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ANALYSING TIME SERIES FOR FORE
(A PERSONAL VIEW) (*)

by Oliver D. ANDERSON (X)

Abstract. — This paper discusses the authofs views on orthodox tinte-domain modelling practice,
together with suggested modifications and extensions to the now well-established Box-Jenkins
methodology for analysing and forecasting time series. We concentrate on improving interprétation
of the sériai corrélation structure for the purpose of enhancing model identification. For instance,
by more sensitive discrimination between stationary and nonstationary situations, we may decrease
expected forecast error when dealing with long-memory processes.

Keywords : Autocorrélation, A RIMA models, General unit-circle nonstationarity, Simplifying
operators, Wichern behaviour.

Résumé. — Cet article porte sur les conceptions qu'à son auteur quant aux choix conventionnels
de modèles reliés aux temps, ainsi que sur ses suggestions quant aux modifications et aux extensions
de la méthodologie désormais éprouvée de Box-Jenkins pour Vanalyse des séries chronologiques et
leurs prévisions. Nous préconisons en particulier une meilleure interprétation de la structure de
corrélation des séries afin de faciliter ndentification du modèle qui convient. Par exemple, nous
pouvons réduire Vespérance de Verreur associée à une prévision dans le cas des processus à mémoire
prolongée, en distinguant de façon plus précise les situations stationnaires de celles qui ne le sont
pas.

1. INTRODUCTION

As a time series analyst, I do not regard myself as a statistician. Time
series is both narrower in conception and broader in scope than statistics,
and I would regard it as a discipline in its own right. Narrower, because we
are only concerned with data that develop through time (or along some
other dimension) — unlike mainstream statistics, where good design carefully
arranges that the data are individualistically independent. Indeed, with time
series, we welcome the interdependence of data, which makes sequentially
recorded observations interesting and useful for making prédictive inferences.
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114 O. D. ANDERSON

(It could perhaps even be argued that classical statistics in a sub-discipline
of time series analysis, which restricts itself to the study of data that is serially
uncorrelated — but we do not wish to become too contentious.)

Broader, as we are really concerned with applications, and these occur in
every area where quantitative measurements are made consecutively, and
inferences are to be drawn as to what will happen farther down the line.
Thus, time series analysis becomes virtually the sole branch of statistics that
is relevant to many applied areas in the physical sciences and technology,
for instance in oil exploration where the dominant technique is to analyse
observer initiated shock waves as time series traces.

Time series tools then dominate the work of scientists using monitoring
instruments, either as diagnostic or early warning devices, be they surgeons
in hospitals or experts keeping an eye on earth tremors and volcanic activity.
And fast, effective, automatic, on-line procedures now promise a rich harvest
of microprocessor applications in technology, where a single chip will be able
to monitor instruments, processing the information to predict impending
problems, and almost instantaneously apply appropriate remedial control to
steer the system out of difficulty.

In the social and management sciences, time series techniques are less
widespread, because no longer do we have such enormously long runs of
data. Rather than thousands or even millions of consécutive observations,
we may be lucky to have 30 or 40 which can be rightly regarded as having
been more-or-less consistently generated. For, of course, in the world of
human interactions, change is the only really constant condition.

Thus the time series analysis of business data is much more difficult than
that, say, along a coal-seam. However, the greater intrinsic difficulties do
not reduce the relevance of time series thinking when dealing with data in the
Management Sciences. And clearly we should not be content with explaining
temporally dependent data by merely regressing it against time-which, unfor-
tunately, is what is most generally done in practice.

For, if one wishes to fit a "z on t" régression to data, the implicit
assumption is that one has a model of the form

z, =ƒ(*) +e, (1)

where the t are precisely and accurately fixed, and the error terms, the 8„
are independently and identically distributed as normal random variables
with zero mean and constant variance. These conditions on the e( imply that
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the stochastic (statistical) parts of the zt are not serially related; although, of
course, the deterministic components follow the fixed functional form, ƒ (t).

Now, it is true that Econometricians, for instance, have not been slow to
recognize this failing of régression models to satisfactorily represent serially
correlated data; and their treatment of autocorrelated residuals by successive
least squares opérations does, to some extent, eliminate the problem (or, as I
would prefer to have them say, extracts most of the extra available informa-
tion). But this is neither the optimal approach, nor a natural one; and,
anyhow, is rarely employed by other management scientists.

We therefore advocate that, although difficult to handle due to their
inherent shortness, business time series must be treated as temporally interde-
pendent data and analysed accordingly. It is worth investing the effort to
master the appropriate methods, because time series are by far the most
common form of data found in business, be the series a relevant economie
indicator, a record of company sales, or production line figures — say.

In the physical sciences, where external conditions can be controlled,
and long runs of data may consequently be realistically considered, two
complementary (and mathematically equivalent) approaches are feasible,
deriving from respectively what are called the Time and Frequency Domains
— although many physical scientists have preferred to work in the latter.

This préférence can be attributed to the way most physical scientists and
engineers have been trained to think in terms of periodic wave forms;
and, historically, frequency domain tools were developed earlier. Even social
scientists, in particular economists, used the Frequency Domain and Spectral
Analysis. However, the last twenty years has seen a marked swing in favour
of Time Domain methods in all areas dealing with shorter time series, where
it is believed that spectra are far harder to interpret than the corresponding
time domain results (sériai corrélations).

It is certainly true that the spectrum is difficult to treat for short series,
when all sorts of unavoidable aberrations occur (bias and leakage) which
make the true message hard to disentangle. But, even as a confirmed time
domainer, I am not convinced that these problems are in f act any less present
in the time domain. All that we observe is that they are less apparent, so we
just do not notice them. This does not mean that they are any the less
marked in their conséquences, or that our overlooking them will be any the
less serious an oversight

If short series are likened to extreme short-sightedness, then spectral analy-
sis is like wearing spectacles. One is immediately aware that one is stretching
the capabilities of simple opties—with variöus distortions in the image quite
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116 O. D. ANDERSON

apparent. It is virtually impossible to décide whether a long line is straight
or slightly curved; and, by turning one's head, a grid of squares can look
like a mesh of rhombuses.

Analogous to Time Domain inethods, wearing contact lenses removes
many of the visual clues that one is not seeing too well. For instance, one
can not look over contact lenses, or past the sides of them. But this lack of
référence points, constantly reminding one of one's handicap, does not mean
that one actually sees any better through contact lenses. (Although everyone
I know, who wears the things, seems to think it does —and that includes
some physicists!)

Be that as it may, my expérience has mostly been in the time domain; so,
for me, there is a considérable advantage in working there. Also, for social
and management scientists, the concepts needed to develop ideas in the time
domain seem more natural —so we ean justify, as opposed to merely rational-
ise, our décision to only discuss this side of the coin.

The enormous range of spécialisations, where time series analysis is a
major applications component, makes time series either a multidisciplinary
topic —or, as I would have it, a discipline in its own right. And it is hoped
that the University of Western Ontario will be the first to formally recognise
this, by the création of a centre of excellence in the subject.

Finally, bef ore we get fully involved with the serious content of this paper,
I should perhaps explain how I became a time series analyst. I can assure
you I was neither born nor made one, rather I arrived hère from appréhension
of the alternatives finding me out.

I started as a bridge engineer, but could not quite comprehend how my
structures ever stayed up. I thought it best to beat a dignified advance retreat,
bef ore one actually feil down. I then worked through a range of disciplines,
bef ore hitting on Statistics—with the almost ideal blanket of sample error
and random variation to hide one's uncertainties (dare we say incompétence?)
behind.

