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REAL TIME SCHEDULING AND ROUTING
FOR FLEXIBLE MANUFACTURING SYSTEMS

WITH UNRELIABLE MACHINES (*)

by Xiaolan XIE (*)

Abstract. - This paper présents a real time scheduling and routing algorithm for a failure prone
Flexible Manufacturing System (FMS). The parts should be dispatched into the system at adequate
times so as to minimize the disruptive effects of machine failures and to limit the work inprocess.

We extend the work of Kimemia and Gershwin in which the scheduling problem is decomposed
into a flow control problem and a discret part dispatching problem. In the FMSs studied hère,
several machines may perform one opération in different lengths of time and machines may be
multi-purpose. We propose a new technique which reduces the flow control computation burden.
Simulation results are presented.

Keywords : Flexible manufacturing Systems; production scheduling; unreliable machines; flow
control.

Résumé. — Dans cet article, nous présentons un algorithme d'ordonnancement et de routage
dans un atelier flexible dont les machines sont sujettes à pannes.

Nous étendons le travail de Kimemia et Gershwin dans lequel le problème d'ordonnancement est
décomposé en un problème de contrôle de flux de matière et un problème de lancement. Dans les
ateliers flexibles étudiés dans ce papier, une opération peut être effectuée par plusieurs machines
qui demandent des temps différents. En outre, une machine peut effectuer plusieurs opérations.
Nous proposons une nouvelle technique qui diminue le temps de calcul du contrôle optimal de flux.
Des résultats de simulation sont présentés.

Mots clés : Ateliers flexibles; ordonnancement de production; pannes de machines; contrôle
de flux.

1. INTRODUCTION

Flexible manufacturing Systems (FMS) are introduced to meet the require-
ments of a variety of part types in small and medium size. A flexible
manufacturing System consists of a set of machines and some associated
storage places, connected by an automated transportation system.
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356 x. xiE

A FMS system is often designed to be able to produce a mixed set of
parts simultaneously. Multi-purpose machines are introduced to meet this
need. On the other hand, multiple production facilities which can perform
the same opérations may exist. This allows the production to continue even
if some machines fail to work.

However, the control of a FMS is very difficult because of its complexity.
It is well known that the control of a FMS is NP-hard. In addition, the fact
that the system is subject to many random disruptive events, such as machine
breakdowns, material unavailability, etc, makes control even more difficult.

Scheduling problems have been addressed by many authors. A complete
survey can be found in Graves [1981]. Most authors state the problem as a
mixed integer programming problem. This approach leads to large scale
problems, even for small production Systems.

Hierarchical scheduling algorithms have been proposed by Hildebrant
[1980], Kimemia and Gershwin [1983], Gershwin, Akella and Choong [1985],
Gershwin [1987 a, b]. These algorithms avoid combinatorial features. It seems
to be a promising way to do real time production scheduling.

In this paper, we assume that the production requirements are specified at
a higher level of the hierarchy, L e. the master planning level. The control
problem is two-fold. First, the parts must be loaded into the system at a
certain rate in order to meet the production requirements. Second, the parts
must be routed correctly in the system so that no congestion should occur
and the work in process is as small as possible.

The following assumptions are made in this paper.
1. The time required for a machine to switch from one opération to

another one is small as compared to the part processing times.

2. The part processing times are small compared to the mean times between
failures and the mean times to repair.

3. The mean times between failures and the mean times to repair are great
as compared to the processing times.

4. The short term scheduling horizon is greater than the mean times
between failures and the mean times to repair.

For Systems of this type, Kimemia and Gershwin [1983] propose a two
level controller. At the higher level, they use a continuous représentation of
the material flow. The failures and the repairs are modelled by Markov
processes. The control problem consists in finding a production rate so as to
keep the production close to the production requirements. It is stated as an
optimal control problem for a system with jump Markov disturbances, which
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has been solved from control theory by Rishel [1975]. At the lower level, the
pairs are dispatched into the system according to the production rate specified
at the upper level. The main advantage of this approach is that the scheduling
becomes very easy once the production rate is known.

An important improvement of this approach has been made by Gershwin,
Akella and Choong [1985] for Systems without parallel machines. They use a
quadratic approximation of the cost functions which are obtained by solving
a complex Bellman's équation in Kimemia and Gershwin's algorithm. A
technique to compute parameters of these cost functions is proposed. This
algorithm greatly reduces the computational burden and avoids the control
singularity.

