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GENERALIZED OPTIMAL SEARCH PATHS FOR CONTINUOUS
UNIVARIATE RANDOM VARIABLES (*)

by Zaid T. Baiksi (1)

Abstract. — The purpose of this paper is to solve the Generalized Linear Search Problem for
continuous random variables. This problem is concerned with finding a target located on a line.
The position of the target is given by the value of a random variable which has a prior distribution.
A searcher starts looking for the target from some point, moving along with an upper bound on
his speed. The target being sought for might be in either direction from the starting point, so the
searcher needs to change his direction many times before he attains his goal. with minimality of
average time to target detection as the measure of optimality of search paths, we have obtained
algorithms that find such paths for those targets which have absolutely continuous distributions.
Morve detailed properties of optimal search paths are, also, studied. One of the main results is that:
these search paths are not minimal, in some cases, for some types of target distributions.

Keywords : Linear search; Optimization; Normal and bimodal normal distributions.

Résumé. — Dans ce papier nous étudions le probléme de la recherche linéaire généralisée dans
le cas des variables aléatoires continues. Ce probléme consiste a trouver un objet localisé sur une
ligne. La position de I'objet est donnée par la valeur de la variable aléatoire qui répond a la loi de
probabilité. Un chercheur commence a chercher son objet a partir d’un certain point en se déplagant
sur la ligne avec une vitesse ne dépassant pas une certaine borne. Vu que I'objet peut étre situé a
droite ou a gauche du point de commencement, le chercheur a besoin de changer sa direction
plusieurs fois avant de détecter 'objet. En considérant le temps moyen minimum pour détecter
Pobjet comme mesure de Ioptimalité du chemin de recherche, nous avons obtenu des algorithmes
qui permettent de trouver tels chemins pour les objets qui ont des lois de probabilité absolument
continues. Des autres propriétés des chemins optimaux sont également étudiées. Un des résultats
fondamentaux est: ces chemins ne sont pas minimaux, dans certains cas, pour quelques types de
lois de probabilité.

1. INTRODUCTION

The following problem has been considered in the literature. A target is
assumed to be located on a line. Its position x is given by the value of a
random variable X, which has a known (or unknown) distribution F.

(*) Received February 1988, revised in July 1988.
(!) King Saud University, Department of Statistics, P.O. Box 2455 Riyadh 11451, Saudi
Arabia.
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68 Z. T. BALKHI

A searcher starts looking for the target from some point a, on the line
(|a0| < o0), moving along the line with an upper bound on his speed. The
target being sought for might be in either direction from the starting point
ay, so the searcher would conduct his search in the following manner: Start
at a, go to the left (right) as far as a,. If the target is not found there, turn
back and explore the right (left) part of a, as far as a,. If the target is still
not found, retrace the steps again to explore the left (right) part of a, as far
as a;, and so fourth until the target be detected. Let us define ¢ and d as
follows

c=inf{x: F(x)>0}, d=sup{x: F(x)<l1}.

Then a search path may, in general, be represented by a sequence
A={a; i20} with a,;—>c and a,;_, —d as i - 00, or vice versa. Figure 1
gives an illustration of such search paths. Observe that the two search paths
depicted in Figure 1 are duals and of sequential type. Moreover it is to be
noted that these two search paths will give us several possible cases of search
when we consider all relative positions, of the starting point a,, to the origin
(see [2]).

.......... %3 % % % T
........ % % 2 3 3 .
Figure 1.

The problem is of interest because it may arise in many real world situations
such as:

(i) Searching for lost persons or objects on roads (Beck [5], Beck and
Newman [7], and Rousseeuw [13]).

(ii) Searching for a faulty unit in a large linear system such as electrical
power lines, telephone lines, petrol or gas supply lines, and mining systems
(Balkhi [2]).

(iii) Estimating a distribution parameter whose probability locations are
given. The parameter, here, may be regarded as a target to be searched for.

In the above examples, and in many others of this type, (see [2]) the target
distribution is given or to be estimated. It is possible, however, to study this
problem as a game between the searcher and the target (see [7] and [11]).
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GENERALIZED OPTIMAL SEARCH PATHS FOR RANDOM VARIABLES 69

For any of such problems the path length of some search path
A={a; i20}, from the starting point a, until reaching the target x, is
considered as the cost of the search. By virtue of the randomness of the
position of x, it is clear that the cost of the search is, also, a random variable.
The aim of the search is, then, to minimize its expected cost. Any search
path that fulfils this aim is referred to as an optimal search path (O.S.P.).
For all possible cases of search, the solution of this problem consists of two
stages. The first is the establishment of the existence of (O.S.P.)’s. This stage
has been, in fact, completed by many authors. A review of their results will
be the subject of the next section. The second stage is the construction of
(O.S.P.y’s. Concerning the case a,=0 and the second stage Beck [6] and
Franck [10] have indicated that a recursive formula for the entries a;’s of a
minimizing search path is available under proper differentiability conditions
on the expected cost. But the solution there has not been given in a useful
sense. Rousseeuw [13] has done some investigations about (O.S.P.)’s for the
case a,=0. But his wotk was concentrated on the Normal distribution and
its analogous symmetric distributions only. Besides to the case a,=0, there
are, however, many other cases of possible search. Some of these cases have
been previously considered in Balkhi [1]. Later Balkhi [2] has shown that
there are only five cases of possible search one of which is the case a,=0.
The other four cover all possible cases of search for which a,#0. The work
of {2], in fact, has focussed on giving sufficient conditions under which there
exists an (O.S.P.) for each possible case of search.

In this paper the construction of (O.S.P.)’s, for the only five possible
cases of search considered in [2] and for regular target distributions (see
definition 2.2), will be introduced in a unified way. The main properties of
(O.S.P.)’s will be given some emphasis. An algorithm by which we can
calculate (O.S.P.)’s together with an illustrative examples are also introduced.
The numerical results of these examples will then show that some of the
possible cases of search is better than some others in the sense that they give
less expected cost. Justifying, thus, the generalization of this problem that
have been previously considered by this author.

