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REMARKS ON THE NEWTON METHOD FOR SOLVING
NONLINEAR EQUALITY CONSTRAINED OPTIMIZATION
PROBLEMS (%)

by Frank Korner (1)

Abstract. — We discuss the Newton method in connection with the Lagrangian function, the
Lagrangian dual problem and decomposition. In case the Hessian of the Lagrangian is regular we
show that all second-order informations are contained in this matrix.

Keywords : Nonlinear programming; Newton’s method; linearization techniques; second-order
approximation.

Résumé. — Nous examinons la méthode de Newton en relation avec la fonction lagrangienne, le
probléme du dual lagrangien et la décomposition. Dans le cas on la matrice hessienne du lagrangien
est réguliere, nous montrons qu'elle contient toutes les informations du deuxiéme ordre.

1. INTRODUCTION

We consider problems of the following form:
(P) f(x) > min subjecitog(x)=0, xe R™,

with g(x):=(g; (%), . .., £,(x))". The Lagrangian to (P) becomes:
L(x, u):=f (x)+u" g(x).

Many algorithms have been developed for determining a local minimizer
of (P). We discuss Newton’s method in connpection with the Lagrangian
function, the Lagrange dual problem and decomposition.

If the Hessian of the Lagrangian is regular, then this matrix contains much
information on the dual problem and decomposition. The aim of this paper
is to discuss some relationships in this sense.

(*) Received February 1989, revised in August 1989.
(*) MauthestraPe 13, VS-Schwenningen, D-7730, R F.A.
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The linear systems occurring in the iteration process are solved with a
special pivoting procedure. We obtain, without expensive efforts, the informa-
tion if the second-order Kuhn-Tucker conditions are fultilled or not.

2. ON THE NEWTON METHODS FOR SOLVING (P)

We say that (x*, u*) fulfils the Kuhn-Tucker conditions (KT) if the follow-
ing statement is true:

M

VL(x*, u*)=[ VS (x*)+Vg ()T u ]=0,

g(x*)
with Vg(x)=(Vg,(x), ..., Vg,(x).

The point (x*, u*) fulfils the second-order Kuhn-Tucker conditions (SKT)
if the following two statements (i) and (ii) hold.

(i) Rank (Vg(x*))=m.

(i) The relation V g(x*)Ts=0, s#0 implies s” L, (x*, u*)s>0.

A direction s’ with Vg(x*)Ts'=0 and s'TL,_ (x*, u*)s’<0 is called a
direction of descent. If (x*, u*) fulfils SKT, then x* is a local minimizer
(cf. e.g. [3]), and if (x', ') fulfils the conditions (i) and (ii), then V2 L (x', ')
is regular (¢f. e.g. [3]). For solving (1), we use the Newton method. With
z=(x, u), we obtain:

VL(N+V2L()s=0 )
and
Zli=ZF 4 s

with s=(sx, su), where 7, denotes the step length, or we use two step sizes ¢
and ¢’ with:

Xtl=xk+pex*  and  WFTl=uf 41 suk

Now we consider the Lagrangian dual problem of (P) in a slightly different
form.

L) ¢(u)—>sup, wueR"
with

@ (1) :=locmin (L (x, u): xe R").

Recherche opérationnelle/Operations Research



NEWTON METHOD FOR NONLINEAR OPTIMIZATION PROBLEMS 289

We define A (x")=locmin/(x) as follows: there exists an open neighbour-
hood X of x' in such a way that A(x")<h(x) holds for all xeX. Let
dome@:=(u:@u)> — ). If we use the dual problem, then we assume dom
o#*J.

If we solve (L) with Newton’s method, then we obtain:

Vo) +Vie@u)r=0, ©))

and W=k oy R

Now we use the decomposition for solving (P). If we split the vector x
into:

x=(x;, X;), x,€R™, x,eR? with nl+n2=n,
and n2>=m, then we have:
D) F(x,) »min, x,eR",
where
F(x,):=locmin {f (x;, x,): g (x;, x,)=0, x,€ R }.

The function F is discussed in [2] and [5]. Here, we consider only the
regular case. The Newton method for (D) takes the following form:

VF(x*)+V2F(x%)v*=0 ()]
and
Xt b=k 41, ok

We ask for a Kuhn-Tucker point (x*, »*) which satisfies SK7T, i.e. we
want to have a local minimizer x*.

