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USIMG LINEAR PROGRAMMING IN PETRI NET ANALYSIS (*)

by Jean B. LASSERRE (*) and Philippe MAHEY (2)

Abstract. - The algebraic représentation ofpoiyhedral sets is an alternative tooîfôr the analysis
of structural and local properties of Pétri nets, Sorne aspects of the issues of reachability,
boundedness and liveness of a net are analyzed and characterized by the means of linear System of
inequalities. In most cases, linear programming instead of integer programming can be used to
check these properties therefore enabling the validation of very large nets.

Keywords : Pétri nets; linear programming.

Résumé. — On utilise des techniques simples d'Algèbre linéaire pour l'analyse de certaines
propriétés des réseaux de Pétri. On montre que ces propriétés (invariants, réseau borné, réseau
vivant, places implicites) peuvent être analysées en utilisant la Programmation Linéaire (de
complexité polynomiale) et non la Programmation en nombres entiers. Pour les propriétés citées^
le calcul (en général prohibitif) d'une base d'invariants n'est jamais nécessaire. La taille du réseau
n'est donc pas un obstacle pour l'analyse de ces propriétés.

Mots clés : Réseaux de Pétri; programmation linéaire.

I. INTRODUCTION

Pétri nets have become a widely used tool for modelling and analysing
large, complex ancf discrete event Systems. They appear in computer science
as well as in opérations research for modelling a quite large number of
problems such as information processing, communication network design,
scheduling and control of manufacturing processes. Hère we focus on some
aspects of the analysis of Pétri nets. An important issue is for example to
know whether it is able to realize and complete all the tasks for which it has
been designed. Among the related properties which are commonly analyzed
are the boundedness and the liveness of the net in order to certify that neither
traps nor deadlocks may occur. These two properties are linked to the issue
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of reachability, which in turn is one of the key concept in mathematical
system theory. In that sense it is quite natural to view the évolution of the
marking on the places of the graph as a linear time invariant discrete system.
If Mk is the vector of marks on the space of places of the net at time k, sk is
a control vector of firings on the space of transitions and C is the incidence
matrix of the graph, then the dynamic state équation is:

In fact, linear system theory is of limited help when dealing with Petri
nets. Some partial characterization of controllability and reachability are
given in Murata [6] but these results are not sufficient and cannot be exploited
practically. On the other hand, linear algebra and in particular some duality
results for Systems of linear inequalities gave rise to a few interesting proposi-
tions about boundedness, liveness and réduction techniques (cf. [2, 5]). This
approach constitutes a valid alternative to the classical analysis where we
must build the reachability tree, L e. the tree of all feasible firing séquences
from a given initial state. However the computational cost remains
high because the conditions have to be tested on the set of integers [8].
Peterson [7] has mentionned the possibility to relax the integrality condition
and to use linear programming for the détection of semi-flows in the net.
We now extend this statement, proving its validity for the conditions of
boundedness, liveness and for réduction techniques. Duality is then used to
yield some insights on the geometry of the reachable set.

H. LINEAR ALGEBRA APPROACH

2.1. Notation and key lemma

We use the same notation as in Brams [2],
A Petri net is a four-tuple R = <P, T, Pré, Post) where;
F is a finite set of places with JPJ —m

T is a finite set of transitions with | T| =n,
Pré: P x T-» N is the forward incidence mapping
Post: P x T -* N is the baekward incidence mapping.
A marked net is a couple < R; M > where R is a Petri Net and M: P-*N

is a marking mapping. We dénote M (p) the marking of place p e P, which is
also the number of tokens available on place p.

Recherche opérationnelle/Opérations Research
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The incidence matrix C is defined as follows:

p, t)ePxT, C(p, t) = ?ost(p, t)-Pré(p, t)

If M' is an accessible marking from M, then we have the fondamental
relationship:

M'=M + Cs (1)

where s (t) is the number of times transition t has been fired. Petri net analysis
using linear algebra is based on the above équation.

In the following, we consider some weighting or valuation function
f: P ->• N. In fact, it can be viewed as a linear functional defined on the
primai space of marking vectors, JV7". Then ƒ is a dual vector associated to
the primai équation (l).