2. LITERATURE REVIEW

Authors in [5] to [8], [10], [11] and [13] have dealt with the case a,=0
only. Under the name “The Generalized Linear Search Problem” (GLSP)
Balkhi [2] has introduced this problem in more general approach by consider-
ing any starting point a,(|a,| <oo) other than the origin. The additional
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70 Z. T. BALKHI

assumption that the number of elements, of a search path A={a; i=0},
between the origin and a,, is finite, is also presumed in [2] (This assumption
may be justified by [2] Lemma 3.8). It is shown, then, that we have only five
possible cases of search, one of which is the case a@,=0. These cases are
referred to as case (k); k=0, 1, 2, 3 and 4 [case (0) is the case for which
a,=0]. The class of search paths in case (k) is denoted by Q.
k=0, 1, 2, 3 and 4. With the conventions that a,#0 for k=1, 2, 3 and 4,
a_,=0 for k=0, and a,#a, for all k (The last assumption is justified by
the fact that the:searcher needs to move from a, to a new point namely a,,
at the outset of his search). Then class Q, consists of all search paths of the
following type

2.1 <y <a,<0=gy<a,<az<as<...; k=0
2.2) w<as<a;<a;=0<ap<a,<a,<...; k=1
2.3) <a,<a,20<a,<a,<a3<as<...; k=2
2.9 <a5<a350=5a,<ap<a,<a4<...; k=3
2.5) e <a,20=<a,<ay<a,=2a3<as<...; k=4

and their duals which can be obtained by reversing the inequalities in (2.1)
through (2.5) (See [2] for more details). For a search path A={a; i=0} form
class Q,, the expected cost is denoted by D, (A4, F). As has been shown in [2]
we have

(2.6) D, (4, =M (F)+A (4, F);, k=0, 1,2, 3and 4
where M (F)= fd | x| dF (x) (The first absolute moment of F).
(2.7) Ao(4, F)=2 Z, |a,| {1 —sign(a) [F (a)—F(a;_ ]}-

(2.8) A4, F)=—2

Jao|x|dF(x)
0
x {l1—sign(a)[F(a)—F(a,_)l}; k=12

fa°|x|dF(x)

o]

—(=D~ |ap| +2 ¥ |a]
i=1

29 A4, H=-2 —(— 1)~ |ag| —4]a,_,|

+2 Y |a|{l—sign(@)[F(a)—F(a;_)]}; k=3,4
i=1
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GENERALIZED OPTIMAL SEARCH PATHS FOR RANDOM VARIABLES 71

(see Balkhi [2], theorems 2.1, 2.3 and remark 2.4). An (O.S.P.) from class Q,
is given formally by the following definition:

DEerFmiTiON 2.1: Let
(2.10) m,=inf {D, (4, F): AeQ,}; k=0,1,2,3and 4

If A*eQ, is such that m, =D (A*, F), then A* is said to be an (O.S.P.) from
class Q;; k=0, 1, 2, 3 and 4.

The existence of (O.S.P.)’s in class @, has been established in Beck [5] and
Franck [10] by assuming different (but not equivalent) conditions on the
underlying distribution F, that give necessary and sufficient conditions for
such existence. For the (GLSP) considered here, Balkhi [2] proved the follow-
ing two theorems.

THEOREM 2.1: There exists a search path from class Q,; k=0, 1, 3 and 4,
with finite expected cost if and only if M (F)< co.

THeoREM 2.2: Let F~(0), F*(0) denote the left hand and right hand
derivatives of F at zero respectively. If M (F) < oo, then there exists an (0.S.P.)
from class Q, if

(i) For k=0, 1, at least one of F~ (0), F* (0) is finite.

(ii) For k=2, 3 and 4, both F~ (0), F* (0) are finite.

Thus the existence of (O.S.P.)’s for k=0, 1 (k=2, 3 and 4) is guaranteed
under the finiteness of M (F) and F~ (0) or F* (0) (M (F), F~ (0), and F* (0)).
Under some special assumptions which include the above ones Fristedt and
Heath [11] proved the following theorem.

THEOREM 2.3: If M (F) < 00, then there exists an (0.S.P.) from class Q, with
constant speed equal to 1.

Theorem 2.3 does not have special assumptions concerning class Q, per
se, so this theorem holds for any of the classes Q,; k=0, 1, 2, 3 and 4. Thus,
for all classes Q, we might consider the expected cost of the search to be
either D, (A4, F) or T, (A, F), where T, (A, F) denotes the expected searching
time using the search path A={q; i=0} from class Q, i.e.

(2.11) D (4, F)=T (A, )=M(F)+ A, (4, F); k=0, 1,2, 3 and 4.
The following definition is often needed in the sequal.

DerINITION 2.2: If the target distribution F is absolutely continuous with
strictly positive density f, then F is said to be regular.

vol. 23, n° 1, 1989



72 Z. T. BALKHI

Of special interest are symmetric target distribution i. e.

(2.12) F(-x)=1—-F(x), VxeR.

For this type of distributions (i.e. symmetric) then more appropriate
formulas, for theoritical and computational purposes, are available for the
expected cost. To see this let A={a; i20}eQ,; y;=|q, i20. If Fis symme-
tric then
(2.13) 1—sign(a)[F(a)—F(a;-)]=2—[F@)—Fi-1)};

ik for k=1,2,3and 4 and i=1 for k=0.