3. THE DERIVATIONS

Now we ask how we can calculate the first and second derivations in (2),
(3) and (4) efficiently.
Let

)

VZL(X, u)=[ Lxx(x’ u) Vg(x) ]___:[ C AT :|=K

Vg™ 0 A4 0
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290 F. KORNER

If the matrices C and K are regular, then we obtain:

-1 C'=C 'ATPAC™ C™'A"P
PAC™! -P

with P=(AC™ 1 4T)" 1.
Denote

D D
D:=K—1=|:D11 D12 ]’ (6)
21 22

where D, is of dimension (n, n).
We now have the following assertions:

THeOREM 1 (¢f. e.g. [3]): Let v'edom@ and let (x', ') be a point with
QW)=L(x', ') further let L. (x', u') be regular. If matrix D,, [via (6)] is
regular, then the following statements hold:

Vo @)=g((x)
and
(V2o W) ' =D;,.
Now we split matrix D, via (6) into
ool ]
H, H,,
where H,, is of dimension (n1, n1).
Let (x%, #") be a Kuhn-Tucker point of the following problem:
f (x{, x,) — min subject to g (x,, x,)=0(x, constant). @)

THEOREM 2 (¢f. [11]): Let matrix H,, be regular. Let (x5, u') be defined via
(7) and let F(x})=f (x}, x3) then the next statements are true:

VEXD)=fe1 (X)) + g0 (X)W
and

(V2F(x)™'=H,,.
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The Theorems 1 and 2 show that we have only to calculate the matrix D
as (5). From this matrix we can obtain the other second order derivatives
efficiently.

4. ON THE SOLUTION OF THE LINEARIZED KUHN-TUCKER EQUATIONS

To solve the linear equation system (2) we use the following pivoting
procedure (¢f. [7]). We compute the matrix K~ [K via (5)]. Let K be split in
the following way:

C., CI, 47
K:={ Ci, Cp Al

We assume that A4, is regular.

Pivoting procedure
S1: Compute A5 *.
S2: Calculate

o AT A ]
A2 O A;T ""A;TC22 A;i

S§3: Evaluate

T (C1, AN P

U= -P[ C“] P
Al
T=C11“‘[ s ]TP[ Car ]
4, 4,

S4: Invert matrix T. Simultaneously convert all the remaining parts of the
matrix U. We obtain:

with

Tt =T71(Chy, AD P
Cll —1 C21 -1 T T

-P -t P T-1(CI,, AT P+P
4, A,
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It is not hard to see that we have calculated K~ 1.

Now we can state the following theorem:

TueoreEME: 3 (cf. [T]) Let (x*, u*) be a Kuhn-Tucker point of problem (P),
and let K be regular. Then we obtain:

(a) x* is a local minimizer iff T is positive definite.
(b) x* is a local maximizer iff T is negative definite.
(c) x* is a “saddle” point in the remaining case.

In case K is regular, then 7" is regular.

We can check the positive definiteness of T by the pivoting procedure. We
can choose all pivots on the main diagonal and all pivots are positive iff T is
positive definite. This procedure also works if we use the LU-decomposition.

Now we try to find a vector r; with r; TTr; <0. If T is regular and not
positive definite, then there exists such a vector. Now we consider matrix U
with:

T*

v={T11+),
T2+

and calculate r,=T1r]. The vector s=(ri, r,) fulfils (4,, 4,)s=0 and is a
direction of descent (¢f. [7]).

We now extend the pivoting procedure. Sort K corresponding (7) and
divide this matrix into the following blocks:

K, K, |

where K, is a (n2, n2) matrix which is the matrix K for problem (7).

Modified pivoting procedure

S1’: We use the pivoting procedure for K, and convert all the remaining
parts of K. We obtain a matrix 772 (I'2:= T in step S3).

S2': After step S4 for matrix K, we consider the resulting matrix K¥ (K¥
is the transformed matrix K,). Now we use the pivoting procedure for this
matrix and obtain a matrix 7'1.

Recherche opérationnelle/Operations Research
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Now we state the following theorem:

THEOREM 4: Let matrix T be defined by the pivoting procedure and let the
matrices T1 and T2 be determined by the modified pivoting procedure. Let K
be regular.

(a) T is positive definite iff T1 and T2 are both positive definite.
(b) T is negative definite iff T1 and T2 are both negative definite.
(¢) In the remaining cases is T indefinite.

The proof of Theorem 4 is obvious and should be omitted. From this
theorem we obtain

COROLLARY 5: In order to obtain a local minimizer (maximizer) for (P) with
the decomposition, we need a local optimum of problem (7) as well as of
problem (D).

5. REMARKS ON THE LINEARIZATION

The Hessian V2L contains a lot of information. If we require that the
corresponding matrices be regular, then the different methods are equivalent
in the sense that all information is contained in V2 L.

For this purpose, we use the inverse matrix. All our statements are related
only to pivots and their signs, respectively. Consequently, it is possible to
connect the solution process with the numerically stable pivot rules from the
LU-decomposition (cf. e. g. [6]).
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