 and even larger, greatly improve the speed of
convergence. We also noted that the number of iterations is generally low,
which confirmed Karmarkar’s claim. In the light of these observations and
experience, we present a variant of the algorithm on which our codes were
based. NB the prime notation used in the algorithm description and through-
out this paper does not denote transpose but indicates the matrix or vector
is modified in the way defined.

Algorithm 3.1

The following algorithm handles problems in standard form, i.e. { x€ R"|min
c¢Tx, Ax=b, x=0 } Assume that an interior feasible point is at hand, then

1. Transform problem into the form

where ¢’T=[cT, —z], A'=[4, —b]and x'T=[xT, 1].

2. Initialization

k=0, £=1.0E-06,

z=M,  where M is a large value,  D=diag(x?, 1).

vol. 25, n° 2, 1991



218 A. SALHI, G. R LINDFIELD

if ¢'Tx' ® < g stop.

Compute y=(DA'T) D¢’

Compute p=D¢’ — (DA’ D)y —(c"x®/n)e.

Normalize p, i.e. p’=p/||p||-

Ek+*D=e—qp’, where « is the steplength.

Compute x’ #* V= pgk+ el pgk+h),

9. Compute x’ **+ 1) =x/tk+1)//k+1)

10. D=diag(x'®*),¢'T=[cT, —eTx** V] k=k+1, go to 3.

Note that x is made up with the » first entries of x'. Also{ denotes the
pseudo-inverse of the matrix and T denotes the transpose of the matrix or
vector. The Nag subroutine FO0l BLF can, for, example be used to compute
the required pseudo-inverse.

® N kW

Algorithm 3.1 differs from the original Karmarkar’s algorithm and the
variant described by Lustig (1985) in the way the projection matrix and the
search direction are computed. This approach is more suitable as the sparsity
of the original problem is only slightly disturbed by adjoining the column
correspong to the right-hand side. When optimum objective value z* is
available, it can be shown that Algorithm 3.1 retains the polynomial com-
plexity of Karmarkar’s algorithm. On the other hand, if z* is not supplied,
then updates of z, i.e. ¢"x** 1) after each iteration can be used instead.
However, while it is possible to establish that ¢” x** " < ¢ x®, which implies
p' is a descent direction, it is difficult to show whether the algorithm is
polynomial in time. To make sure that Algorithm 3.1 has polynomial com-
plexity while dealing with unknown optimum objective value, the strategy
that finds ever better lower bounds on z*, described by Todd and Burrell
(1986) and Ye and Kojima (1987), must be used.

4. IMPLEMENTATIONS OF ALGORITHM 3.1

LPKAR 1 and LPKAR 2 are two different ways of applying Algorithm 3.1
to a linear programming problem depending on assumptions made and
information available about the problem. In LPKAR 1 sparsity exploitation
is the central issue. This will involve symbolic factorization, ordering and
updating techniques. In LPKAR?2 we investigate the possibility of solving
LP problems without supplying z* and by using the Moore-Penrose pseudo-
inverse [Ben-Israel & Greville, 1974] to solve the least squares problem of
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step 4 in Algorithm 3.1. First, let us look at the form under which the
problem is handled by LPKAR 1.

Assuming that z* is available, it is possible to transform the original
problem in standard form into the following equivalent form accepted by
Algorithm 3.1.

min A )
s.t. Ax—b—(4e—b)A=0
4.1
eTx—z*¥=0 5 @1
x, A20,

where A is an artificial variable.

This problem is in R"*? and admits e,,, as an interior feasible point.
Algorithm 3.1 is readily applicable. One advantage this form of the problem
offers is that the optimum solution is obtained in one phase. Indeed, when A
is reduced to zero, the resulting point x* satisfies the constraints in the
original space, i.e. R", and also the extra constraint ¢¥ x—z*=0. It follows
that x* is optimum solution.

The other advantage of above canonical form is that the objective vector
is zero except for one entry corresponding to the artificial variable . In
LPKAR1 this sparsity is used to reduce the work in an iteration of
Algorithm 3.1. The way this is brought to effect will be shown later. Note
that LPKAR1 is a primal only method as with the original algorithm of
Karmarkar. Results are obtained using LPKAR 2, later in this paper, giving
the dual and primal solutions which in addition does not require advance
knowledge of the optimum value of the objective function.