Let Y={y; i=0}, then from (2.13) and our hypotheses we can easily see
that A, (Y, F)=A, (4, F); k=0, 1, 2, 3 and 4, where

(2.149) Ay (Y, F)=2 Z M=FONOityis)=y1+2 Z M=FONOi+yis1)
i=0 i=1

(215 A(Y, F)=—2r°1x|dp(x)

)
—(=1po+2y, [1=F((—= 1" yo)]

+2 Z [I=F@)i+yir1) k=1,2
i=1

(2.16) Ak(Y,B=—2fy0[x|dF(x)
0

— (=1 yo =242 [1 + F(i—2) = F (4 -3)]
+2k =)y 1 +F@o)—FOII+2y- 1 F(i-2)

+2 Z M=FOGi+yis 1) k=34

i=k—1

Formulas (2.14) through (2.16) make it possible to disregard the signs of the
entries of a search path A={a; i=0} by using the equivalent search path
Y={y; i=0}. This, in fact, results in more efficient computational algorithms
that calculate the entries of (O.S.P.)’s and the corresponding optimal costs.
Moreover, by using (2.14) and (2.15), Balkhi [1] proved the following interest-
ing result (see [1] pp. 173-174).
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GENERALIZED OPTIMAL SEARCH PATHS FOR RANDOM VARIABLES 73

TueoreM 2.4: If the underlying distribution F is symmetric, and if A is an
(0.8.P.) from class Q,, then

|@v1]>]a;| forall i20; k=0, 1,2

Using similar techniques as those used in {1} we can easily show that this
theorem holds, also, for k=3 and 4 with i=k —2. Thus we have

!ai+1‘>|ai|;

i=0 for k=0,1and 2 and izk—2 for k=3 and 4.

Thus for symmetric target distributions we can restrict our attention to the
search paths Y={y; i=0} for which

(2.17) { yi+1>yi;
i=20 for k=0, 1and 2, and izk—2 for k=3 and 4.
Remark 2.1. — There is a kind of scale invariance on the expected cost.

For if A={a; i20} is a search path from class Q,; k=0, 1, 2, 3 and 4. And
if we define AA={Aa; i=0}, F,(x)=F(x/)A), so that the support of F, is
(Ac, Ad), then

(2.19) D,(M 4, F)=AD,(4, F); k=0,1,2,3and 4

which can be easily seen from (2.6) through (2.9) (see also [13] remark 1.1).

Remark 2.1 means. that the expected cost of the search does not depend
on the type of distribution, but it depends also on its scale parameter. It is,
therefore, meaningful to standardize the expected cost by other parameter of
the same scale, say by M (F). Relating to this fact Rousseeuw [13] has proved
the following theorem.

vol. 23, n° 1, 1989



74 Z. T. BALKHI

THEOREM 2.5: If the underlying distribution F is symmetric and regular, and
if A is an (0.8.P.) from class Q,, then

(2.18) 2 < Ty (A4, F)/M (F)<4.591.

3. OPTIMAL SEARCH PATHS

(a) Critical search paths

As it can be seen from (2.6) through (2.9) the (GLSP) depends on two
unknown factors. Those are the target distribution F, and the search path
A={a; i=0} used by the searcher. Let us assume, from now on, that the
target distribution is known. Nevertheless we still face a difficult optimization
problem. Because this problem has an infinite number of variables; that is
A={a; i=0}. However, if we assume (from now on) that the target distribu-
tion F is also regular and that M (F) is finite. Then the structure of the
(GLSP) becomes easy and even simple as we shall see below. But let us first
give a pertinent definition and remark.

DerINTION 3.1: If A={a; i20} is a search path from class Q, such that
tha derivative of A,(4, F) with respect to 4 does exist and all partial
derivatives of A, (A4, F) with respect to rhe a;’s vanish, then A is said to be a
critical search path (C.S.P.) from class Q,; k=0, 1, 2, 3 and 4.

Remark 3.1. — We infer that if A, (A, F) is differentiable on @, then the
set of critical search paths from Q, will contain all of the relative minimal
and relative maximal search paths. Of course this set may also contain search
paths at which A, (4, F) does not have relative minimal or maximal search
paths. In addition the function A, (A4, F) may have relative extremum at a
search path from Q, at which the derivative of A, (A4, F) with respect to 4
does not exist or A, (A4, F) may have a relative extremum at a search path
which is not an interior point from Q,. O

Now by the regularity condition on F and the finiteness of M (F), then
Theorem 2.2 guarantees the existence of (O.S.P.)’s in each of the classes
Qs k=0,1,2,3and 4. If A={a; i=0} is a (C.S.P.) from class Q,, then
0A, (A, F)[0a; exist for all pertinent values of i and k, and then

0Ak (Aa F) _
(3.1) da.

L3

i=0 for k=1, 2, 3 and 4, and i1 for k=0.

0

Recherche opérationnelle/Operations Research



GENERALIZED OPTIMAL SEARCH PATHS FOR RANDOM VARIABLES 75

Moreover, for the following tupled values of i and k
(3.2) (k=0,1and?2;ix=1), k=3,i=2) and (k=4; i=3).

Then relations (2.7) through (2.9) together with (3.1) give the following
results.

(3.3) 98, (4, F)
da

i

=2sign (a;) {1 —sign (a)) [F(a)—F (a;_ )]

_f(ai)(|a,-‘ + ’ai+1|)}
1—sign (a) [F(a)—F(a;—,)] | a,].
/(@) ‘

And from our hypotheses we have

(34 laiss] =

(3.5 a;,1=—sign(a). |ai+ 1 |

Using the same reasoning as applied for the tupeled values of k and i in
(3.2), the rest a;’s of a (C.S.P.) A={a; i20}€Q, are given by the following
relations:

(3.6) la | =1/2f(ap)— |ao|; k=1

(3.7) lay| = ag| ~112f(ag); k=3

(3.8) la,| =1/2f@o)+ |ag|, k=24

(3.9) |a| ___1+sign (ay)[F (a,) —F(ao)] +|ag; k=3
f(ay)

(3.10) |a2| - Iall _I—Sign (ay) [F(al)_F(aO)]; k=4

f(ay)

G.11) la.’»i =1+Sign (a,) [F(az)—(al)]+ Iaz . k=4.

f(a,)

For the signs of these entries we recall, from the hypotheses, that: For
k=1, a, and a, have different signs. Whereas for k=2, 3 and 4, all the a,’s
for which i<k—1 have the same sign. Now, as it can be noticed from
relations (3.4) through (3.11) and the signs of the a;’s indicated above, then
for k=1, 2, 3 and 4 we have that a, is a function of a,, and a;, , is a function
of a;_, and gq; for all i=1. Hence a;,, is a function of a, Thus if we assume
that a,=r, then there exists a function {; such that

(3.12) a;=\;(r) forall iz0, and k=1,2,3and 4

vol. 23, n° 1, 1989



76 Z. T. BALKHI

where Y, (r)=r. But for the case k=0 we have to take r=a, since then
a,=0. With the convention that {,(0)=0 for k=0, then a (C.S.P)
A={a; i=0} from class Q,; k=0, 1, 2, 3 and 4 is of the form

(3.13) A={{;(r); i20}

Therefore, if the set of (C.S.P.)’s from class Q, is not empty (see Remark 4.1
in the next section) then we have

(3.14) inf{A, (4, F); A={a; i20}eQ,} =inf {A, ({V,(r); i20}, F); reR}.