Recently, Maimon and Gershwin [1988] have also proposed a control
algorithm for Systems with non-identical parallel machines. Simulation results
are not presented.

Akella and Kumar [1986], Bielecki and Kumar [1988], and Sharifnia [1988]
obtain analytic solution to one product problem. Bielecki and Kumar point
out that a zero-inventory policy can be optimal even in the présence of
uncertainty.

Gershwin [1987 a, b] proposes a hierarchical control framework to deal
with a much richer catalog of events, including setups, machine failures,
preventative maintenance, etc. The basic idea is to treat events of different
frequencies separately.

The purpose of this paper is to describe a new extension of the above
mentioned work for Systems with non-identical parallel machines. Quadratic
approximation of the cost functions is used. A new technique is proposed to
compute parameters of these quadratic functions.

Outline of paper

The paper is organized as follows. In Section 2, the FMS model is pre-
sented. Charaeteristics of optimum control policy and optimum control com-
putation techniques are reviewed and a control framework is proposed. In
Section 3, we propose an approximation of the cost functions. In Section 4,
the discrete scheduling problems, including part dispatching and the choice
of parts for idle machines, are addressed. In Section 5, the long term produc-
tion capacity is examined. Simulation results are given in Section 6, and
conclusions are given in Section 7.
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2. FLOW CONTROL MODEL

In this section, the FMS model and the flow control problem are described.
Then, the characteristics of optimum control policies of the problem and the
computation techniques of the optimum control are reviewed. We finally
propose a production control framework.

2 .1 . Problem formulation

The system under study consists of M machines on which N part types
are produced. The manufacturing process of a part type can be described by
a séquence of opérations. Each opération may be done on several machines.
Let u(t) be the production rate vector of part types at time t Let dn be the
specified demand rate for type n parts.

Let xn (t) be the différence between the total production and the cumulative
demand of type n parts up to instant t. It is given by

dxn(t)/dt = un(t)-dn. (1)

A machine is either up or down. A boolean variable, denoted by otm (t), is
used to indicate the state of machine m,

_ f 1 machine m is up; )
( 0 otherwise. j

The time between failures and the time to repair are assumed to be exponen-
tially distributed random variables.

The machine state of the system, denoted by oc(t), is defined by

a «-(MO, MO, • • -,aM(0).

It can be modelled by a Markov chain. Let S be the set of possible machine
states of the system, then for any oc, PeS and oc^p

P [a (t + 5t) = p/a (0 - oc)] = A*, 8t (3)

where Xap are functions of the failure rates and the repair rates of machines.
The production rate is limited by the rate at which machines can do

opérations. No machines can work more than 100% of the time and machines
under repair cannot work at all. Let yk

nm be the rate at which type n parts
pass through machine m for opération /t, and let %k

nm be the time required to
complete the opération. Then, the rate yjm must satisfy the following cons-
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traints

E E O L ^ . Vm. (4)
n k

It is assumed that no material is accumulated within the System. Conse-
quently, the rate at which type n parts are sent for opération k is equal to
the production rate un (t). This is expressed as

Y,yknm = Un(t\ Vn,fc. (5)
m

Let Q(0 dénote the set of u(t)^(u1(t), . . -,uN(t)) such that there exist
flow rates y\m satisfying équations (4) and (5). It is function of the machine
state of the System and it is a convex polyhedron. Then, it can be written as

A production rate u (t) is feasible if and only if

u(t)eQ[*(t)l

The flow control problem can be stated as follows. Given a initial buffer
state x(t0) and machine state a(£0), find a control policy u(t)eQ[(x(t)] for
to<^t^Tthat minimizes the following performance index

J» (*o> a0, t0) = E i \g(x (t)) dtjx (t0) = x0, a (t0) = a0] L (6)

subject to (1), (3). The function g[x(t)] is a positive convex function which
penalizes the controller for failing to meet the demand and for keeping
inventory,

2.2. Characteristics of optimum control

The control problem has been largely studied by Rishel [1975]. Kimemia
and Gershwin [1983]. It is shown that for any given initial buffer level x and
machine state a, the optimum policy M* (t) can be determined by

min —Ju, (x, a, t) u (7)
t i e n (a) ÔX

where Ju* (x, a, t) is the expected çost, when the control policy M* is applied
in the interval [t, T].
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The expression (7) is linear in u and Q(a) is a convex polyhedral set. An
optimal policy u*(x, ot, t) takes values at extreme points of fi(ot) whenever
the gradient d/dx Ju* (x, ot, t) exists. For each machine state ot, an optimal
policy divides the buffer state space into a set of régions in which the
production rate is constant. But, the gradient d/dx Ju* (x, ot, t) does not always
exist at the boundaries of these régions.