From there, it was only a short step to realising that long-term forecasting
was the safe field, with one no longer being around when the prédictions
proved false. However, this did not seem to provide a meal ticket—people
were also wary of paying for information which (even if correct) would be
beyond their expérience. So, the only way forward was to become involved
with producing tools for others to risk in action. (I discovered quite early on
in Whitehall, that décision makers there really only needed forecasts that
would support the actions that they wanted to take. So, forecasting was not
a matter of predicting the future, but rather of reading the current power
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struggle correctly. Thus, warnings in the mid-seventies that the UK was
heading for three to four million unemployed by the early eighties were
dismissed as irrelevant. That sort of scenario did not fit into the future plans
on any ambitious officiaPs desk. However, civil servants are conservative,
and the name of the game is to play safe and follow the pack. In business,
on the other hand, there are people who are prepared to take risks if the
expected gain is high enough —and so forecasts can result in substantial
action. It is this possibility of influencing policy which gives forecasting its
rewards, indeed its only raison d'être, so really all prédictions should be seen
as, say, "Forecasting for Planning". It is only when we are developing tools
for our trade, that we ever consider forecasting as an end in itself.)

The rest of this paper falls mainly into three sections, which give the
author's views as to: (i) where the area of the time domain, that particularly
interests him, is coming from; (ii) where it has currently got to; and (iii)
where he would like to see it heading. The acronym, TSA&F, associated
with his professional (as opposed to academie) activity, dénotes Time Series
Analysis and Forecasting.

The way this article is structured thus symbolises an important feature of
successful forecasting: we must look back before we can peer forward. To
predict the future, one must first adequately analyse and interpret the present
and the past.

2. WHERE TSA&F IS COMING FROM

2.1 What Time Series Are

A time series is a séquence of observations recorded at equispaced instants
and denoted by, say, {zl9z2, - • • ,zn} , where n is the number of data points,
conveniently referred to as the "length" of the series. For instance, the
zt(t = \9 . . ., n) might be the weekly wage bills for a large company during a
calendar year, with n = 52 in that case.

The series can be considered as a réalisation of some underlying stochastic
process {Zt: t = l , . . . , n} ; and, then, we are evidently interested in the
statistical structure of this process, should we wish to obtain forecasts for
future values of the series.
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118 O. D. ANDERSON

2.2. Time Domain Modelling

One way of describing such structure is to obtain a parametric model for
the process; and the method of time series analysis, associated with and
advocated by Box and Jenkins (1976), first postulâtes a plausible class of
models for initial investigation. It then proceeds to tentatively choose, or
"identify", a promising member from this class, whose particular parameters
are next efficiently estimated; and, finally, the success of the resulting fit is
assessed. The now precisely defined model (identified and estimated) is either
accepted by this vérification stage, or the diagnostic checks carried out will
find it wanting in certain respects and should then suggest a sensible modified
identification — af ter which further estimation and checking takes place; and
the cycle of identification, estimation and vérification is repeated until a
satisfactory fit obtains.

It is important not to overparameterize the model since, although this
might improve the goodness of fit for the series history at hand, it is likely
to result in the model portraying spurious features of the sampled data,
which may detract from the usefulness of the achieved fit. For instance,
unnecesçarily poor forecasts for future observations on the series are a typical
outcome of ignoring this principle of parsimonious parameterization, and
then over-mining the data to discover structure in the past record which is
purely fortuitous and will not be reflected in the future observations.

Although it is frequently not realised, part of the vérification should be to
ensure that the fitted model does make sense in the context from which the
data were drawn. This model interprétation is sometimes thought of as an
extra fourth stage to the Box-Jenkins cycle.

(Of course, this whole cycle of events is directly analogous to the way any
pragmatically orientated statistician or management scientist approaches data.
And^ the real impact of Box and Jenkins, in the academie world, is to have
put actual data analysis at least on a par with the development of abstract
theory, in the eyes of appointments and promotions committees. The math-
ematical statisticans may be none-too-happy with the lack of rigour which
allows data to speak for themselves, but they have been wise enough not to
be too openly hostile to the new wave —which really does promise to be the
future of statistics. Theory must serve to clarify the obscurities experienced
by practitioners, and provide them with effective tools to overcome the
difficulties they encounter when analysing the various sorts of data that
actually occur.)
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2.3. Linear Processes

The univariate models, entertained by Box and Jenkins (1976), are a very
gênerai class of linear process which may be taken as being driven by some
completely random séquence of unknown "shocks", denoted by { At} say.
These At are assumed to be uncorrelated and identically distributed zero-
mean random variables, all with the same variance, aJ say; and { At} is then
referred to as a "white noise" process. It is frequently convenient to assume
that the shocks. are in fact normally distributed, but this assumption then
needs to be justified in applications.

The process of interest, { Zt}, is considered to be obtained by applying a
linear filter to the shocks {A t } , according to

Z t = i4t + * | r 1 4 _ 1 + 4 r 2 4 _ 2 + . . . (2)

for suitable choices of tyl9 \ | / 2>.. . . In this représentation, each Zt is taken as
being formed from a weighted sum of the current and previous shocks, with
psi weights \|/0 = 1, \(r1? \|r2, . . . .

The simplest case is when Zt is itself completely random, giving for all t

which is just white noise.

Next, we have the so-called Moving Average models of gênerai order q^O,
denoted by MA (q) and satisfying

z t=4+e14_1+.. .+e€4-, (3)

which of course reduces to white noise in the special case with ^ = 0. One
usually restricts the theta parameters 9 l5 . . . , Qq to values such that the
polynomial Qq(Q=l+QxÇ+... +QqC>9

9 in the complex variable Ç, has no
zéros within the unit circle, This is the "invertibility" condition. (Many
practitioners would also exclude the possibility of zéros occurring on the unit
circle, giving what we will term "strict invertibility".)

It is convenient to introducé the backshift operator B such that, for any
function f (t) (for example, zt or At) and all integers s and t, Bs f (t) = ƒ (t — s).
Then, for instance, (3) can be written as

Zt = %(B)At (4)

where %(B% a polynomial in B of degree q, is an operator obtained by
writing B in place of Ç in 8€(Q.
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120 O. D. ANDERSON

If 0S is put at ocs for 5= 1, . . ., q and q is allo wed to go to infinity, %(B)
becomes (1 -a f i ) " 1 and we can then rewrite (4) as

(5)

or, alternatively, as

(6)

Expressions (5) and (6) represent the first order AutoRegressive model, or
AR (1), in which each Zt is "autoregressed" on its previous Zr_A value.

This type of model généralises to AR(p + d), with p + d^0, the (p + d)th
order autoregressive model

Z ^ o ^ Z , ^ * . . . + ap+dZt_p_d + At (7)

or, in backshift notation,

ap+d(B)Zt = At

where <xp+d(B) = (l — a t B— . . . — <xp+dB
p+d) —and, again, none of the zéros

of OLp+d(Q must lie within the unit circle. Once more, when p + d = 0, (7)
reduces to white noise.

2.4. Nonstationary Models

Box and Jenkins in f act distinguish between those zéros of ap+d(Q which
lie on the unit circle, say d of them, as opposed to those lying outside it, the
remaining/> zéros. They would then rewrite OLp+d(B) in the associated factored
form <pp (B) Sd (B), where (pp (Q, corresponding to the "stationary" autoregres-
sive part, has no zéros on the unit circle. If d=0, this condition ensures the
"stationarity" of the process. Otherwise, the process is homogeneously non-
stationary. (That is, it possesses a type of non-stationarity which can be
removed by an appropriate unit-circle operator transformation.)