Thus under regularity condition on F, the (GLSP) problem has been
reduced from a problem with an infinite number of variables {a; i=0} to a
problem with only one single variable, namely r=aq, for k=1, 2, 3 and 4,
and r=a, for k=0.

(b) Optimal search paths

Let us assume that the set of (C.S.P.)’s from class Q, is not empty, and let
A (r*, F)=inf {A, ({¥;();i20}, P };
reR

(3.15)
k=0,1, 2, 3 and 4.

We then can address ourselves to solving‘(3.15) under the side condition
[recall the conditions (2.1) through (2.5)].

(3.16) |\lli+2(r)|>]\|li(r)] forall iZk—1; k=0,1,2, 3 and 4
at any distribution. And the side condition [recall (2.17)].

(3.17) l‘l’i+1(")|>|\|’i(")‘,
i20 for k=0,1 and 2 and izk—2 for k=3 and 4

at the symmetric distributions. Whenever these side conditions are not satis-
fied, we shall consider that the corresponding A ({V{;(r); i=0}, F) is not
defined. The search path {\;(r*); i=0} that defined by (3.15) and that
satisfies these side conditions is an (O.S.P) from class Q,; k=0, 1, 2, 3 and 4.

The procedure of finding an (O.S.P) from (3.15) would be as follows: For
each reR we construct all a;=V,(r) from the relevant relations of (3.4)
through (3.11). And then we calculate the corresponding A, ({{;(r) }, F) from
(2.7) through (2.9). From those values of r that satisfy the pertinent side
condition, we choose the value r* that satisfy (3.15). Another equivalent

Recherche opérationnelle/Operations Research



GENERALIZED OPTIMAL SEARCH PATHS FOR RANDOM VARIABLES 77

procedure of finding an (O.S.P.) from (3.15) is as follows: From all (C.S.P.)’s
of the form (3.13) we find the minimal search paths. Then we take the overall
minimum of all minimizing search paths. However, there are some difficulties
that arise when applying such procedures. One of the main difficulties for
instance, is to consider all values of r from R. Another one is that; it is not
known as to whether the relevant side conditions, indicated above, are fulfilled
everywhere. A third one is that; though our optimization problem has been
reduced from a problem with an infinite number of variables to a problem
with only one single variable. But it is still one difficult variable. This is so
since each (C.S.P.) has an infinite number of entries. It would be therefore,
rather difficuit to verify that a given (C.S.P.) is of minimal type. Unfortunately
overcoming such difficulties is not always possible as we shall see in the next
section. Nevertheless, the properties of (O.S.P.)’s which will be studied in the
next section will provide us with valuable information that will, at least, be
a helpful tool for verifying and facilitating the numerical calculations of
(O.S.P.)’s.

4. PROPERTIES OF OPTIMAL SEARCH PATHS

Some properties of (O.S.P.)’s have already been established, and being
held at any distribution F (see theorem 2.5 in [2] for the nonsymmetric
distributions, and recall relation (2.17) for the symmetric ones). For regular
distributions, however some other properties do, in fact, hold and are helpful
in facilitating the solution of the (GLSP). In order to help the flow of our
ideas we start with the following property of (O.S.P.)’s.

1. Nonminimality of some classes for certain type of distributions

Though the function A, (4, F) has an infinite number of variables, the
structure of our problem makes it possible to take A, (A4, F), with finite
number of variables, as an approximation of its exact value. Such an approxi-
mation is justified by the fact that |a,~|{l-sign (a)[F(a)—F(a;_,)]}
approaches 0 as i - oo (recall that a; > —o0 and a;_, =00 as i »o0 or vice
versa). Denote by n the number of entries from A={q; i=0} for which the
indicated approximation is fulfilled for any desired level of precision. If
A={a; 0<i<n} is an (approximated) search path, then A can not be
minimal unless the Hessian matrix evaluated at A is positive definite (see
theorems 42.4, 42.5 in [3]). For k=1,2,3 and 4, let §,=0>A, (4, F)/da?; i=0.
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78 Z. T. BALKHI

Simple calculations on (2.8) and (2.9) have shown that the Hessian is symme-
tric (provided that the derivative f” of f does exist and is continuous). And
that the matrix H has the following form:

5, 2f (ag) 0 0 ... 0 0

2 (ao) 5, 2f (ay) 0 . 0 0

@y He 0 2f (a,) 5, 2f(a) ... 0 0
0 0 0 0 .. 81 2f (a,—)

0 0 0 0 R YAC 5,

[For the case k=0 the resulting matrix H has a similar form as (4.1) with
replacement of a; by a;,; and §; by 3,,,; i=0]. But H is positive definite if
and only if the determinants of its principle submatrices are strictly positive.
Thus A={a; i=0} can not be a minimal search path from class Q, unless

2
(4.2) %’—F) >0;  k=0,1,2 3 and 4
r
And
A, A, )
(4.3) P > F—4[f(r)] >0; k=1, 2, 3 and 4
r ay

But when the derivative f* of f does exist, then (4.2) is equivalent to

f%”{l-sgnvnpoy-pwn}<o; k=0
f@

(44) h(@)=2f(r)+sign(r)

4.5) h(r)=2f (r)+sign (r)m <0; k=1and 3
A)

(4.6) h(r)=2f (r)—sign (r)]:@ <0; k=2 and 4.
AU

Suppose now that the distribution F is of the following type:

(4.7) “F is regular and has unimodal density f with the mode occuring at
zero and the derivative f* does exist and is continuous”.