The cost function has the following properties:

1. Ju*(x, ot, t) is a continuous function of x and t for all oteS;

2. Ju*(x, ot, t)is a convex function of x for £e(0, 7) and oteS.

3. lim Ju* (x, a, t) = oo.
| x | - o o

4. There exists a finite x that minimizes Ju» (x, ot, t).

In the time invariant case for which d(t) = d and T^oo, Ju is the average
cost rather than a total cost over the interval [t, 7]. As a resuit, the cost
function Ju (x (t), a (t), i) does not depend explicitly on t and can be written
asJ t t(x(0, «(O)-

There are two kinds of machine states: those for which the demand rate d
is feasible, i.e. those for which deQ(ot), and those for which the demand
rate d is infeasible.

For any feasible state ot, if the system remains in state a for a sufficient
period of time, the production rate will become equal to the demand rate
and the buffer level will remain constant. This fixed buffer level, noted by
xf, will be called the hedging point. It is a buffer level hedged against the
future breakdowns. This can be explained by the following équation

dJu.(x(t\a(t)) = a/„,(x(O,ot(O)
dt ôx

Since M* minimizes d/dx,Ju*(x,a)u for all uefi(ot), and since deQ(ot),
then d/dt Ju* (x (t% a (t)) is négative and Ju* (x (t), a (t)) is a decreasing function
of time t. On the other hand, Ju* is a positive quantity. Ju* (x (t), ot (t)) decreases
to a limit. The limit is reached when x (t) minimizes Jtt» (x (t), a (t)). After that
time, u* is equal to the demand rate and the buffer level remains constant.
The x that minimizes Ju* (x (t), a (t)) is the hedging point.

Recherche opérationnelle/Opérations Research



FLEXIBLE MANUFACTURING WITH UNRELIABLE MACHINES 361

2.3. Optimal control compilation techniques

As a resuit of the above discussion, the optimum control can be computed
by a two step procedure. At the first step, the cost function is evaluated.
This consists in finding out the optimum law of feedback. At the second
step, the production rate is computed by solving the linear problem (7).

The main difficulty of the optimum control computation lies in cost
function évaluation. The exact solution consists in solving a partial differential
équation.

Kimemia [1983] observed an undesirable singular behavior when applying
this approach. This occurs when the buffer level reaches a boundary of a
région in which the control is constant and it should remain at this boundary.

To overcome this difficulty, Gershwin, Akella and Choong [1985] propose
a quadratic approximation of cost functions. With this approximation, the
optimum control policy becomes piece-wise constant. For any initial machine
state and buffer level, the optimum control policy can be described by a
séquence of controls and their application times {(u°,t°\ . . ^(ti^"1 , K" 1 ) ,
(M*̂ , K = OO) } if the machine state lasts for a sufficient period of time. Another
séquence of controls will not be applied until the machine state has changed.
Notice that these séquences can be computed easily. Control singularity is
avoided when applying this approach.

This approach works very well for all our simulation expériences. This is
because the exact définition of function g (. ) is not important, what matters
is to have the system behave property. A quadratic approximation of the
cost function is capable of giving an adequate feedback of the buffer state.
For Systems without parallel machines, Gershwin, Akella and Choong [1985]
propose an adequate technique to compute the parameters of the cost
functions.

2.4. Proposed control framework

Figure 2.1 summarizes our control framework. First, the cost functions
are estimated. As we use a quadratic approximation, this step consists in
computing parameters of these quadratic functions. Second, the production
rate u (t) is computed by équation (7). Then, routing rates yk

nm (t) are determin-
ed from u(t) by balancing the machine workloads. At the discrete scheduling
level, parts are loaded into the system according to production rate u(t)
computed above and are sent to idle machines according to routing rates
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flOW *
control

scheduling

' ' • • ' • ' . : ; ' • - - : : : - • • • - : : " ; - ' . ' * " • ' . ' •' ' • " • ' ' • ' •'• ' ' '• " ' H • ! ' • • -

: " ;; ;: ;:
;r,; - V w\ Cost Function Estimation

•yt)V'fr production rate u(t) computation [;;

Figure 2 .1 . — Control computation framework.