4.1. Details of LPKAR1

LPKARI uses Cholesky method to deal with the least squares problem of
step 4 in Algorithm 3.1 augmented with sparsity preservation steps compris-
ing the Nested Dissection Ordering algorithm of George [George & Liu,
1981], and a version of the updating technique for least squares of Heath
(1984). Symbolic factorization is also used to set up appropriate data structu-
res. With these steps added, Algorithm 3.1 can be described as follows.

Algorithm 4.1

Assume that a feasible point x¥ is available and that the problem is in
the canonical form (4.1) accepted by Algorithm 3.1.

vol. 25, p° 2, 1991



220 A. SALHI, G. R. LINDFIELD

1. Initialization

k=0, e=1.0E—06,
z=M,  where Mis a large value,  D=diag(x?, 1).

2. if ¢Tx'® <¢ stop

3. Compute y as follows

(2) Remove the full rows of matrix DA'T.

(b) Find symbolic representation or adjacency structure of 4’ D> A'T.

(c) Find a permutation matrix P using the Nested Dissection Ordering
Algorithm.

(d) Find a symbolic factorization of PA' D? A’T PT, i.e. find the non-zero
structure of the Cholesky factor L of the cross-product.

(e) Fill the structure with the actual numerical values by applying Cholesky
or Givens method.

() Apply a forward and a back substitution to get the solution y’ to the
incomplete least squares problem.

(g) Apply inverse ordering to get incomplete solution in the original order-
ing.

(h) Add effect of the removed rows to the solution y’ by updating it using
the algorithm of Heath (1984), resulting in y.

4. Compute p=Dc’' —(DA'T)y—(c"xP/n)e.
Normalize p, i.e. p'=p/||p||-
¢+t =¢—qp’, where a is the steplength.
Compute x'**V=Dgk* /el pg*+ 1,
Compute x’ *+1)/x/k+1),
. D=diag (x""“’) cT=[e?, —cTx** V], k=k+1, go to 2.

Note that thls extended version of Algorithm 3.1 may be simplified due to
the very sparse cost vector of problem (4.1).

I I %

4.1.1. Adjacency structure of A'D* A'T

Ordering algorithms are graph techniques and are known to be sensitive
to the way the graphs are represented. In our case, to proceed with the
reordering of the cross-product 4°' D? 4'T and set up the data strutures for
the Cholesky factor, it is essential to efficiently store its nonzero structure
and retrieve adjacency relations. Thus, the adjacency structure of a matrix is
the representation of its graph.
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Let G(x, E) be a graph with N nodes. The adjacency list of a node xe X
is a list containing all adjacent nodes to x and the structure of G is the set
of such lists for all its nodes. The implementation of the structure is done by
storing the adjacency lists sequentially in a one-dimensional array ADJNCY
along with an index vector X4DJ of length N+ 1 containing pointers to the
beginning of the lists in ADJNCY (see fig. 4.1). The extra entry XADJ (N+ 1)
points to the next available location in ADJNCY [George & Liu, 1981]}.

@

G: O @) (3
(®

©6)
aoncy:[2 6]1 3 a[2s5[2]3 61 5] |

A N |
xad: [1 3 6 8 9 11 13|

1 2 3 4 5 6 7

Figure 4.1. — Adjacency Structure of Graph G.

The attractive feature of this approach is that the structure of (4’ D) (4’ D)7
is found without explicitly forming the cross-product.

4.1.2. Symbolic factorization and storage scheme

After applying the nested dissection ordering algorithm, a permutation
matrix P is returned which will help reduce fill-in during the factorization
process of PA’ D*> A'T PT. We should note, however, that the nested dissection
algorithm has been proved theoretically efficien only for planar network type
adjacency structures.

Before proceeding with the actual numerical factorization, a simulation of
it, or symbolic factorization is carried out to set up the data structures to
contain the Cholesky factor in sparse form. The advantage of this approach
is that the data structures are static; thus they are set up once and for all, as
the structure of the matrix does not change from iteraction to iteration. Not
that at this stage the numerical vaues of the Cholesky factor are not explicitly
computed.