The simplest case of such a homogeneously nonstationary process is the
random walk Zt = Zt_1-\-Av For instance, one might hypothesise, as a first
approximation, that an unemployment series followed a random walk. (We
might reason that this month's unemployment total equalled the sum of last
month's together with an "innovation" value for this month, consisting of
the number of freshly unemployed iess those who have now found work and
so have left the unemployed register.)
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2.5. Simplifying Operators

A typical example of Sd(B) is (1 — B)d, where the operator (l — B) effects a
(unit) differencing of the series under study. Thus, (1 — B)zt=zt—zr_ls and
(1—B)d results in d successive (unit) différences being taken. (In practice, it
is very rare that a degree of differencing d needs to be greater than one or
two.)

Operators of the form Sd(B) are termed "simplifying operators". They
represent ways in which the raw series should be transformed initially bef ore
detailed statistical analysis is begun. As they yield linear transformations of
the data, they do not lead to inefficient analysis in the ways that non-linear
transformations do.

2.6. Other Initial Transformations

However, in certain instances, notably for the purposes of stabilising the
variance of a series and obtaining more nearly Gaussian behaviour, non-
linear transformations of the raw data might be made initially. These are
usually of the Box-Cox (1964) form, namely zt -> z<x*m), where

1 InIn (2

and m and k need to be chosen by the analyst. But it should be noted
that, unless the resulting change in metric appears désirable from other
considérations, such transformation tends to be controversial (For instance,
good forecasts might be obtained for the transformed series, but the advan-
tage lost on transforming back). To avoid cumbrous notation, we will sup-
press the transformation superscripts in what follows.

2.7. ARMA and ARIMA Models

Note that the gênerai stationary AR (p) model

(8)

can also be written as an MA(oo), Zt — q>~1 (B) At, which is a special case of
(2), with \|/(£) = (1+\|/1B + \1/2JB

2+. . .) = (p"1(B). A further généralisation
to (8) and (3) is the mixed (stationary) AutoRegressive Moving Average
model of order (p, q), or ARMA(/>, q\

+ . . . +ef4_«
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122 O D. ANDERSON

which, in operator notation, becomes

Introducing unit circle nonstationary zéros into the autoregressive part, we
first get models of the form

<pp(B)(l-ByZt = %(B)At (9)

which are termed AutoRegressive Integrated Moving Average models of
order (p, d, q), or ARIMA(p, d, q); and, when (1 — B)d is replaced by more
gênerai Sd(B% the models have been described as ARUMA(p, d, q)—ïor
instance, see Anderson (1980).

2.8. Seasonal Models

Should B be replaced by BT in (9), where T is some integer greater than
unity, we get a purely seasonal model of period T. Such models are usually
denoted by

4>F(Br)(l ~BT)DZt = @Q(BT)At (10)

where (1—BT) effects a seasonal differencing, according tö

and capital letters help to distinguish (10) from the earlier discussed non-
seasonal models. Thus, the purely seasonal first order stationary autoregres-
sive process of period 12, conveniently written as AR12(1)3 would have the

Mixed non-seasonal seasonal models can occur. These may be expressed
as

q>p(B)®P(BT)(l -B)d(l-BTrZt = Qq(B)&Q(B)Aï (11)

and, indeed, models with more than one seasonal period are possible. For
instance, hourly electricity demand over the year would be likely to depend,
not only on B and B24 (daily), but on B168 (weekly) as well. Also, note that
multiplicative factors such as

may be generalised to, say
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2.9. Models with Deterministic Trend

Finally [and rather as with (1), the denigrated régression], univariate models
can be written with a deterministic trend f(t) on the right hand side, although
this is frequently removed (at least in part) by the unit and seasonal differenc-
ing operators which are often employed. For instance, if a series contains a
linear trend et, with slope c, simple differencing of the raw data will reduce
this to just a constant c, since

The simplest "trend" occurs when E[Zt] exists and is a non-zero constant
ja. Then ƒ (t) = \i; and, to achieve models such as (2), Zt is replaced by Zt—\i.
So when I9 the series mean, is significantly different from zero (as would be
the case in our wages example), the zt are considered to be replaced by the
mean-corrected series, {zt = zt—z}, which is a (linear) Box-Cox transform of
the original data. (Again, the "tilde" is usually suppressed in practice, when
"mean correcting" is understood to have taken place).

2.10. Box and Jenkins

The family of linear models of the types described above are commonly
referred to as Box-Jenkins models. Although they were mostly originally due
to earlier workers, such as Kolmogorov, Wold, Yaglom and Yule.

Box and Jenkins, however, deserve the credit for bringing together, develop-
ing and popularising an extensive methodology (rightly known as the Box-
Jenkins approach) which has been highly successful as a means of analysing
time series met with in a very wide range of application areas. This success
is founded on the fact that the various Box-Jenkins models can, between
them, mimic the behaviours of diverse types of series —and do so adequately
without usually requiring very many parameters to be estimated in the final
choice of model. The disadvantage, however, is that successful anatysis
generally requires a modicum of skill — although some quite promising auto-
matic modelling computer packages are now beginning to prove themselves.
(For instance, see the recent study by Texter and Ord, 1986; and Shumway's
enthusiastic review, 1986.)

The formai objective of a Box-Jenkins analysis may be considered as
discovering that parsimoniously parameterized filter which satisfactorily redu-
ces the original series to a residual white noise series {at}, with small variance.
What is satisfactory will depend on the context from which the data were
drawn, and on the purpose of the analysis, as well as purely statistical criteria.
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124 O. D. ANDERSON

2.11. Sériai Corrélation

The main analytical tooi for series identification is the séquence of sampled
sériai corrélations, {r ls . . ., rn_i}, where

n i n
rk=Y>ZtZt-k E f?>

t=k I t = l

although frequently only about the first quarter of them are computed. These
{rfc:fc = l, . . ., n—1} are taken to mimic the theoretical autocorrélations
{ pk], defined as Cov[ZtZf_k]/Var[ZJ. So the task of orthodox identification
is, given the observed sample corrélation pattern for the series, to try to
match it with the known population one for some particular process.

For instance, a proper (strictly invertible) MA(1) model is characterized
by p ! # 0 (in fact, 0< | pA |<l/2) and pfc=0(fc>l). So a set of sériais with rx

substantial, but later rk negligible, would suggest that an MA(1) should be
tentatively tried. What count as substantial or negligible sériai "spikes"
depend (a little) on the particular model being considered and (more) on the
length of the observed series. Given these facts, significance tests are available.

Certain structure in the sampled corrélations can suggest that a simplifying
operator should first be applied to the raw data. For example, a slow roughly
linear declining séquence of positive values for the early rk is often taken as
an indication that unit differencing is necessary.

Note that the theoretical autocorrélation patterns, for mixed non-seasonal
seasonal models, may be quite complicated. However, for purely seasonal
processes, the results are directly analogous to those for the appropriate
corresponding non-seasonal models. For instance, for the AR(1) model,
pJfc = (pfc; whilst, for the AR12(1) process, Pi2Jt = ^k ^ith ail other intermediate
p's zero (alternatively written as { pfc = 5k<ï>*/12}, where ôfc is one or zero,
depending on whether k is, or is not, an exact multiple of 12). And, in gênerai,
a purely seasonal model (of any type and complexity) has autocorrélations ail
zero, at lags which are not multiples of the seasonal period T, and autocorréla-
tions at lags kT which are just those at lags fc, for the corresponding non-
seasonal model (obtained by replacing BT everywhere by B).