3. COST FUNCTION ESTIMATION

As pointed out above, what matters is not the details of cost function, but
a proper System behaviour. The expected system behaviour is analyzed in
this section. Then, we propose a quadratic cost function approximation of
cost functions and a technique to compute parameters of these quadratic
functions.

3 .1 . Expected system behaviour

For a feasible system state a, Le. deQ(a), Figure 3.1 (a) demonstrates a
typical trajectory of the buffer level xn(t). The system state a becomes feasible
at time t0. The production rate is chosen to be greater than the demand rate.
Then, the buffer level moves toward the hedging poont H„ (oc). When the

x(t) Ax(t)

H

(a) Feasible state (b) Infeasible state

Figure 3.1. - Typical buffer trajectory.
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hedging point has been reached, the production rate is equal to the demand
rate and the buffer level remains at hedging point.

For any infeasible state a, Le. <i£Q(a), Figure 3.1(b) shows a typical
trajectory of xn(t). The System state a becomes infeasible at time t0. The
production cannot keep up with the demand. Then, the buffer level decreases.
If the System state lasts, the production rate tends to become constant and
the buffer level tends to decrease at a fixed rate.

For any state, the production rate becomes constant in finite time if the
System state endures. Let uffaxc) dénote this constant if the system state is
a and the buffer level is x0 when the system state becomes a. It has the
following properties:

(1) i ^ ( a , x o ) ^ a n d ^ ( a , x o ) e Q ( a ) ;

(2) if the system state is feasible, L e. deQ (oc), then w^oc, x0) — d.

We introducé dc(a), the controllable demand rate. It is determined by

dc (a) = Argmin £ b* (dn - un)
ueO(ot) andu^d »

where bn is the cost incurred for backlogging one type n part.

For any feasible state, Le. deQ(oc), the controllable demand is equal to
the demand, L e.

For any infeasible state a, the mean incurred cost is minimized if the state
lasts and «^(a, x0) is equal to dc(a). So, the controllable demand rate may
be seen as a désirable production rate if the system state lasts.

3.2. Cost function estimation

When the system state becomes infeasible, the production cannot keep up
with the demand. We propose a quadratic approximation of the cost function,
which leads the production rate toward the controllable demand rate if the
state lasts, Le. Mjr(a,x0) = dc(oc).

We introducé xc
n (t\ a fictitious buffer level. It is determined by

if ( O ( ) ;
1 (9)^ ( 0 n ( 0 ( ( 0 ) if

vol. 23, n° 4, 1989
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To understand this quantity, imagine that the demand rate dn is split into
two part dc

n(a(t)) and dn-d
c
n(a,(t)). The rate dn-d

c
n(a(t)) represents the lost

demand rate, but we assume that a buffer level H^(a(t)) has been hedged
against this lost demand. Thus, xc

n(t) can be seen as the buffer level for the
controUable demand.

We use the following quadratic approximations of the cost functions:

J (x, oc) = - (xc (t) - Ha)r A (oc) (xc (t) -Ha) + c (oc) ( 10)

where A (oc) is a positive definite diagonal matrix, c (oc) is a vector of positive
components and H* is the hedging point for the controUable demand.

This is an extension of the quadratic approximation proposed by Gershwin,
Akella and Choong [1985]. It is easy to show that if a System state lasts, the
final production rate becomes equal to the controUable demand rate.

3.3. Hedging point computation

In this section, we propose a myopie technique to compute hedging points.
For each state, only the failures of machines up in the state are taken into
account.