The data structures returned by the symbolic factorization are presented
in a sparse storage scheme known as the compressed scheme of Sherman,
cited in [George & Liu, 1981]. The scheme has a main one-dimensional storage
array LNZ which will contain all nonzero entries in the lower triangular
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222 A. SALHI, G. R. LINDFIELD

factor of PA'D* A'T PT column-wise, an INTEGER vector NZSUB which
will hold the row subscripts of the nonzeros, and an index vector XLNZ
whose entries are pointers to the beginning of nonzeros in each column in
LNZ. In addition, an index vector XNZSUB is also use to hold pointers to
the start of row subscripts in NZSUB for each column. The diagonal elements
are stored separately in vector DIAG.

4.2. Input data for codes of algorithm 3.1

Real world problems usually are stored in MPS format which is standard
in industry. The format, mainly, consists of three sections: constraints type,
constraints entries stored column-wise including the cost vector and the right-
hand side. Other sections may be added such as bounds on variables and
free constraints.

Example 1:
NAME PROB1
ROWS
N FOB00001
G ROW0(0001
G ROW00002
G ROW00003
COLUMNS _
COL00001 FOB00001 ~ ~5.000000 ROW00001 =2.000000.
COL00001 ROW00002° -4.000000  ROW00003 ~3.000000
COL00002 FOB00001 -4.000000 ROWC0001 -3,000000
COL0O0002 ROW00002 -1.000000 ROW00003 -4.000000
COL00003 FOB00001 -3.000000 ROW00001 ~1.000000
COL00003 ROW00002 -2.000000 ROW00003 -2.000000
RHS
RHS ROW00001. -5.000000 ROW00002 ~11.000000
RHS ROW00003 -8.000000
ENDATA

The problem under MPS format is read into a one-dimensional array
ALIST of length NZ, which is a column-wise storage of the problem matrix.
Slack variables are added according to the type of constraints encountered
as well as the two columns, —b and—(4e—b) required by the canonical
form. ALIST is accompanied with two INTEGER vectors, ICOL and IT,
with lengths NZ and N+1, N being the number of total variables in the
canonical form. JCOL contains the row subscript of each nonzero in ALIST,
while IT contains pointers to the beginning of each column.

Our implementation requires that we repeatedly form the matrix 4’ D? 4'T
as D changes from iteration to iteration. Thus, to avoid searching for the
rows of A" in ALIST, we preferred to store the matrix in row-wise form.
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This may seem inefficient regarding space, however, it makes sense from the
time point of view. Consequently, we have another trio of vectors RA(NZ),
IA(NZ) and NA(M+1) containing A" row-wise. These arrays are filled in
once only by performing a fast sparse-matrix transposition after ALIST,
ICOL and IT have been constructed.

4.3. Computational experience

LPKARI was tested on the problems listed in table I whose origins are as
follows:

Chvtll and Chvtl2, respectively, are a farm planning LP model and a case
study in forestry described in Chvatal (1983). Alfaut and RandD were
borrowed from ICL LP3 manual (1973). The remaining problems are stan-
dard test problems supplied to us by Dr. Etienne Loute of the Catholic
University of Louvain, Belgium and described in Ho and Loute (1980).

TABLE I
Test Problems Statistics.

Problem | Original Form Canonical Form z*
Rows Cols | Rows Cols | Nonzeros Density %

Chvtll 16 11 17 28 142 29.83 -14021.04
Chvtl2 17 13 18 32 114 19.79 -273382.1
Alfaut 38 33 39 72 301 10.72 -12233742
RandD 39 15 40 56 396 17.68 -9474.4845
Scsdl 77 760 78 762 | 3268 5.43 8.666667
Scagr7 129 140 | 130 187 782 322 -2331390
Scsd6 147 1350 {148 1352 | 5824 291 50.50000
Sc205 205 203 |206 319 911 1.39 -52.20206
Sctapl 300 480 {301 662 | 2688 1.35 1412.250
Scfxm1 330 457 331 602 | 3203 1.61 18416.76
Scagr25 | 471 500 [472 673 | 2852 0.90 -14753433

The results reported below (table II through 5) concern the performance
of Algorithm 3.1 in conjunction with the nested dissection ordering algorithm
and the updating algorithm for least squares. Four versions of LPKARI1
were run on all the test problems. The versions differ in the ways sparsity is
exploited. Four cases arise:

Case 1 : Ordering and partitioning were not implemented in LPKARI1
(table II).
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TABLE II
Performance of LPKARI1 (Case 1).