So, for instance, if we know the { pfc } pattern for

s a v {Po( = l)> PÏ> P*> P*> • • * }î then those, for model (10), are obtained by
just inserting T— 1 zéros between successive p?, to give the pure-seasonal
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ANALYSING TIME SERIES FOR FORECASTING 125

model's autocorrélations as

{pî( = l), 0, . . . , 0, pï, 0, . . ., 0, pf, 0, . . ., 0, pt . . . }.

2.12. Partial Corrélation

Another useful tool for identification is the séquence of partial autocorréla-
tions—sampled {pk}, theoretical {nk}. Thus, an AR(1) is characterized by
7C!#0 (in fact, \nl |<1), 7ifc = 0(fc>l). So, if px is significant, but none of the
later pk are, an AR(1) model would be indicated.

One can consider nk to be the conditional corrélation between Z( and Zt_fc,
given all the intermediate Z's, namely Z,_ l s . . .,ZI-_Jt + 1. So, evidently, the
partial autocorrélations are associated with the autocorrélations; the spécifie
relation being conveniently written in terms of the autocorrélation matrix

Pi P2

Pk-2 Pk-3 ••

as 7ifc = |Pjf | / |Pk | , where Pjf is Pk with every (r, fe)th element replaced by pr.

2.13. Forecasting

A frequent purpose for analysing time series is to obtain good forecasts.
Given a series {zl9 ...,zn} running up to time n = now, the aim then,
typically, is to forecast zh+n at h time intervals hence. If we assume that the
generating process has the "random shock" form (2), it can be shown that
the optimal least squares forecast, hfn say, is the expected value of Zh+n

conditional on the information available at time n. Now

So

(since the expectations of future shocks are all zero, whereas those for past
and present ones take the actual values which have already occurred). And
the forecast error, he„ = zh+n-hfn, is given by
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with variance

from which probability limits for the forecasts can be obtained, on replacing
a^ by its estimate, the sample variance of the residual shock series.

2.14. Some Recent Model Extensions

Currently there is much interest in extensions of the linear models discussed
so far, to cater for at least part of the non-linearity common in some
applications areas. One such extension gives the bilinear model, which is
achieved by introducing additional product terms Zt^uAt_v into the right of
the linear model. Other popular généralisations involve substituting time
varying parameters for the constants in (11).

2.15. Transfer Function Models

However, Box and Jenkins themselves (in conjunction with their co-wor-
kers) developed certain extensions to the univariate modelling described
above. First they considered building transfer function models, which would
perhaps improve the forecasts obtained for the series of interest, {zt}, by
extracting relevant information contained in some appropriate leading indica-
tor series, {yt} say. This is done by relating the current z to some of the
previous j ' s , according to a model

where <o(B) is a linear filter ((UO + CÜ!B+ . . .), with œo^0, and the B& factor
indicates that there is a delay of 8 units bef ore a y value can begin to affect
the observed z. { Et} is a séquence of error terms, which is assumed to follow
some ARMA (p, q) process. In gênerai, parsimonious parameterization can
be achieved by writing co (B) as the quotient of two finite lengthed operators,
OL(B) and fi(B) say, so that the model fitted has the form

( 1 2 )

Box and Jenkins (1976) pro vide a well-defined itérative model-building
procedure for estimating these transfer function noise processes, which is
analogous to that for the univariate case. Identification of the relationship
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between the "input" y and "output" z series relies heavily on the cross-
correlations between the two series, preferably after a procedure called "pre-
whitening" has first been effected. Here, the filter needed to reduce the yt to
white noise is initially determined, and then this prewhitening filter is applied
to both the input and the output series before the cross-correlations are
computed.

2.16. Multivariate Modelling

Equation (12) can be simply generalised to cater for several input series.
Again, a deterministic trend can be incorporated on the right, the Zt and Yt

can be transformed initially, seasonal factors can be introduced into the
various filters, and differencing can be employed.

The univariate models can also be generalised to multivariate ones with
the basic form

<p(5)Zf = 8(l?)Af (13)

where the matrix operators <p (B) and 0 (B) have éléments which are polynomi-
als in B of gênerai finite order, with the restrictions that those along the
leading diagonals start with unity, whilst the rest start with powers of B, and
the stationarity and (strict) invertibility conditions are, respectively, that all
the zéros of the déterminants | (p (B) | and 18 (B) | lie outside the unit circle.

A further extension is to consider multivariate transfer function models
whose basic structure is

Zt = *l(£)<g)Y, + E, (14)

where the transfer function matrix, H (B), has éléments of the form ®(B)B6,
® dénotes the Kronecker product and Et follows a multivariate model, like
(13).

Again, for models (13) and (14), as previously, there is a three-stroke cycle
of identification, estimation and diagnostic checks for obtaining satisfactory
fits; and, as well as cross-correlations, partial cross-correlations between
individual pairs of residual series are also used, When building any of the
models (12), (13) or (14), univariate stochastic modelling—of the type that
was discussed earlier —is required for the individual series. So skilful univar-
iate analysis is a prerequisite for all the more advanced Box-Jenkins methodol-
ogy.
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2.17. Intervention Modelling

Finally, in all the processes mentioned so far, it may be necessary to take
account of "abnormal" events, such as strikes, changes in the law, or freak
weather conditions. Box-Jenkins "intervention" models allow such effects to
be represented by dummy variables, typically introduced as a filtered pulse
on the input side. For instance, to model a step change in level of magnitude
A occurring at time /, one needs to include a term (1—B)~l AU^ on the
right, where

{ l t==/ (15)
0 otherwise.

It should be clear that pure "Intervention Analysis" (Box and Tiao, 1975),
is merely a special case of Transfer Function modelling. Thus, using (12),
the step change model described by (15) would give

(Outliers and missing observations can also be dealt with by interpolating
realistic values which are estimated from the remaining data).

2.18. Some Further Reading

We conclude this discussion of "where we are coming from in the time
domain", with a brief (if biased) look at the literature. First, some readable
articles: Anderson (1976 a) provides a formula-free introduction, and a more
mathematical treatment of the same material is found in Anderson (1976 b).
Newbold (1975) gives an excellent treatment at about the same level, and
Anderson (1989 a) states a later updated view.

As for books: Anderson (1975) and Nelson (1973) supply simple introduc-
tions, Box and Jenkins (1976) gives the best work for référence purposes,
whilst Jenkins (in Anderson, 1979 a) provides an authoritative account of the
more ad vaneed topics — although Granger and Newbold (1977) is of related
interest for multivariate modelling, as is Newbold and Reed (in Anderson,
1979 a). Ledolter (1978) also provides an excellent introductory coverage of
multivariate Box-Jenkins, with a good application discussed in Melicher,
Ledolter and D'Antonio (1981). Vandaele (1983) is possibly the best of the
more recent texts covering the subject as far as transfer function modelling
and intervention analysis.
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In the rest of this paper we will restrict ourselves to univariate modelling.
This is not because we regard multivariate data as unimportant or uninterest-
ing, far from it. But there still remains a lot to be done in improving methods
for analysing single series; and advancing, prematurely, into the multi-series
arena seems very much like attempting to run, bef ore one can really walk
(with similar painful conséquences).

It is reasonable to believe that an understanding of the ways single series
behave will be the easier to come by; and many of the important univariate
ideas will have generalizations, in multiple series Systems, which should then
be easier to establish. And, as we have already indicated, current multivariate
methods anyhow largely depend for their effectiveness on the building blocks
of satisfactory univariate modelling. So it really does seem wise to try to
master univariate analysis first. Be this reason or rationalisation, it is what
we intend to do.