Let us consider a System state a and a machine m up in state oc, i. e. ocm= 1.
Figure 3.2 shows a typical trajectory of the buffer level xc

n(t) when machine

o t.i

Figure 3 .2 . - Typical buffer level trajectory.

m breaks down. Machine m breaks down at time t0; the buffer level decreases
at rate — Adn; the failure lasts for a length of time Tr. After the repair, the
production rate is assigned a value Un greater than the controUable demand
rate dc

n(oL). The buffer level moves toward the hedging point. When the
hedging point is reached, the buffer level stays at the hedging point and the
production rate becomes equal to the controUable demand rate.
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For this trajectory, we can evaluate the cost by penalyzing the positive
area with weight an and the négative area with weight bn. By minimizing the
total weighted area, we have

ad[(f (T,(Un-Adn)-TrAd„) (11)

If the following équation is true

Tf(Un-Adn) = T,Adn, (12)

the computation can be further simplified as follows

rAdn. (13)

Notice that équation (12) means that the system has just enough time to
recover the demand lost during the failure.

Assuming the controllable demand to be a new demand, the new control-
lable demand dc* is computed when machine m fails. The rate Ad is determined
by

Ad = dc(a)-dc\ (14)

The above computed H™ is the buffer hedged against the failure of machine
m. We propose the following value for the hedging point H%

(15)

3.4. Matrix A (a) computation

In the previous work, little attention has been paid to the computation of
the weighting matrix A(a). Nevertheless, simulation results reveal that it is
an important factor. The computation of the matrix must include the vulnera-
bility of a part to failures, the capacity of the system to recover the lost
demand and the relative importance of the part.

Matrix A is a positive definite diagonal matrix. The value of An reflects
the relative priority of part type j . We propose the following value for AJJ

where $p yp ^ measure respectively the relative importance of type ; parts,
the vulnerability of type j parts to failures, and the difficulty of recovering
the lost demand for type ƒ parts.
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As for the vulnerability of parts to failure, we propose the following value

Jj= I ZrL(MTTRm/MTBFJ (17)
k e Kj m

where MTTRm and MTBFm dénote the mean time to repair and mean time
between failures of machine m, and Kj is the set of opérations for type j
parts.

y*m is the proportion of type n parts to be sent to machine m for opération
k if the System is in steady state. It is computed by balancing the machine
workloads (MTTRJMTBFJ reflects the reliability of the mahcine. The
summation in équation (17) reflects the vulnerability of the part to failures.
The more opérations a part requires, the more vulnérable the part is to
failures. The smaller the mean time to repair and the greater the mean time
between failures, the more vulnérable the part is to failures.

For the difficulty of recovering lost demand, the following value is used

Îj=l/Ut (18)

where Uf is the maximal rate at which the System can produce type j parts
if the system is in steady state. The greater Uf is, the more easily the System
can recover the lost demand for type j parts during a failure.

4. LOWER LEVEL SCHEDULING

There are two problems at the discrete scheduling level. One problem is to
détermine the instants at which parts are dispatched into the System. The
other problem is to load parts on idle machines, i. e. the routing problem.

As for the part dispatching, the rule proposed by Gershwin, Akella and
Choong [1985] is used. Let x*(t) be the actual production surplus of the part
type n defined as follows

x* (t) = [number of parts of type n loaded during (0, i)]—dnt. (19)

The strategy consists in trying to keep x„ (t) always greater than xn (t) and
of loading a part of type n every time x* (t) is smaller than xn (t), L e.

and not loading otherwise.
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For the routing problem, define x£m (t) and xk
m (t) as follows

im (0 = [number of type n parts loaded on machine m

for opération k during (0, t)]; (21)

xk
m measures the cumulative différence between the number of parts assigned

to machine m for opération k at the flow control level and the real number
of parts assigned to machine m for opération k. Let q„ be the number of
type n parts waiting for opération k, The following rule is used to choose a
part to be loaded on an idle machine from parts waiting in the corresponding
queue.

min { xk
nm (t)/qk (t) > 0 and machine m is idle }. (21)

n, fc, m

Let (n*, &*, m*) be an optimal solution. Then, a type n* part waiting for
opération /c* is loaded on machine m*.

5. LONG TERM CAPACITY DISCUSSION

In this section, we are interested in the total production capacity of the
System over the short term horizon as opposed to the instantaneous capacity
discussed in Section 2.