Problems |R Nonzeros Iterations | CPU(s)
Chvtll 136 10 0.23
Chvti2 153 9 0.20
Alfaut 741 16 1.94
RandD 780 14 2.32
Scsdl 3003 13 66.21
Scagr7 7232 20 35.25
Scsd6 10878 15 264.41
Sc205 20914 23 157.25
Sctapl 45150 28 669.00
Scfxml 54519 25 797.36
Scagr25 94244 29 1948.77
TABLE III

Performance of LPKAR1 (Case 2).

Problems |R Nonzeros] Iterations | CPU(s)
Chvill 136 10 0.26
Chvtl2 153 9 0.23
Alfaut 741 16 2.12
RandD 780 14 2.26
Scsdl 1390 12 64.29
Scagr7 6230 18 30.25
Scsd6 3167 14 240.45
Sc205 20317 22 157.95
Sctapl 45150 27 672.69
Scfxml 54047 25 839.53
Scagr25 | 79994 25 1404.74

Case 1 : The nested dissection ordering algorithm was implemented, but
no partitioning was considered (table III).

Case 3 : The partitioning or updating Algorithm 1 was implemented, but
no ordering was performed (table IV).

Case 4 : Both ordering and partitioning were implemented in LPKAR1
(table V).

Beside the CPU time (in sec.) and the number of iterations taken by the
four versions of LPKARI on all the test problems, a column containing the
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TABLE IV
Performance of LPKAR1 (Case 3).

Problems |R Nonzeros] Iterations | CPU(s)
Chwill 136 10 0.24
Chvtl2 124 9 .16
Alfaut 196 16 1.16
RandD 771 15 2.13
Scsdl 1408 13 42.05
Scagr7 1250 18 9.56
Scsd6 2779 14 217.32
Sc205 1574 22 17.92
Sctapl 8286 28 153.56
Scfxm1 12075 25 204.31
Scagr25 4922 28 177.99
TABLE V

Performance of LPKARI1 (Case 4).

Problems  |R Nonzeros] Iterations | CPU(s)
Chvtll 136 10 0.24
Chvtl2 61 9 0.14
Alfaut 104 17 1.25
RandD 690 14 1.88
Scsd1 1393 12 49.52
Scagr7 1116 19 10.59
Scsd6 3119 14 219.35
Sc205 1507 22 19.39
Sctapl 3736 27 128.90
Scfxml 6812 26 180.13
Scagr25 4848 25 170.59

number of nonzeros in the Cholesky factor for each problem is included.
This column, with the heading « R Nonzeros », clearly shows advantages
and disadvantages of both ordering and updating techniques. Please note
that in tables 2 to 5 of this section the small differences in the number of
iterations taken to solve some of the problems are due to rounding errors.

In these experiments, the potential function as well as the objective function
A of the canonical form (4.1) are monitored for some of the problems of
table 1. These functions are represented in the graphs below. The potential
function is the logarithmic function of Karmarkar (1984 a, 1984 b).
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Figure 4.2. — Decrease in the Potential and Objective Functions for Problem Scagr7.
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Figure 4.3. — Decrease in the Potential and Objective Functions for Problem Scagr25.

4.3.1. Hilbert-type LP problems

A version LPKARI1 which does not take account of sparsity was tested
on a set of LP problems whose constraints matrix is based on the Hilbert
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Figure 4.6. — Decrease in th Potential and Objective Functions for Problem Sctapl.

matrix. They are of the form
mine’ x
s.t.Ax=b,
x>0,

where xeR", Ae R"*", ce R" and be R". Matrix A has entries [a;;]=[1/(i+)],
fori=1,...,nand j=1,...,n The RHS is given by

oo
bl = Z ] = 1’ 2, R
j=1 l+_]
The cost vector is given by
|
= 2 + — i=1,2,...,n

i+1 i=1 l+_]

The primal optimum solution to these problems is x*=(1, 1, ..., 1)7. Prob-

lems with n=4, 6, 10, 15, 20, 25 and 30 were solved and the results depicted
in figure 4.7.