{

Then f* (r)/f (r)>0 for r<0 and f* (r)/f (r)<O0 for r>0, which means that
the necessary condition (4.6) can not hold for k=2,4. On the other hand,
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simple calculations on (2.9) yield:

2
% =—4f(a)+2(|ay|—|a,|) S (a))sign (a,).
1

From which we can easily see that 8% A;/0a? <0 whenever F satisfies (4.7).
But then (4.3) can not hold. For if % A,/dr> <0 we are through, otherwise
0% A4/0r* 8* A;/da? —4(f (r))* <0. Thus we have actually proved thee following
result.

TueoreMm 4.1: If F satisfies (4.7), then for k=2,3 and 4, any critical search

path is not of minimal type.
An illustration of Theorem 4.1 is given by the following example

Example 4.1: Suppose that the target position follows the Normal law

(4.8) F(x)= S22 g xeR.

1 J x
e — e

/21 )_ o
which is symmetric and unimodal with the mode occuring at zero. The
optimal value A% (r*, F) that has been obtained from the (C.S.P.)’s is found
to be 2.11282145. However, some given search paths (Noncritical) for which
as=r for k=1, 2, 3 and 4 such as

{a;=05[F* ' +(i+1)r];i20},
{a,=r"*Yi20, |r|>1}
4.9 {a;=(+Dr;iz20}, {a=r"'+i;i=20}
{a;=r""1+ir; i20}, {a,=(@{+1)r+r5i=0}
{a;=(@+1)r+ir; i20},etc.

And for which a, =r for k=0 such as

(4.10) { {a,=ir; i21}, {a,=r%i21, |r|>1}
{a,=r"+({-Dr;izl}, {a;=0.5@" +ir); i21}, etc.

have also been considered for comparison purposes (The value of A,.’s at
such search paths will be denoted by A, (r, F) so that those values can be
distinguished from A, ({{;(r); i=0}, F) which we shall use for (C.S.P.)’s.)
The minimal values of A, (r, F) at the special search paths defined by (4.9)
have been found to be 1.969 376 523, 1.848 029 33, 2.024 573 89, 2.123231 33,
1.99386908, 2.37207621, 2.07379500 respectively. One can easily see that
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the value of A% (r*, F) is greater than the minimal values of A,(r, F) at
almost all special search paths defined by (4.9) giving thus an in sight to
theorem 4.1 for k=2,

Remark 4.1: It has been found, by means of computers, that for the
distribution (4.8), then

|a,|<0for k=3 andreR  and |a,|<Ofor k=4 and reR

This means that the set of (C.S.P.)’s, from each of the classes 05, @, and
for the distribution (4.8), is empty, which seems to contradicts the result of
Theorem 2.2. However, by reasons mentioned in Remark 3.1, one may
construct many noncritical search paths like those defined by (4.9) and (4.10)
and then use the trial and error process to extract (O.S.P.)’s from them.

2. Bounds on r

As indicated above, solving (3.15) for all re R is not an easy task. However
some useful bounds on the only characteristic variable r are available. Since
any (O.S.P.) is a minimal search path, some of these bounds come from the
necessary condition (4.2) that have to hold for any minimal search path
A={a; iz0} from class Q,. When the inequalities (4.4), (4.5) and (4.6) have
solutions they would be of special importance for obtaining significant bounds
on r. An illustration is given in the following example.

Example 4.1 (Continued): Considering again that the target distribution is
given by (4.8). Then for k=1, (4.5) gives.

(4.11) h(r)=2f(F)—r<0
which is equivalent to

(4.12) re(—oo, —a)U(a, o) where o~0.6471428.

Obtaining thus a lower (upper) bound a( —o) on r when r>0(r<0). []

However, the solution of each (4.4), (4.5) and (4.6) is highly dependent on
the type of search (i.e. on k) and the type of target distribution F. For
instance, equation (4.6) can not hold for any unimodal distribution with the
mode occuring at zero as we have seen in the previous property.

Other bounds on r may be obtained from the forms of A, (4, F) given by
(2.7), (2.8) and (2.9). To see this, let 5, be the value of A,(A4, F) at a given
search path such as those given by (4.9) and (4.10). And denote by QF the
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set of minimal search paths from class Q,, k=0, 1, 2, 3 and 4. Then some
other significant bounds on r are given by the following theorem.

/] ©
THEOREM 4.2: Let B, =j‘ | x|dF (x), B, =j | x|dF (x). If QF is not empty,
— o0 o

then

1 1
(4.13) r1=—<580+B1>§r§5(80+Bz)=r2; k=0
(4.14) ri=—0,+2B)<r<8,4+2B,=ry; k=1
(4.15) ry=—(+4B,)Srs8,+4B,=r,; k=2and3
(4.16) ri=—(0,+6B)<r<8,+6B,=r, k=4

Proof: Let M, (r) be the subset from R for which the resulting (C.S.P)’s
are minimal search paths. Let also 4,,={a,=V{;(r); i20} be a minimal search
path, and A, (4,,, F) be the corresponding value of A, at the search path 4,,.
Since, QF is not empty so for each re M, (r) we have

(4.17) 8,2 A (A4, F) k=0,1,2, 3 and 4.

The proof of (4.14) is direct from (2.8) and (4.17) with k=1. We shall
now give the proof for k=0 and k=4. The proof for k=2 and 3 can be
done by similar fashion.