Let/>(a) dénote the probability that the System state is a, and let u(a) be
the production rate vector when the System state is a. Assume that a produc-
tion ratio Y„ is assigned to each part type. Then, the maximal throughput of
the system with fixed ratios, denoted by X*(yx, . . .,yn, . . .,yN), can be
computed as follows

(22)

subject to

Y„*=E/»(a)«.(a), Vn;

u(a)eO(a), VaeS.
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Let QL dénote the set of feasible controls in long run. A long term
production rate vector is said to be feasible, Le. ueQL, if and only if

Since all the sets Q(oc) are convex polyhedral and the long term capacity set
QL is a linear projection of these sets, QL is also a convex polyhedral set.

6. SIMULATION RESULTS

An example and simulation results are presented in this section. The
performance of the algorithm is discussed.

A flexible transfert line is shown in Figure 6.1. It consists of three
workstations. Each workstation consists of two machines of different per-
formance. Two types of parts are produced. The first part type requires three

station A station B station C

Downstream
buffer

Figure 6.1. - A flexible transfer line.

opérations, one at each workstation; the second part type requires two
opérations, one at the first workstation and another one at the third worksta-
tion. The demand is 1 part per minute for type 1 parts, and 2 parts per
minute for type 2 parts.

The processing times were given in Table I. The ability data including the
mean time between failures (MTBF) and the mean time to repair (MTTR)
are given in Table IL The expected utilization and availability of the machines
are given in Table III. By utilization ratio of a machine we mean the ratio
between the machine busy time and the machine up time. Station A and
station C are heavily loaded.

The simulation model was run for 7,200 minutes (120 hours). Table IV
shows the real machine availability and real machine utilization. As expected,
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part
1

2

Ml

1

1/2

TABLE I

Processing times in minutes.

M2

1

1/3

M3 M4

1 3

Not required

M5

1

1/3

M6

1

1/3

MTBF

MTTR

Ml

100

10

TABLE II

Reliability data in

M2

200

10

M3

200

20

minutes*

M4

100

10

M5

300

30

M6

100

10

TABLE III

Expected utilization and availability.

Availability

Utilization

Ml

0.909

0.895

M2

0.952

0.895

M3

0.909

0.825

M4

0.909

0.825

M5

0.909

0.917

M6

0.909

0.917

stations A and C are heavily loaded. The machine workloads are well
balanced, 90.69 and 86.91% for the two machines of the station A, 81.37
and 83.02% for those of station B, and 90.46 and 90.76% for those of
station C.

Table V gives the production statistics. On the average, the production
was 54.1 pièces behind demand for type 1 parts and 119.5 pièces behind
demand for type 2 parts. The average in-process inventory in the system was
small, 5.199 type 1 pièces and 3.274 type 2 pièces. At the end of the
simulation, the number of parts actually produced was 7,053 (or 98.0%) and
13,984 (or 97.1%). The average over-production was 0.606 type 1 pièces and
0.428 type 2 pièces. The average backlog was 54.7 type 1 pièces and 119.9
type 2 pièces.
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TABLE IV

Real utilization and availabUity.

Part

1
2

Availability

Utilization

Ml

0.930

0.907

Demand

7200

14400

Production

7053

13984

M2

0.940

0.869

M3 M4

0.889 0.926

0.814 0.830

M5

0.891

0.905

TABLE V

Production statistics.

Mean WIP

5.199

3.274

Mean buffer

-54.12

-119.5

Mean Surplus

0.606

0.428

M6

0,905

0.908

Mean Backlog

54.73

119.9

TABLE VI

A sample production trajectory.

part

instant
(minutes)

0

600

1200

1800

2400

3000

3600

4200
4800

5400

6000

6600

7200

typel

demand

0

600

1200

1800

2400

3000

3600

4200

4800
5400

6000

6600

7200

production

0

582

1176

1794

2371

2951
3588

4160
4749

5313

5829

6421

7053

%_produced

-

97.0

98.0

99.7

98.8
98.4

99.7

99.0

98.9
98.5

97.1

97.3

98.0

type2

demand

0

1200

2400

3600
4800

6000

7200
8400

9600

10800

12000

13200

14400

production

0
1146
2385

3598

4723

5964

7135

8318
9453

10798

11597

12753

13984

%_produced

-

95.5

99.4
99.9

98.4
99.4

99.1

99.0
98.5

100.0

96.6
96.6

97.1

Table VI shows a sample trajectory of the simulation. The production may
leave from the demand in case of long machine failures. In any case, the
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controller is able to keep the production ratio close to the required ratio.
That is an important feature of this controller.