As one would expect, the number of iterations is approximately the same
for problems with n>6. Around iteration 16, the potential function levels
out and shows hardly any noticeable improvement.
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Figure 4.7. — Results from LPKAR] on Hilbert-Type Problems.

4.3.2. Klee-Minty problems

The class of problems originally proposed by Klee and Minty (1972) is
well known as linear programming problems with » variables for which the
simplex method with various pivot rules takes an exponential, in n, number
of pivots to reach the optimum. The following form due to Avis and Chatal
(1978) is considered in our experiments, as well as in [Iri & Imai, 1986].

n
max Y p"ix,
ji=1
n
st Y piix+x<1, (=1, ...,n),
i=

x;20, G=1, ...,n),

where 0<p<0.5. The optimum solution of this problem is x;=0
(=1, ...,n—1) and x,=1. We performed experiments for the cases with
p=0.4 and n=6, 12, 18, 24, 30 and 40. The results are shown in figure 4.8.
Although the iteration count is still low for the Klee-Minty problem, the
number of iterations seems to grow slightly with the size of the problem. But
it is nothing like the simplex method. For the Klee-Minty problem of
order 40, for instance, the standard simplex would take approximately 10*2
iterations, as compared to 27 iterations the Karmarkar algorithm takes to
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find the optimum solution. The growth with the size is logarithmic and not
exponential.

0 ThE

-500 -

S ] —o— n=6
3 —— =12
& -1000 4 —a— n=18
£ —o— =24
g —0— n=30
& 1500 —o— n=40

-2000 —
0 5 10 15 20 25 30

lterations

5. APPLYING ALGORITHM 3.1 WHEN z* IS NOT 4 PRIORI KNOWN

This feature is implemented in the program LPKAR2. However before
dealing with the unknown optimum objective value, it is necessary to find a
starting feasible point. This can be done by solving a feasibility problem,
otherwise known as the Phase 1 problem. This problem is similar to the one
solved by LPKARI1. The unknown optimum objective value is dealt with by
updating the initial value of z in Algorithm 3.1 with ¢ x® after iteration k.
This approach is known as the cutting objective function method.
Algorithm 3.1 with the cutting objective is a primal-dual algorithm. The
vector y computed in step 4 is dual feasible. At the end of Phase 2, y is the
true dual optimum solution if the problem is nondegenerate, i.e. x* has at
least m+ 1 positive entries, where m is the number of constraints. Otherwise
the dual solution is not unique and a number of alternative dual feasible
solutions provide the same optimum objective function.

LPKAR2 is a FORTRAN77 code for this algorithm. Step 4 of
Algorithm 3.1 is carried out using the Nag subroutine FO1BLF for computing
the pseudoinverse.

The code was run on a subset of the problems listed in table 1. The results
of these runs are given below. For each problem 5 columns were produced,
which respectively are: the iteration number, the optimum step o taken at
that iteration, the primal objective value, a lower bound on the dual objective
function and its value. The bank entries to the last two columns correspond
to Phase 1 iterations in which an interior feasible point is found.
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Problem Name: RandD

ITERAT. o
1 6.441861428
2 4.%59867337
3 1.445073937
4 4.621143626
5 3.841302410
6 3.682589382
7 3.033384722
8 2.566412224
9 2.358197628
10 1.669588275
11 2.635119288
12 1.636255498
13 6.255412489
14 2.247326661
15 6.222729319

Problem Name ;: Chvtll

ITERAT o
1 2.865809331
2 3.966572662
3 2.050811475
4 1.008751969
5 9.301639104
6 2.452507189
7 1.972840325
8 14.74104330
9 2.797717475
10 4.927777042
11 5.805054359
12 21.45803992
13 10.02461707
14 4.149567088
15 20.14787443
16 20.12815984
17 25.84468262
18 30.98095870
19 108.0583358
20 4.082054439
21 7700.428266
22 4.081874178
23 24228,34324
24 2371190485,
25 70.28025742
26 44.80198279
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0.6531709614
0.820182E-01
0.771727E-03
-8884.832099
~9320.974037
-9412.218261
-9436.795379
-9450.617668
~9463.677588
~9466.686918
-9467.923004
-9468.274640
-9472.807924
-9477.173856
-9475.909702