3. WHERE UNIVARIATE TSA&F HAS GOT TO

3.1. Sériai Corrélation

Let us first look at a couple of examples from recent working papers by
Wood, Mclnish and Ord (1983), and Koot and Young (1985): our figures 1
and 2, respectively.

Both sets of authors took these sériai corrélation plots to indicate a first
order autoregressive model, but neither set managed to interpret the run of
négative values (following the initial positive ones) — although Wood, Mclnish
and Ord (1983) attributed theirs to perhaps "some degree of non-stationar-
ity'\ The extreme commonness of this type of pattern, makes it incredible
that virtually no one has thought to either comment on it or attempt to
explain it.

As we will show, this phenomenon is a more obvious manifestation of the
largely unnoticed aberration which occurs in the time domain. The point
being that even the expected sériai corrélations, computed for finite series
réalisations, are a distortion of the population autocorrélations that corre-
spond to the underlying process generating the data. The { rk} do not measure
the { pfc} with sampling error, but provide a distorted version of the { pk}
with sampling error then superimposed.

Of course, it has long been known that (a) rk was, in gênerai, a biased
estimator of pfc, and (b) adjacent rfc, r,- were generally not independent but
correlated. (See, for instance, Kendall (1954) and Barlett (1948), respectively.)
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Figure 1. - Sériai corrélations of Global Market Return Averages
for first thirty minutes of trading (adapted from figure 7, Wood, Mclnish and Ord, 1983; n = 30).

However, almost no one has seen fit to study how observed sériai corrélation
séquences for series relate to (or, rather, systematically départ from) their
parent process autocorrélation functions. And, for instance, it turns out that
the {rk} characteristic of an AR(1) process is not a geometrie decay (like
the associated {pk}), but follows a smooth curve downwards which dips
below the zero axis —at a value of k smaller than n/3.42—and then proceeds
to a minimum, before curving smoothly up towards zero again (reaching the
axis, theoretically, at /c = n). The "cross-over" from positive rk to négative is
more precisely given by the solution of équation 32 from Anderson (1979 c),
namely

n<p**(l + cp)/(l-q>). (16)

Now Wood, Mclnish and Ord (1983) reported rx= .82481; and, as we
know, this estimate of Pi = cp is likely to be biased down substantially.
However, for ail values of cpe[.8, .9], the solution to (16) has k ranging from
4.3 to 5.4. The larger observed cross-over (k ̂ 9.5), together with the relatively
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Figure 2. — Serial corrélations for first differenced unemployment rate series
(adapted from Koot and Young, 1985; n=86).

smooth appearance of the serial corrélation pattern, suggests that a consider-
ably higher <p is needed —perhaps even indicating a situation close to non-
stationarity (as indeed was speculated by Wood, Mclnish and Ord).

Ho we ver, <p= .9 is about the upper limit of validity for (16) when n is as
small as 30, so we can not go further with it. Indeed, at <p = 29/31 ( ^ .935),
(16) reduces to the nonsense cpk~L And, as a typical well-known estimate (2)

for the bias in ru for an AR (1), is given by

- l ) (17)

(2) This result seems préférable to the other one Kendall dérives, namely JE[r1]^cp — (l +4<p)/w
(yielding the even greater <p= .990), which is based on a mathematically convenient (but rather
unnatural) condition that the series is "circular", having extended (unobserved) values zn+j = Zj.
Ho we ver, (17) also has a flaw. It assumes a random choice of a starting value, z0, from
JV(O, a | ) —which does not seem very realistic (given that, for any réalisation, we will in f act
know zt; and backcasting then yields £[Z0]=z1/(p). It is interesting to note that these two
estimâtes of <p correspond very closely to the least squares and Yule-Walker estimâtes, respec-
tively, for which Tj0stheim and Paulsen (1983) drew the same conclusion as to which was
préférable.
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(see Kendall, 1954), which implies an estimator

that gives 9 = .958 here, it is clear that we could have a situation with
(p> 29/31. Moreover, for an ARIMA(O,1, q) or (more briefly) IMA(1, q)
model, a resuit similar to (16) (Anderson, 1979 b, section 6) gives the cross-
over at approximately n/(2+ /2), = 8.8 here, which is considerably closer to
the fc = 9.5 that is observed in figure 1.

Similarly, for the Koot and Young series (for which n = 89, and
r1= .59832), (18) gives 9 = .631616, whence (16) yields fc~6.5. Then the
observed cross-over, at fc = 3.4, is only .035 n from the theoretical value for
the roughly estimated AR(1) model. Given the greater sampling variability
for the sériai corrélations from this far more stationary process (even consider-
ing the extra length of series), we would again appear to have a plausible
explanation for the observed corrélation structure.

In orthodox linear time domain modelling, the generally advocated
approach is to attempt a match between the observed sériai corrélations
and the known pattern of theoretical autocorrélations for some appropriate
candidate parent process. However, this implicity assumes that the { rk } does
in f act mimic the { pfc} closely, except for sampling error. We regard such an
assumption as false. For thoroughly stable processes, we tend to get a lot of
sampling error, relatively, and so the systematic departure of the {rk}-
characteristic from the { pk}-pattern (which is anyway less marked) is none
too obvious. But it still usually exists; {rk} generally(3) only gives us a
distorted view of { pk }, irrespective of sampling error.

For instance, no réalisation from any AR(1) process can ever yield positive
sériai corrélations following a geometrie decay; no matter how one tries to
fabricate the series. Indeed, for any series whatsoever, the totality of the
sériai corrélations from rt to rn^1 has to be négative (as opposed to
Pi+ . . . +p n_ 1>0, for every {pfc = cpfc, cp>0}). But, the amount, by which
the characteristic rk-decline from unity is initially steeper than the correspond-
ing pfc-decay, dépends on both cp and n.

However, it is steeper. Although the pfc-decay can be as slow as we please,
for suitable choice of q> sufficiently close to unity. Thus Wood, Mclnish and

(3) That we are able to create counter-examples is demonstrated by choosing any length-2
réalisation of {Zt = (l-B)At}. Then p1 = - l / 2 = r1.
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Ord (1983) may be mistaken when they write for the sériai corrélations shown
in figure 3: "The decay rate of the... corrélation function... is much slower
than the exponential decay which would be expected from a low order
autoregressive process...".
1 X

*
t * * *
I * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * *

O * — • 24

Figure 3. — Sériai corrélations of global market return averages for 330 trading minutes
(adapted from figure 6 of Wood, Mclnish and Ord, 1983).

For an AR(1) series réalisation of length 330 with
9 - ( .80969 + (l/329))/(l-(3/329))= .8202086 (using 18), we get from (16)
that the cross-over /CCÜ17.6. Extrapolating the recorded sériais, we might
expect the actual cross-over to have occurred at about lag 39.4 So the
observed decay is indeed slower than that expected from our roughly esti-
mated AR(1), with the cross-over occurring 21.8 lags later —that is a discrep-
ancy of .073 n. But we imagine that Wood, Mclnish and Ord were thinking
of the comparison of figure 3 with pfc = cpfc, <p something like .80969 or .82021.

However, if we had cp rather larger (4), .9 say, then (16) would give k ~27.1;
while if cp= .95, fe~41.6, and with <p= .99 (again about the limit for (16),
given n = 330), fc~50.3. (In the cp= .95 case, the observed decay would be
slightly faster than the characteristic one, with a discrepancy between cross-
overs of just 2.2 lags, or .007 n.) Whilst for an IMA(1, q) model (5), when
n = 33O, fc^96.75 which seems far too great (a discrepancy of .191 n).