TABLE ¥11

Sojourn times of system states over 7,200 minute simulation.

a 6 a 5 tt4 a 3 a 2 a i duration (minutes) a 6 a 5 a 4 % a 2 a i duration (minutes)
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 0 1

00Q1 1 0
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 0 1
0 0 1 0 1 0
0010 11
0 0 1 1 0 0
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1
0 1 0 0 0 0

0 1 0 0 0 1
010Q1 0
0 1 0 0 1 1
0 1 0 1 0 0
0 1 0 1 0 1

0 1 0 1 1 0
0 1 0 1 1 1
0 1 1 0 0 0
0 1 1 0 0 1
0 1 1 0 1 0

0 1 1 0 1 1
0 1 1 1 0 0
0 1 1 1 0 1
0 1 1 1 1 0
0 1 1 1 1 1

0

0
0

0
0

0

0

3

0

0

0
0

0

?

29

87

0

0

0

2

0

5

0

44

0
0

0

26

1

36

26
414

1 0 0 0 0 0
1 0 0 0 0 1
1 0 0 0 1 0

1 0 0 0 1 1
1 0 0 1 0 0
1 0 0 1 0 1

1 0 0 1 1 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 0 1
1 0 1 0 1 0
1 0 1 0 1 1
1 0 1 1 0 0
1 0 1 1 0 1
1 0 1 1 1 0
1 0 1 1 1 1
1 1 0 0 0 0

1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 0 1 1
1 1 0 1 0 0
1 1 0 1 0 1

1 1 0 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 1
1 1 1 0 1 0

1 1 1 0 1 1
1 1 1 1 0 0
1 1 1 1 0 1
1 1 1 1 1 0
1 1 1 1 1 1

0

Ù

0

0

0

0

0

fifi

0

0

6

63

0

8

L 481

0

8

a

0

m
274

0

51

10

SR3

3

2fifi

SfiR

4178
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System capacity and performance of the controller

Given a simulation expérience © run over time length T(co), the time
lengths for which the system stays in each particular state, denoted by T(oc, <Ö),
are known. We are interested here in the system capacity for such a particular
simulation expérience.

Let X*(yu . . ., yN; œ) dénote the maximal throughput with fixed produc-
tion ratio of the simulation expérience CD. lts computation is the same as that
of X* in Section 6 by replacing p (oc) by T(a, (Ö)/T(CÖ).

Table VII shows the system* s sejourn times in each state of a simulation
expérience run over 7,200 minutes. The maximal throughput of the simulation
expérience is

X* (yl5 . . . 3 yN; <Ù) = 2.975 parts/minute.

More precisely, the production capacity is 7,140 type 1 parts (99.2%) and
14,280 type 2 parts (99.2%). The demand cannot be met

We remind that the real production is 7,053 type 1 parts (98.0%) and
13,984 type 2 parts (97.1%). This shows how performant the controller is.

Justification of Parameters of cost functions

In Section 3.4, we have proposed the following value for the weighting
factor of cost functions An

Table VIII shows the simulation resuit with ^-=1. The percentage of type
2 parts produced is always greater than that of type 1 parts. Compared with
the result in Table VI, the production ratio is far from the demand ratio.
But, the total productions in the two simulations are very close. A FMS may
be one part of whole manufacturing system, parts produced by the FMS
may be assembled later. In this respect, the result in Table VI is better than
that in Table VIII.

7. CONCLUSION

This paper extends the work of Gershwin and his co-workers on FMS's
hierarchical production scheduling. Multi-purpose machines and parallel
machines of different performance are taken into account.
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TABLE VIII

Simulation resuit with £,= 1.

373

part

instant
(minutes)

0

600

1200

1800

2400

3000

3600

4200
4800

5400

6000

6600

7200

typel

demand

0

600

1200

1800

2400

3000

3600

4200

4800
5400

6000

6600

7200

production

0

566

1163

1793

2354

2923
3558

4103
4673

5241

5686

6270

6918

%_produced

-

94.3

..._9_6.9.