0.9934241435
0.7941611308
0.290249E-01
0.287112E-03
-11483.16638
-13027.81157
-13286.31012
-13651.34425
-13771.54418
-13778.51607
-13779.43317
-13791.03023
-13878.35165
-14012.74683
-14015.04564
-14015.08041
-14015.08173
-14015.08194
-14015.07551
-14015.33463
-14015.08186
-14015.08029
-14015.05874
-14015.22800
-14021.00474
~-14021.03772

L.BOUND

-16428.,78711
~13733.94824
-11239.68359
-11637.96973
~.100000E+21
-9715.130859
-9491.047852
-9471.314453
-9468.140625
-9467.330078
-9565.544922
-9474.494141

-19023.27539
-17058.04688
~17406.45898
-16813.26172
-16001.35547
-16125.33691
-16142.97949
-16141.19727
-15772.87598
-14595.31836
-14152.19531
-14123.12012
-14122.71289
-14122.70898
-14122.70898
-14122.70898
-14122.70801
-14122,70898
-14122.70703
-14122.57227
-14117.38281
-14021.04102

231

DUAL

-16175.50098
-13591.17871
-11188.44922
-11584.12500
=.975998E+20
-9708.828125
-9490.426758
-9471.197266
-9468.111328
-9467.324219
-9563.179688
-9474.494141

DUAL

-18619.72656
-16811.80273
-17182.81641
-16627.706703
-15872.47559
-15988.55273
-16004.45898
-16002.74707
-15660.45605
-14553.69141
-14144.03809
-14116.76367
-14116.38184
-14116.37793
-14116.37793
-14116.37793
-14116.37695
-14116.37793
-14116.37598
-14116.25000
~14111.38184
-14021.04102
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Problem Name:  Chvtl2

ITERAT. o PRIMAL L.BOUND DUAL
1 4.403545515 0.9944982521
2 2.450272242 0.5077499693
3 1.131387576 0.965917E-02
4 1.005887171 0.944669E-04
5 2.147604523 -228535.2657 -642805.9375 -626204.3125
6 3.016425300 -250208.7442 -317029.2813 -314349.6250
7 2.819401851 -263412.8438 -312417.2500 ~310173.6875
8 3.022792842 -267849.2021 -315956.2188 -313710.1875
9 4.931871498 -269401.4924  -315477.8438 -313141.0000
10 6.209180867 -269913.1435 -314532.0625 -312117.5000
11 9.077869172 -273307.8685 -309012.2813 ~-306870.6875
12 29.57530165 -273377.0912 -273385.5000 ~273385.3125
13 29.02232090 -273381.8568 -273382.0000 ~-273382.0000

The stopping criterion used is based on the gap between the primal objective
and its lower bound. Steplength o is computed at each iteration using the
blocking variable technique described in Lustig (1985). Comments on the
following results can be found in the conclusion.

6. COMPARATIVE RESULTS BETWEEN LPKARTI (Case 3) and LINDO

LINDO (Linear INteractive Discrete Optimizer), [Schrage, 1983], is a
commercial package which does Linear as well as Integer and Quadratic

Problem Name :  Alfaut

ITERAT. [0 4 PRIMAL L.BOUND DUAL

1 5.020584304 0.9987008107

2 5.016395983 0.7061022659

3 1.224532672 0.226881E-01

4 0.997201850 0.228803E-03

5 7.701221428 -9256687.028 -36732648.00 ~36303604.00
6 3.943619602 -10490237.48 -31063900.00 -30724012.00
7 2.934036697 -11106791.07 -16443347.00 ~-16347721.00
8 3.248521773 -11658852.95 -14401056.00 '~14348024.00
9 7.467750399 -12046247.56 -13226854.00 -13200235.00
10 4.741095164 -12171514.61 -12525954.00 ~12517692.00
11 5.997308168 -12218466.46 -12263207.00 -12262387.00
12 8.387838113 -12230475.94 ~12236620.00 ~12236546.00
i3 13.59068778 -12233368.10 -12234132.00 -12234121.00
14 27.19466703 ~12233714.86  -12233751.00 -12233751.00
15 65.21966319  -12233741.39 -12233742.00 -12233742.00
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Problem Name:  Scagr7
ITERAT o PRIMAL L.BOUND DUAL