(4) This would be plausible if there were a moving average factor, ( 1 — 0 B% partially cancelling
the autoregressive (l-<pB).

(5) With, again, a partially cancelling MA(1) factor, (1-9B).
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When processes approach being homogeneously nonstationary, the sam-
pling variability of the sériai corrélations decreases dramatically, and the
différences between {rk} and {pk} will be emphasised. The discrepancy
between the two is also correspondingly greater, so that the distinctness of
the two patterns should be very clear. However, again people have been slow
to latch onto this point.

In particular, the sériai corrélation behaviour is often modified considerably
as we approach non-stationarity, so that it should frequently be possible to
discriminate between parameters giving "nearly nonstationary", but neverthe-
less still stationary processes, and ones (perhaps only slightly different in
magnitude) which do imply nonstationarity. Such a distinction has long been
recognised as important for its implications for forecasting; but, again, few
people have considered the possibility of the sériai corrélation pattern being
able to pro vide a fairly sensitive test of this point in many instances —a
possibility we will discuss in more detail below.

Basically, then, what we have been concerned with to date is establishing
reliable results for the moments and distributions of the sériai corrélations,
given any linear process and any length of series. And, as n is a crucial
parameter in all formulae, we emphasise its role by rewriting rk as r[n\ which
underlines the fact that (in our view) it is relatively pointless to look at, say,
the first 20 sériai corrélations, unless we know the length of the series from
which they were derived.

One of the things that has militated against cross-over and related aberrant
phenomena being more widely noticed is the practice of only considering at
most the first n/4, say, of the rk

n). Now that computational costs are so much
reduced, it is strongly recommended that one almost always outputs plots of
the complete sériai (and partial) corrélation functions in the social, business
and management sciences (where series lengths are usually never very great,
anyway).

3.2. Cautionary Tales

Rather than give detailed formulae and results concerning the moments
and distributions of sériai corrélations (which can be found in the two survey
papers Anderson (1980, 1989 b), and the références therein), we will restrict
ourselves to presenting a few illustrations that warn against thinking in terms
of the theoretical pk-patterns, instead of the more practically illuminating
characteristic rk

n) behaviours.
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3.3. À Misconception Concerning the Sériai Corrélations for Series Réalisations
from ARIMA Processes

Consider a random walk as the limit of an AR(1) process with parameter
cp -• 1. Then the walk's theoretical autocorrélations may be taken as the
limits as <p -• 1 of {cpk}; that is, all may be put at unity. Similarly, the { pk}
for gênerai ARIMA processes can be taken as { pfc = 1}.

However, the {r£°} for series réalisations from such processes will in no
way resemble this { pk }-pattern. The différence in behaviour being indicated
for the random walk by figure 4.

1 - ,

\
\ .293n

M
.592n
\

-.3-J
.272

Figure 4. — Divergence, for the random walk model, between: (a) expected sériai corrélations,
{£[4n)]}, from series réalisations; and (b) theoretical process autocorrélations, { pfc}.

Box and Jenkins (1976) noticed that, in practice, the sériai corrélations at
low lags, for many ARIMA (p, d, q) processes, tended to follow slow roughly
linear déclines from a zero-lag value of unity. However, rather than trying
to explain this as being due to the sériais following the { E [r^}]} and not the
{ pfc}, they considered it as a resuit of the generating process not being quite
nonstationary. For instance, with the AR(1) model, instead of letting cp -> 1,
write 9 = 1—8 where e takes a small positive value. Then pfc = cpk~ 1 — /CE, for
low lags k.
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As we have seen, this is not the correct explanation. It dérives from
attempting to rationalise inferences made from the suboptimal procedure of
trying to identify models by matching observed sériai corrélations with the
{ pfe }, as opposed to the { E [rj0]} patterns. What might have alerted research-
ers5 to recognizing the error, is the peculiar tendency of z to be frequently
approximately either 5/n (corresponding to ARIMA (p, 1, q) models) or 3/w
(for all other ARIMA(p, d, q) processes, with d>l(6)). But, of course, this
is not such an obvious point, when one is not always bearing the value of n
in mind. (Quite a helpful procedure, here, is to routinely "standardise" sériai
corrélation plots, by arranging the (horizontal) scale so that n lags always
occupy the same length whilst maintaining a fixed (vertical) scale for the
actual sériai corrélation "spikes".)

3.4. The Thompson and Tiao Sériai Corrélations

Thompson and Tiao (1971) reported a case-study with sériai corrélations
as given in figure 5.

Note that no classical Box-Jenkins ARIMA model has a pfe-pattern even
remotely resembling this plot. However, Wichern (1973) recorded one of the

rk

lu, ..
o ^ m

20
k »»

Figure 5. — Sériai corrélations for téléphone data reported by Thompson and Tîao (1971).

few (now) relatively well-known situations where the sériai corrélations could
départ substantially from the theoretical autocorrélations, that of the
IMA (1,1) model

(19)

wi th0<8<l .

(6) Also for models of the form (1), where f(t) represents either a linear trend or a "staircase"
step function—see Anderson (1988).
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Wichern argued that, although the nonstationary 1 — B operator would, by
itself, give rise to sériai corrélations which followed a slow linear décline
from unity; should 9=1, this operator would be cancelled on both sides of
(19), yielding white noise which is characterised by pfc = 0 (k>0). Then, for 8
relatively close to 1, a partial cancelling of operators would effectively occur,
and the typical pattern for the sériai corrélations would be intermediate
between those for a random walk and those for white noise. Wichern then
showed that the sériais would be expected to follow a décline from a value
less than unity, and would pass into the négative région, attaining a minimum
bef ore increasing again (to reach zero at the hypothetical lag k = n).

Anderson (1975, p. 110) simulated such a process with 0= .6, and recorded
the sériai corrélations for a series réalisation of length 50. See figure 6.

r 111
20

Figure 6. - Sériai corrélations for a length 50 simulation of (1 — £)Z, = (1 — .6B) At.

As we note, the similarity between figures 5 and 6 is qui te remarkable;
and a reasonable inference might be that the Thompson and Tiao data were
generated by a model close to

(1-5)Z , = ( 1 - .6B)Ar (20)

However, we have forgotten n. Figure 6 was based on 50 observations, and
the theoretical cross-over for the IMA(1,1), described by (20), is thus
50/(2+ /2) = 14.6 (which agrées very well with what is established by eye in
figure 6, namely a cross-over at about fc = 14.7). But, for the Thompson and
Tiao data, n = 190, for which an IMA(1,1) cross-over would be at fc = 55.6;
not the 15 indicated by figures 5.

This compares with an expected cross-over of 13.7 obtained from (16) for
an AR(1) réalisation with n = 190 and <p= .8 (and the "slow linear décline"
of the rk, from a value less than unity, actually suggests a larger (p, with a
partially cancelling (1 —0B) factor on the MA side).

vol. 23, n° 2, 1989



138 O. D. ANDERSON

In f act, Thompson and Tiao eventually fitted an ARMA (1,1) model

( 1 - ,92B)Zt = ( l - .66B)At

for which the expected cross-over would be at k = 24,3, invoking a déduction
from équation (32) of Anderson (1979 c), namely:

n©*"1^ 1 .

Actually there is a hint, in the displayed sériai corrélations themselves, that
figure 5 is based on a greater length of series than is figure 6. The sériais for
figure 5 give a rather smoother plot than those in figure 6, suggesting perhaps
the smaller sampling variability associated with larger n.