99.6

98.1
97.4

98.8

97.7

97.4

97.1

948

95.0

96.1

iype2

demand

0

1200

2400

3600

4800

6000

7200
8400

9600

10800

12000

13200

14400

production

0
1181
2398

3598

4772

5979

7153

8339
9501

10800

11807

12987

14172

%_produced

-

98.4

99.9

99.9

99.4
99.6

99.3

99.3
99.0

100.0

98.4

98.4
98.4

The basic idea of the hierarchical production scheduling approach is to
use a continuous représentation of the material flow and to guide the discrete
scheduling by the results of optimal flow control.

We introducé the controllable demand rate at the flow control level. This
allows as to propose a new hedging point computation technique. More
attention is paid to the computation of quadratic function parameters.

As for the discrete scheduling level, some very simple rules are used to
dispatch parts into the System and to load parts on idle machines by using
the décisions made at the flow level. Simulation results shows that the
algorithm works very satisfactorily.

Further research work consist in including disruptive events other than
machine failures for instance machine set-ups. There are two type of events,
controllable or uncontrollable. The main difficulty lies in the wide variety of
event occurrence frequencies and the scheduling of controllable events.

REFERENCES

1. R. AKELLA, Y. F. CHOONG and S. B. GERSHWIN, Performance of Hierarchical
Production Scheduling Policy, IEEE Trans. On Components, Hybrids, and Manu-
facturing Technology, Vol. CHMT-7, No. 3, September 1984.

vol. 23, n° 4, 1989



374 x. xiE

2. R. AKELLA and P. R. KUMAR, Optimal Control of Production Rate in a Failure
Prone Manufacturing System, IEEE Trans, on Automatic Control, Vol. AC-31,
No. 2, February 1988.

3. T. BIELECKI and P. R. KUMAR, Optimality of Zero-Inventory Poiiciesfor Unreliable
Manufacturing Systems, Opérations Research, Vol. 36, No. 4, July-August 1988.

4. S. B. GERSHWIN, A Hierarchical Framework for Discret Event Scheduling in Manu-
facturing Systems, Presented at IIASA Workshop on Discret Event Systems:
Models and Applications, Sopron, Hungary, August 3-7, 1987. Published in Vol.
103, Lecture Notes in Control and Information Sciences, Discret Event Systems:
Models and Applications, P. VARAIYA and A. B. KURZHANSKI Eds., Springer-
Verlag, 1987 a.

5. S. B. GERSHWIN, A Hierarchical Framework for Manufacturing Systems Scheduling:
A Two-Màchine Example, Proceedings of the 26th IEEE Conference on Décision
and Control. LQS Angeles, California, December 1987 b.

6. S. B. GERSHWIN, R. AKELLA, and Y. F. CHOONG, Short-term Production Scheduling
of an Automated Manufacturing Facility, IBM Journal of Research and Develop-
ment, Vol 29, No. 4, July 1985.

7. S. B. GERSHWIN, R. R. HILDEBRANDT, R. SURI and S. K. MITTER, A Control
Theorist's Perspective on Recent Trends in Manufacturing System, IEEE Control
Systems Magazine, Vol. 6, No. 2, April 1986.

8. S. C. GRAVES, A Review of Production Scheduling, Opérations Research, Vol. 29,
No. 4, July-August 1981.

9. R. R. HILDEBRANDT, Scheduling and Control of Flexible Machining Systems when
Machines are Prone to Failures, Ph. D. Thesis, M.I.T. Dept. of Astronautics and
Aeronautics, August 1980.

10. J. KIMEMIA, Hierarchical Control of Production in Flexible Manufacturing Systems,
Ph. D. Thesis, M.I.T. Dept of Electrical Engineering and Computer Science,
April 1982.

11. J. KIMEMIA and S. B. GERSHWIN, An Algorithm for the Computer Control of a
Flexible Manufacturing System, IIE Trans., Vol. 15, No.4, December 1983.

12. O. Z. MAIMON and S. B. GERSHWIN, Dynamic Scheduling and Routing For Flexible
Manufacturing Systems that Have Unreliable Machines, Opération Research, Vol.
36, No. 2, March-April 1988.

13. R. RISHEL, Dynamic Programming and Minimum Principes for Systems with Jump
Markov Disturbances, SIAM Journal on Control, Vol. 13, No. 2, February 1975.

14. A. SHARIFNIA, Production Control of a Manufacturing System with Multiple
Machine States, IEEE Trans, on Automatic Control, Vol. AC-33, No. 7, July
1988.

Recherche opérationnelle/Opérations Research