(i) k=0: Let re M, (r), then from (2.7) and (4.17) we have

802 Mg (A F)22|r|{1—sign(r)[F()—F(©0)]}=2|r|-2

JrlrldF(x)
(1]

which implies that |r]§(l /2)8,+ . Since the integrand on the

jrlrldF(x)

right side of the last inequality is a nonnegative function so by [4] Lemma 3.8
we have

° ridF(x)=s ’ x |dF (x) for r=0,
‘ _—

(4.18) and

Jr|r|dF(x)§fm|xldF(x) for r=0
0

0

which in turn implies (4.13).
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(i) k=4: Let re M, (r). Then from (2.9) and (4.17) with k=4 we have

8> —2 —|r|—4|a,|+2]a,|

jr‘x|dF(x)
0

-2 | a, | sign (a,) [F(a,)—F (a,)]
+2|a, | {1—sign(a,)[F(a)—F(a)]}
+2|a;|{1—sing(as)[F (a;)— F(a)]}.

Since for k=4,

as|Z|a,|>|ao|=|r|2|a,| so we have

62 =2| [ [x|ar o) - Ir[ +21r]
0
—2|a, | sign(a;)[F (a,)— F (a,)]
—2|a,|{1—sign(a,)[F(a,)—F(ay)]}
+2|a3 | { 1 —sign (a;) [F(a3)—F(a2)]}
=z-2 fr|x|dF(x) +|r|—2|a1lsign(al)[F(al)—F(ao)
-2 l az I {1—sign(a,) [F(az)—F(ax)]}
+2]ay| { 1 —sign (as) [F (a5)— F (a)] }
or
5,= -2 Jr|xldF(x) +|r|—2 fﬂl|al|dF(x) -2 Jas|a3|dF(x)
(V] ag ag

which implies

|r|<2 +2 +2 +3,4.

f " ay |dF ()

ag

[[Ixlar e
0

r |as| dF (%)

ai

But, for k=4, the entries ag=r, a,, a, and a; have the same sign, so by
similar arguments as those used in proving (4.18) we can easily see that:

0 a a
Each of f | x|dF(x), J ° |a, |dF (x) and f 1]a:,|dF (x) is less than or equal
r ay 1

a3
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(4]
to J | x|dF (x)=B, for r<0. And each of

Jr[xIdF(x), ja1|alldF(x) and r3|a3|dF(x)
0

ag a1

is less than or equal to j | x| dF (x)=B, which in turn imply (4.16).
0

Remark 4.2: Examination of (2.14) through (2.16) show that, for symmetric
distributions, the case >0 is equivalent to its dual r <0 in the sense that both
give the same value of A, ({{;(r); i=0}, F) (see also [13]). For nonsymmetric
distributions, however, we have to solve (3.15) for the two cases r>0 and
r<0. And then choose the one with the least expected cost. Moreover, the
bounds on r given by Theorem 4.2 will be relaxed in case of symmetric
distributions. This is so, since then B, =B, =(1/2) M (F). Thus for symmetric
distributions we can content ourselves to the following bounds on r:

(4.19) Either r; <r<0, or O0Zr=<ry k=0,1,2,3and 4

where r; = —r,, and

r,= %[80+M(F)] for k=0, r,=8,+M(F)for k=1

4.20
(4.20) r,=08,+2M(F) for k=2 and 3 and r,=0,+3 M (F) for k=4.

Example 4.1 (continued): For the distribution (4.8) and the fifth search
path of (4.9) we obtain 8, ~1.47, r,~ —2.26, r,~2.26. Thus for the distribu-
tion (4.8), relation (3.15) is equivalent to

A¥(r*, F)= inf {A, ({V;(); i=0}, F)}
(4.21) re(—2.26, —0.6471428)
for r<0
and
A¥(r*, )= inf {A, ({V:(r); i20}, F)}
(4.22) re(0.647 142 8, 2.26)
for r>0

But (4.8) is symmetric, so by remark 4.2 we consider either (4.21) or (4.22).
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3. Fixed points

We have mentioned in section 3 (b) that the function A, ({V¥;(r); i=0}, F)
is not defined whenever the related side condition from (3.16) and (3.17) is
not fulfilled. (recall that we are concerned with search paths of the form
(3.13)). From our hypotheses, the relation

(4.23) Ve 1 () #FY()# V- (1)

for all pertinant i and k should also hold at any regular distribution. But it
can happen that (4.23) does not hold everywhere for any distribution. Indeed
if we assume that

(4.24) Vet O =V (=¥, ()=
for all pertinant i and k, then equation (3.12) is equivalent to
(4.25) Y=¥:M (=¥ (M=7)

for all pertinant i and k.

In such cases, then by the bounds on r indicated above and by Brouwer
Fixed Point Theorem (see [3] Theorem 23.8] the continuous function V; (r)
has at least one fixed point. In this case equation (3.4) is equivalent to

(4.26) L —2|y|=0; iand k are given by (3.2)
f@

which in turn gives the fixed points of ,(r) (if any) at any regular distri-
bution F. Moreover, it is also possible to obtain some other kinds of fixed
points for the function |, (r)|. For if we assume that

(4.27) |Wir s O] =|¥: @) |=|Vi-y () [=B

for all pertinant i and k.
Then (3.4) is equivalent to

(4.28) { [14+F(—B)—FB)f (£B)—2B=0;
X B=0; i and k are given by (3.2)

which gives the fixed points (if any) for the function |\|1,- (r)] at any regular
distribution F. When the F is also symmetric, then by (2.13), relation (3.4)
will have the form

(429)  yo1= 2—[F)+Fi-)l
fo)

y; izk; k=0,1, 2, 3 and 4.
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Substituting (4.27) in (4.29) we obtain

(4.30) { (1= F@®f B)—B=0;

i and k are given as in (4.29)

which gives the fixed points (if any) of |y;(r)| for regular and symmetric
distributions. From the above discussion we observe that the existence of
fixed points for the functions Vs, (r), N’z (r)l is not guaranteed. Because we
cannot assure that each or both of (4.24) and (4.27) are realy fulfilled for all
pertinent i and k. However when such points do exist the functions , ()
and |Y;(r)|; i=0 change their values very slowly near them. Therefore the
search paths {¥;(r); i=0},{|¥;(r)]; i=0}, get trapped around these points.
Then the side consition (3.16) [(3.17) for symmetric distributions] no longer
holds which means that the corresponding A, ({V{;({);i=0}, F),
(A({|¥; (", i20}, F)) is not defined.