3-5. When Intuition Can Fail

In the last subsection, we considered models of the form
(l-B)Zt = (l~QB)At (0<6<l ) , and discovered that the typical shape for
the sériai corrélations was a smooth curve downwards, from a value below
unity, which crossed into the négative région, decreased until a minimum
was reached and then curved back upwards towards zero.

I would like the reader, then, to consider the expected behaviour for the
sériais of the purely seasonal process

(l-B2)Zt = (\-QB2)At (O<G<1). (21)

One would expect this to be basically the same as for model (19), except
that the sériais will be zero at odd lags and take the "Wichern-like" pattern
just for their even values, the seasonal period of the process being two. Thus,
if we considered a particular case of (21), say

( l - B 2 ) Z t = ( l - MB2)A, (22)

and n = 100, we might expect something like figure 7 for a typical series
réalisation, where the dots indicate (schematically) the supposed E [r^]. And,
I do not think anyone will quibble very much with that.

Figure 8 shows the sériai corrélations that were in fact obtained for a
(typical) actual simulation. Evidently we have a counter-intuitive resuit,
althrough this behaviour is exactly as predicted by results in Anderson
(1979 d); and, with a little thought, figure 8 does appear reasonable.
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Figure 7. — Suggested schematic forms for sériai corrélations
and E[rf] for a length-100 simulation from the model ( l - B 2 ) Z t = (l -64B2)At.

Consider, for simplicity, the model

{\-B2)Zt = Av (23)

Here the odd and even Zt are clearly independent, and the two subprocesses
formed by them both follow (independent) random walks.

Imagine what happens when simulating. Perhaps one starts by writing
z_1=zo = 0. Then, initially, the pair of walks are likely to intertwine some-
what. But, after a reasonable induction period, they are very likely to be
separate, one above the other, as far as short sections of the combined series
are concerned. Basically, the two walks are able to wander freely; and, as
their paths are not dependent on each other, they will usually be exploring
disjoint (or nearly disjoint) fragments of ( —oo, oo). Thus, schematically, we
can consider them as in figure 9—where, arbitrarily, the odds are placed
above the evens.

Clearly, there, the mean z lies between the two separated walks and so
(zodd—z) is always positive, whereas (zeven —z) is always négative, and both
déviations from the mean are large compared with the standard déviation of
the Av Thus, from the définition of sériai corrélations, two things occur, the

w m aU be négative and the r ^ ° } positive, and they will tend to quite
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Î

- 1

Figure 8. — Actual E [r[n)] Unes and sériai corrélations obtained
from a length-100 simulation from the model (1 -B2)Zt = (l - .64B2)A t.

closely follow the E [r{
k
100)] Unes, as shown in figure 8» declining roughly

linearly from values with large magnitude at low lag to those of small
magnitude at high lag.

Of course, had a real process (23) been running infinitely long, its two
walks would be expected to generally have an infinité séparation. However,
if it is to be observed, an actual réalisation would have to have its halves
finitely separated (which would also occur if the process has only been
running for a finite time). Evidently, we could get a situation where figure 9
does not approximate to the sort of behaviour displayed by a réalisation
from process (23), but this will be a relatively rare event for observed
réalisations other than extremely young ones.

What is happening is that, as we have already seen with the Wichern-type
behaviour (where the nonstationary operator of an appropriate ÏMA(1?1)
can be to some extent annulled by "partial eaneellation" with the moving

Recherche opérationnelle/Opérations Research



ANALYSING TIME SERIES FOR FORECASTING 141

o d d

even

Figure 9. — Schematic représentation of a typical short (but warmed up)
réalisation from the process (1 — 2)

average "echo" operator), (l—B) is an anomalously weak nonstationarity
operator; and in (1-J32), which factorises into (l—B) (1+1?), the (1+1?)
part dominâtes. So ARUMA(p, 2, q) models with S2(B) = (l-B2) give rise
to sériai corrélation structure whose form is dictated by the (l+B) factor.
On applying the (l+B) simplifying operator—as is suggested by figure 8 (for
instance, see équation 6 in Anderson, 1980) —to the simulation from model
(22), sériai corrélations similar to figure 10 (7) would resuif, leading to a
further simplification by differencing bef ore the remaining MA (2) part would
be identified. (And note that we have the full simplification going through
in stages.)

(7) Another example of Wichern-type behaviour.
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Figure 10. — Sériai corrélation plot and E[r(^] curve for a single length-100 simulation from the
model (l-B)Zt = (l- .64 B2)At; where the seasonal period-2 MA-operator factorises into
( 1 - .8B)(1 + 8B), with the ( 1 - 8B) partially cancelling out the nonstationary ( 1 - B ) .

3.6. A Final Test of Identification Skill

Table I gives the first five pairs of sériai and partial corrélations for an
actual series of length 37. Can you identify the model?

TABLE I

Sériai and partial corrélations for a series of length 37.

k

rk

Pk

1

0.498
0.498

2
0.245

-0.003

3

0.118
-0.004

4

0.053
-0.005

5

0.019
-0.006

It is clear that the { rk } closely follows a geometrie decay, from a value of
rx near 0.5, and the only "large" partial autocorrélation is at lag 1. The
immédiate conclusion might well be that we have a réalisation from something
close to Z, = (l/2)Z t_! + i4r

In fact the series, giving rise to the table, was generated by a process which
violâtes the stationarity conditions, namely

(24)
( t - 2 , . . . , 3 7 ) '
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with At = 0, A bit of a cheat, you might say, it is not even stochastic. But
note that, whatever moderate value one gives to G^, a réalisation of (24) is
virtually certain to "break loose" almost immediately and then closely follow
the deterministic process, Z, = 2Z t_1. And, for even a short length of 37
terms, its rk and pk will differ very little from the values shown in table I.

But, of course, for as short a history from a stationary process, one would
expect much more distortion of the population patterns in the sampled table.
We repeat the moral that one must constantly bear in mind the length n of
the réalisation, when analysing a time series.

Box and Jenkîns (1976) gave a mère 10-term simulation of the same
explosive process, starting with zx=0 and putting a\=\. Even there we see
the same type of behaviour (table II).

TABLE II

Corrélations for the Box and Jenkins (1976)
explosive simulation \from Zt=2Zt_± + Av At~IN(0,1)].

k

rk

Pk

1

0.458
0.458

2

0.165
-0.057

3

-0.001
-0.070

Evidently, a glance at the actual séries values in this case would again,
and more emphatically, prevent one from inferring a stable AR(1) generator.
But what if the process had been only slightly explosive? The second moral
is that one should not omit closely scrutinizing the raw data, at the very
start of an analysis.

Heuristically, the behaviour of the corrélations for explosive series, such
as (24), can be explained by considering the reversed réalisation, which will
have identical corrélation properties, but which now represents a decay, with
parameter 1/2, from some high initial value [of order 1011 for (24)].

More formally, when given {zt — 2z t_1 + a r: t = 1, . . ,, n } and n of moder-
ate size or large, it is straightforward to show that:

(a) rJk~2"fcfo

(b) Starting from lag one, { rk} tends to decrease monotonically, with the
initial positive values being followed by a négative run, until a minimum is
attained. Then the values start increasing again, but remain négative, and
finally satisfy

(c) rn_^(2-'-l)/((l/3)n-l) forj^n.
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To illustrate all this, figures 11 and 12 show the complete sets of rk, for
the Box-Jenkins simulation and our "cheat" series, respectively. Note that
the genera! { rfc } patterns are again of the cross-over type.