1 7.405831680 0.9981415303

2 6.199722355 0.9863109023

3 3.120554655 0.9243653430

4 1.987366289 0.988973E-01

5 .9975537117 0.108856E-02

6 9.235479623 -2023372.180 -21206690.00 -21084080.00
7 3.001158895 -2171044.627 -10496797.00 -10442040.00
8 3.235121117 ~2250286.867 -3377933.750 -3370697.250
9 4.528271088 -2293157.895 -2505680.500 -2504344.000
10 6.289297716 -2319053.392 -2383567.750 -2383144.500
11 10.90774247 -2328609.473 -2354395.750 -2354224.000
12 7.018505189 -2329835.032 -2335393.000 -2335359.000
13 9.477241468 -2330885.659 -2334042.250 -2334019.500
14 7.012442289 -2331150.209 -2333566.750 -2333549.250
15 8.106021664 -2331280.375 -2332203.250 -2332196.750
16 7.107331053 -2331328.956 -2331503.750 ~2331502.750
17 18.04304854 ~2331369.400 -2331467.000 -2331466.500
18 14.72354161 -2331381.338 -2331431.750 ~2331431.500
19 21.64842011 -2331386.993 -2331391.500 -2331391.500
20 109.6028688 -2331389.556 -2331389.750 -2331389.750

Programming. It is available on Aston University’s VAX 11/750 computer.
To have an idea about the performance of our codes, we ran a version
LPKARI (case 3) and LINDO on nine of the test problems given in table I.
The results are recorded in table VI.

From the iteraction count point of view, LPKARI is superior to LINDO

except on the small problems Chvtll and Chvtl2. However, LINDO requires
less CPU time to solve all the problems.

TABLE VI
Comparative Results: LPKAR1 (Case 3) v LINDO.

LPKARI (Case 3) LINDO

Problem CPU(s) IT CPU(s) IT
Chvtll 5.79 15 3.69 11
Chvil2 5.60 14 3.48

Alfaut 13.30 15 5.91 43
Scsdl 428.62 12 84.23 454
Scagr? 81.18 18 26.89 213
Sc205 148.73 21 54.89 207
Sctapl 117195 26 89.61 412
Scfxml 1614.57 24 191.56 654
Scagx;25 1514.95 27 377.13 1284
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Note that the difference in CPU times required by LPKAR1 (Case 1)
given in table IV and in the above table, is due to the computers used; the
results of table IV were obtained on a VAX 8650 machine (6.5 mips), while
the above results were obtained on a VAX 11/750 machine (0.7 mips).

7. CONCLUSION

Throughout these experiments, it is confirmed that Karmarkar’s algorithm
preserves its attractive features on various types of problems especially the
real world ones listed in table 1. These features, namely, are its low iteration
count (logarithmic in the size of the problem) and its acceptance and use of
the duality aspects of linear programming. Althrough the work in an iteration
of the algorithm is substantially higher than that of the simplex [Tomlin,
185], it may be effectively reduced when existent sparsity techniques, such as
ordering and patritioning, are used. In this way, large real world LP problems
can be solved in realistic times as shown in table II through 5. The dependence
of the performance of the algorithm on least squares techniques
[Lindfield & Salhi, 1987] is also shown in those tables. This may be held a
against the algorithm. However, any improvement in the solution of the least
squares problem can readily be used in Karmarkar’s algorithm.

The lower bound returned by LPKAR?2 at iteration 8 for problem RandD is
a pre-set value returned when the procedure fails to converge. The algorithm,
nevertheless, recovers after this failure to converge to an acceptable solution.
The problem of how accurate the solutions are is resolved by comparing the
results with the true objective function values given in table I. The relative
accuracy of the values achieved by the primal solutions and optimum objective
values for all the problems is 1076.
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