Example 4.1 (continued): For the distribution (4.8), the solution of (4.30)
is B~0.7517915. The corresponding {|V;(r)}; i20} for k=0 does in fact
get trapped around this value of B (see [1] the table on pages 27-28 concerning
with the case k=0 at the distribution (4.8)). This results in a gap on the plot
of Ag({|W:(r)], i20}, F) as it can be seen from figure 2 below which shows
the plot of A ({V;(r); i=0}, F), k=0, 1 and 2 as functions of r, at the
distribution F that is given by (4.8). Each point from the plot of
A ({V;(r); i20}, F), in this figure, corresponds to a critical search path from
class Q,; k=0, 1 and 2. (The set of critical search paths from each of Q4
and Q,, for the distribution (4.8), is empty as has indicated before.)

4, The (GLSP) as a function of r only

So far we have shown that the (GLSP) is completely characterized by the
first entry . The question we address now is how the changes in r affect the
values of the A.’s and the a;’s i. e. what about the derivatives of the A.’s and
the a;’s with respect to r as the only significant variable. In fact we have

da, 3 b da,

4.31 = ;
(431) dr = Oa; dr

k=1,2 3 and 4.

Since (3.1) holds at any critical search path, we obtain

o0

PA, Z A, da.)2
4.32 = —1; k=1,2,3and 4
(432) dr? ,;o da? (dr
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DELTA(O),DELTA(1) .AND DELTA(2)
AS FUNCTIONS OF R

T =T

By(105(r)31 > 01,F)

BolTw;(r)si > O1,F)

8,({p;(r)31 > 03,F)

L 1

.50

.00

.50

.00

.50

L

.00

i

.50

L

.500 1.00 1.50

NORMAL DISTRIBUTION

Figure 2.

2.00 2.50

[(4.31) and (4.32) hold also for k=0 with summations starting from i=1].
Let D,=da;/dr, then for k=1, 2, 3 and 4 we clearly have D,=1, and then

from (3.6), (3.7) and (3.8) we obtain

day, _(~1}*'sign®f @) |

(4.32) dr 212(r) ’

D,=

whereas D, =1 for k=0.

k=1,2,3and 4
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Since for i=1 each a;,, is a function of g; and a;_,, we have

dai+1___aai+1 da;  0a;, da;_,

4.33) D,, ;= .
(4.39) Dy da, dr 0a,_, dr
=@iﬂpi+é‘iﬂ.pi_l; i1
Oa; da;_,

With the convention that D=0 for k=0, then simple calculations on (3.4)
and (3. 5) yield the following recursive formula.

: f (@) :| flai-y)
Dipy=|2+ J— (@ +|ai4]) | Di———D;,
@3 [ sen(@) gy oD ==

i and k are given by (3.2).

For the other values of i and k we may obtain D,,, from (3.9) through
(3.11). Now from (4.32), (4.33) and (4.34), D, is a function of r for all
i=0. And both d A,/dr, d* A,/dr* could be expressed as functions of r. These
results may, in fact, facilitate the task of studying the convexity and concavity
of the functions A, ({{;(r); i20}, F); k=0, 1, 2, 3 and 4. Moreover, the
values of D/’s as functions of r will provide us with good indications of how
the changes in r will affect the entries a;=V;(r) as will be seen in the next
example.

Example 4.1 (continued): Let us return to the distribution (4.8) and
consider the case k=1. The optimal value of A, ({V;(r); i=0}, F) has been
found to occur at an extreme point for which we have obtained Computer
Results (1) below concerning the optimal search path {x(i); i=0} and the
optimal value of r with the corresponding optimal value of
A, ({V¥;(r); i20}, F) together with the derivatives of x (i)’s with respect to r.

Making an infinitesimal change in r gives Computer Results (2) with more
of the entries x (i)’s.

The infinitesimal changes in r have been continued to be made upon
reaching 29 decimal digits giving us Computer Results (3) with about 20 of
the entries x (i)’s, upon reaching the system capacity.

One can easily see, from these results, how the changes in r affect signifi-
cantly the entries of a (C.S.P.) especially the last ones.
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5. ALGORITHM AND ILLUSTRATION

(a) Computational algorithm

We have pointed out that there are bounds on the main variable r. And
that the functions I\lli 3] |, V; (r) may have some kinds of fixed points causing
a gap in the graph of A ({V;(r); i=0}, F) (recall, Figure 2). In the case of
no fixed points (i. e. the side conditions (3. 16) or (3. 17) are satisfied) then
the function A, ({{;(r); i=0}, F) would be of continuous type. For example
the side conditions are always fulfilled for any of the special search paths
(4.9). Note that, for these special search paths, the plot of A, (r, F) at the F
given by (4. 8), as shown in [1] figure 26, is of continuous type.

If A ({\V;(r); i=0}, F) is continuous and of convex or concave type, we
may use the following algorithm for finding the optimal value r* of r and
the corresponding Af (r*, F) as defined by (3. 15).

The algorithm

r, =left bound of r, r, =right bound of r.

€ is an infinitely small positive quantity say e=0.1 x 107 °,
I=1, and N is the number of suitable iterations, say N=100.
Step (1):

ri=ri+1/2)(;—r;—¢)
F21=T11 +E

Q=0 ({¥i(ry1); iz0}, F)

Q2=A({¥;(r3,);i20}, F)
8=Q;—Q2'

If & is greater than zero go to step (2).

If 8 equals to zero go to step (5).

If & is less than zero go to step (3).

Step (2): r,=r;, go to step (4).

Step (3): ry=r,;.

Step (4): If I is greater than N go to step (8) otherwise I=1+ 1.

If (r,—r,) is greater then 2¢ go to step (1) otherwise go to step (5).
Step (5): If Q, is less than @, go to step (6) otherwise go to step (7).
Step (6): The optimal values are r*=r,,, A¥ (r*, F)=0Q, go to step (8).
Step (7): The optimal values are r¥*=r,,, A} (r*, F)=Q,.
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Step (8): Stop.