Figure 11. — Complete corrélation patterns for the Box and Jenkins simulation.

Also note the patterns of the partial corrélations in figures 11 and 12.
Although we have not the space, here, to explain what is happening, such
runs of small négative values are indicative that we have a strongly nonstation-
ary process (not a mère ARIMA (p, 1, q) model, with the weak (1— B)
nonstationarity operator). Indeed, looking at the { pk} in table I, the smooth
run of négative partials should surely have warned an analyst that the series
was not a thoroughly stationary one, such as a AR(1) with q> = 1/2, where
considérable sampling error would be expected.

3,7. Errors Arising from Interpreting Stationary Data as Nonstationary and
Vice Versa

The motivation for this subsection dérives from remarks made by Box and
Jenkins in their book (1976) and earlier publications, and substantiated by
the subséquent pratice of both themselves and many other practitioners
working in the time domain. These are that, when faced with a situation in
which a series réalisation could perhaps be modelled by a linear ARMA
process, ha ving an autoregressive operator factor (1 — <pi?) with q> apparently
a little less, but not much less than unity (8), then a recommended prudent

(8) The sort of largest value for 1 — cp = e, say, with which we are concernée dépends marginally
on the rest of the model but very heavily on the series length n. For shorter n, e can be larger,
the maximum e(n) being roughly inversely proportional to n.
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i -

36

Figure 12. - Complete corrélation patterns for the "cheat" series.

strategy is to replace the (1 -cp B) in the model by the "differencing" operator
(1—2?)-which, when applied to an observed réalisation, has the effect of
transforming the raw series to its séquence of first différences.

Such statements are supported by arguments that the (1 — q>2?) case causes
forecasts for future values of a time series to be tied to the mean value, z, of
the past observations, whereas the (l—B) choice allows future prédictions to
wander freely from wherever the series has got to at its last observed point.
See figure 13.

—*. (b) wander s freely

(a) pulled back to mean of past

Figure 13. - Schematic représentation of Forecasts from a series modelled
with factor (a) (1 -<p£) and (b) (1 -B).

As commented by Anderson (1975, p. 122), when 9 is near to unity, there
is not a very marked différence, in practice, between the behaviour of short
term forecasts obtained from the two choices. For, as <p gets closer to 1,
although there is still a mathematical tendency for the future values of the
series to revert to the mean of their past, the pull towards this mean becomes
weaker and the behaviour approaches that of an unconstrained meander
around the latest local level.
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Also, of course, there are reasons for avoiding unnecessary differencing,
which tends to increase the residual variance of the random shock component
that is achieved by the Box-Jenkins modelling (and so leads to unnecessarily
high predicted forecast error variances), and which frequently gives rise
to problems in estimating the (overdifferenced) modeFs parameters. Such
considérations have led many other analysts to oppose routine differencing.

However, we intend here to give fresh arguments which question the logic
of what we will call the "play-safe" strategy of automatically replacing a
possible (1 — <p£) autoregressive factor, having q> near 1, with (l — B), We
believe our studies indicate that, when we généralise these ideas, for the
purpose of distinguishing between "nearly nonstationary" ARMA models of
the f orm

<p(B)S,(aB)Zt = e(BM t (25)

with a less than but not much less than 1, and homogeneous nonstationary
ARUMA models of the form

<?(B)Sd(B)Zt = Q(B)At9 (26)

then we obtain insight and methodological extensions that can lead to much
swifter, simpler and cheaper model identification, given series from these
types of long-memory processes, which will consequently often give improved
modelling and an expectation of better forecasts in practice.

If one knows, for certain, that the series was in fact generated by a model
with <p = (p* and not <p = l, it would appear intuitively obvious that the <p*
choice should be modelled, if optimum forecasts are required. However,
evidently in practice, the right model is never known, and the "play-safe"
strategy would then seem to be based on two implicit assumptions:

(i) It is not possible to discriminate between q>* and 1.
(ii) Due to this, it is wiser to choose <p = 1, as resulting costs from forecast

errors are then expected to be smaller in the long run.
To focus attention, we first considered the pair of models

(27)

(28)

and simulated 100 réalisations, each of length n = 100? from them. The model
for each réalisation was chosen at random from the two choices and was
unknown until after the subséquent analysis had been completed.
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We looked at (27) and (28) because Wichern (1973) had previously fitted
an ARMA (1,1) to a simulated réalisation of 100 terms from (28) and come
up with model (27), which he claimed was indistinguishable from the true
model, given the series length considered —a point with which we feel that
most practitioners would agree.

Our discrimination experiment (described in Anderson and de Gooijer,
1979), however, although only based on some very approximate theory
(Anderson, 1977), gave us a success rate of 4 : 1, which we offer as sample
évidence to réfute (i). (See, also, Anderson and de Gooijer, 1980a).

If we next consider table III which shows the possible choices that the
analyst can make, given the true model options, we can easily demonstrate
that: (a) (from a population viewpoint) the costs, in terms of mean square
forecast errors, associated with the two possible types of misspecification are
indeed not symmetrie; and (b) that the expected costs, incurred by mistaking
cp = 1 for cp = . 95 (the case ringed), are greater than those from picking cp = 1,
when cp= . 95 in fact. This is discussed in Anderson (1981 a).

TABLE III

Possible choices open to analyst
given the true model, with <p = . 95 or 1.

Model Picked by Analyst

<P = .95 1

.95
True Model <P =

y

(*)

X

Assuming that our discrimination procedure has a long run efficiency of
80% correctly specified series (which we believe is not unreasonable, given
our greater current insight), it can thus be shown that the approach leads to
an improvement in forecasting performance at all leads. For instance, at
lead-ten, a réduction of 1.2% in mean square forecast error is expected.

This improvement is only small, because it can be shown that the ringed
misidentification in table III is almost four times as costly, in terms of the
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résultant détérioration in expected mean square forecast error, as is the
unringed (play-safe) one.

However, for all other Sd(B) (that is, for all but the "weak" (l-B)
nonstationary operator), correct discrimination between (25) and (26) is far
more certain; and the gains from applying the approach much higher in
conséquence. (See Anderson and de Gooijer, 1980 b, for some examples; and
Anderson, 1981b, for an introductory discussion.)

A word of warning for those wishing to run simulation experiments on
gênerai homogeneous nonstationary processes and their nearly nonstationary
analogues. Long induction periods for warming-up the simulated processes
are generally needed. For instance, correctly simulating series, of length 100,
from any such nonstationary process [excluding the case of weak nonstation-
arity, with Sd (B) = (1 — B)] requires a warm-up period of around 400 discarded
initial terms. See Anderson (1979 e), for the only known published treatment
of this probleiii, although this restricts itself to the very simplest case of an
AR(1) simulation.

4. Where We Are Going To

Frankly, we do not know. It would seem wise to first formally put all our
material together in a coherent and rigorous thesis—which will be done in a
proposed book for Wiley. We shall then proceed along the most promising
avenues, seeking perhaps to do less, but establish rather more. (It is not the
results one achieves that matter, but how well you succeed in disseminating
them.) Less effort will be given to preaching—instead we will concern oursel-
ves more with getting people to pay attention.

More work is needed in three areas:
(1) We need to set the inference and discrimination ideas in a rigorous

framework.
(2) We must provide an unequivocal démonstration of the gains to fore-

casting, from using the sériai corrélation characteristic patterns rather than
the theoretical autocorrélations, for purposes of process identification.

(3) A full investigation into the warm-up problem is required, so as to
ensure efficient and effective simulation experiments.
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