If, however, A, ({\,(r); i20}, F) is piecewise continuous so that its curve
is constituted of several parts each of which is either convex or concave.
Then we minimize on each part and take the overall minimum value of the
minimums of those parts. In cases with gaps like figure 2 we have first to
find the extreme points of these gaps (the points after which or before which
the side conditions (3. 16) or (3.17) start to be violated). Then we consider
the left or right bounds of r starting from these points. It is then to be noted
that if A, ({V;(r); i=0}, F) is concave or convex on the parts that result
from the extreme points as it is the case in figure 2. Then one of the extreme
points would be a strong candidate to represent the optimal solution as will
be seen in the next example.

(b) Example (5.1)

By the resuit of Theorem 4. 1, a family of distributions called the Bimodal
Normal is to be considered. This family is characterized by the positive
parameters p and o so that their densities are given by

— 2 — — 2
[e- WD GH+W? | =D G-WoP].  xeR

1
5.1 f(x)=;——

J2T

Each member of these densities is symmetric and have two modals occuring
at —p, u. The results presented here are concerned with o=1 (recall
remark 2. 1). The following formula for the F’s has been used for computa-
tions.

(5.9 Fy()=;+[ERF((x+W//D+ERF(x—w/ /D)  xeR

t
because the error function ERF (¢)= 2/ \/EJ e~ dx does exist in the com-
0

puter library. Table I contains the extremal values of A ({V;(r); i20}, F)
for k=0, 1, 2 and 4, at different values of p(u=1, 2, 3, 5, 7 and 10). We
note that, for =2, k=0, 1 and 2 there are two extreme values of r, between
which there is a gap. The optimal value of A, ({\V;(r); i20}, F); k=0, 1
and 2, occurs at one of these values. When p=1, however, there is only one
(right) extreme point for each of k=0, 1 and 2 at which A, ({\{;(r); i=0}, F)
attains its optimal value. On the other hand, it has been found that |a, | <0
for k=4, p=1, which means that, for p=1, the set of critical search
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paths from the class @, is empty. The calculations showed that
A ({W;(r); i20}, F); k=0, 1 and 2, decrease when r varies from zero to the
left extreme (l.e.) point, and increase when r takes on values greater than
the right extreme (r.e.) point, so that the optimal value of A;’s, k=0, 1 and
2 occurs at the right extreme points. However, the situation for k=4 is quite
different from those of k=0, 1 and 2. For k=4, n=2 there are two extreme
points with a gap before the first, and a gap after the second so that the side
conditions (3. 17) is fulfilled between these two extremes. It happens that the
optimal value of A, ({V;(r); i=0}, F) for u=2 occurs at the second extreme,
whereas for p>2 this optimal value occurs at a point that lies between the
indicated two extreme points. In all cases (k=0, 1, 2 and 4), the existence of
a gap before or after an extreme point means that the side condition (3.17)
is violated, hence A, ({¥;(r); i=0}, F) is not defined. Some other significant
values in Table I has the following meaning: The value (values) of « indicates
the bounds on r that can be obtained from (4.4) for k=0, (4.5) for k=1, 3,
and (4.6) for k=2, 4. The value of B indicates the fixed points that have
been obtained from (4. 30). Some other kinds of fixed points may be obtained
from (4.26). The M (F) indicates the first absolute moment of F. Table II
contains some of the entries x (i)=|a,|; i20 (i1 for k=0) of the optimal
search path for each value of p given in Table I and for each of the cases
k=0, 1, 2 and 4. These entries has been calculated as far as the system
capacity. The fact that the optimal value of A, ({V{;(r); i20}, F); k=0, 1
and 2, occurs at an extreme point was a very helpful tool in studying the
strong relations between r and the entries x(i); i=1 as these relations are
given by (4.32) and (4.34) (recall the last example in the previous section).

The entries x(0), x(1), x(2), x(3), x(4), ..., in Table II should be under-
stood, for k=1 for instance, as follows; ay=x(0), a;=—x(1), a,=x(2),
az;=—x(3), a,=x(4), ... with similar understanding for k=0, 2 and 4.

Table II contains also the optimal searching time denoted by TF (*, F) for
k=0,1,2 and 4 One can ecasily verify that T*(r}, F)/M (F) satisfies
Theorem 2.5.

We would finally like to mention that the results in Table I and Table II
are only roughly correct due to many difficulties in the calculational system
such as accumulation errors, the bounds on the system ranges, the system
capacity, etc. Thus the large values of x(i); i=0 in Table 11 would, in fact,
result in less precision than the small ones. Nevertheless, this will cause a
very slight change in the resulting A, ({V;(r); i=0}, F). Because the term
2—[F(x;)—F(x;_4)], for those large values of x;, equals zero in the computer
digits. [Recall the values of A} (r*, F) in the three computer results concerning
the distribution (4. 8), in the last example of Section 4.]
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6. CONCLUSION

In this paper we have introduced analytical methods for constructing and
studying some important properties of optimal search paths for the (GLSP)
at the absolutely continuous class of target distributions that have strictly
positive densities. We have shown, then, that the (GLSP) can be characterized
by only a single variable instead of infinitely many. The techniques used in
this study are those of standard calculus so that an optimal search path
would, in general, be a critical one. It has also been shown that for three of
the only five possible cases of search, and for the distributions of unimodal
type with the mode occuring at zero, then these {C.S.P.)’s are not minimal
(maximum, saddle, or extreme). We would finally, note that the results of
Table I indicate that for the distributions (5.1), the class @, is better than
the class Q,, and for most of the values of p the classes Q,, and Q, are
better than the class @, in the sense that they give less expected cost. Note
also that some of the classes @, is better than some others justifying, thus,
the generalization of the linear search problem that has been introduced
in [2]. Some other results concerning the search for a target located in the
plane or on a line may be found in [14], and [15].
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