Bef ore proceeding further, we need the two following lemma:

LEMMA 1: Let C be any matrix with coefficients in Z. Then we have:

no = {/:/eAr,CV=0}^{0}

o Qi = { ƒ : ƒ e Rm, f> 0, CT ƒ= 0} # {0}

Proof:
=> is trivial.
<= QQ is a closed polyhedral convex cone. Hence,

f o r i = l , . . . , /

where {/'}j=1 is a set of generators of the cone.
A set of generators can be found by solving all homogeneous linear Systems

of m—1 linearly independent équations with m unknowns built from the

rows of {cf. [3, 9]). Consequently, as C and I have integer coefficients,

it is always possible to compute solutions in Qm (elementary pivoting opéra-
tions with integer coefficients). Multiplying the rational values by a common
denominator, we can then always obtain f1 in AP". Hence / l e Q 0 and Q

LEMMA 2: Let C be any matrix with coefficients in Z. Then we have:

Qt = {/•:ƒe ir, ƒ> 0, CTf ^

o Oi = {f: feRm,f ^e,
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where e is an m-vector of ones.
Proof:
=> is trivial.
<= ^ 1 ^ 0 . Then Qi is an unbounded convex polyhedron {fsQ!u then

rfeQ'u Vr^ 1). Hence, any vector ƒ in Qi can be written:

1 = 1

with

ƒ', ï= 1, . . ., I, are the extreme points of Qi.
/ ' J , 7 = 1, . . . , / ' , are the extreme rays of Q'v
Again by standard arguments on the computation of vertices and extreme

rays of a polyhedron in Rn given by a set of inequalities with rational
coefficients, we obtain that ƒ ' andf'JeQm

9 Vz, j .
We can then take any ƒ' and multiply it by the common denominator

À,o>0 to get Xof
iGQ1 (in fact, A,O>1> then X^GÜ^y Hence, 0 ^ 0 .

Remarks: (i) these results still hold if the matrix C has coefficients in Q.

(ii) to check if Qo (respectively Q^) is empty one only need to check if Qó
(resp. Qi) is empty. This can be done by using Linear Programming tech-
niques which can handle very large size problems.

2.2. Boundedness

Boundedness is an important désirable property for Pétri nets. It means
that the number of tokens in every place is bounded whatever happens. We
know (see [2] for example) that:

R is bounded o 3/eAr, f>%

If such an/exists, then we have:

f(p)
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In view of lemma 2, we now have:

PROPOSITION 1;

R is bounded o 3feRm,f^e, CTf^0.

COROLLARY: A bound for the number of tokens in place p is given by.

Min Ml f

which is a Hnear program.

2.3. jp-senri-flows and liveness

/7-semi-flows are also important in the analysis of Pétri nets [5]. The set of
semi-flows on a net R is precisely the set Qo defined in Lemma 1. The purpose
of this section is to illustrate the fact that any homogeneous linear relation
that must be satisfied on the set of semi-flows can be tested equivalently on
the set QQ. Indeed, this is again because we are able to find a set of integer-
valued generators for the cone Q'o.

For instance, the invariance property of semi-flows is valid on Q'o: for any
accessible marking M, we have:

V/eQ'o, fTM=fTM0

and if

A bound on M (p) can therefore be computed by solving the linear program:

Min Ml f
Cr/=0
f

A necessary condition for liveness can be simplified by rising the same
argument:

PROPOSITION 2: If < R; M > is live, then:

voL 23, n° 1, 1989
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To check this condition, we only need solve the n linear programs:

M i n / T ( M - p r é ( . , 0 ) , t=l,...,n
CTf=0

Hence, if </?; M> is live, the optimal value of the above linear program
is equal to zero for any £.

2.4. Réduction techniques

Réduction techniques are used to simplify large scale Petri nets into "equiv-
alent" smaller nets. Simplification of implicit places is such a technique
(see [1]).

p is an implicit place iff there exists J: p-+Z such that:
• J(p) > 0 and f(q) ̂  0, V q ±p.

T^f7 Pré(., O^Min^Mo, MoeMo}
m 3ceNm,fTC = c

where Mo is a set of initial markings.
Again, it suffices to check that the system below has a solution:

feRm and

f(p)=l

VMoeMo

VMoeMo,

This can be done by standard Linear Programming.

ni. A BOUND ON THE REACHABLE SET

In this section, we give an analytical expression of a set which always
contains the reachable set after K itérations have been fired (for any K).
When the reachable set is bounded, this set is also bounded and we retrieve
the bound given in the previous section. When the reachable set is not
bounded, it allows one to give bounds on the places after K transitions have
been fired.

Recherche opérationnelle/Opérations Research
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Let M be an accessible marking from Mo after K transitions. Then, there

0exists s e AT such that, M-M0 = Cs, eT s =
Now, let Q (K) be the convex set defined by:

; M^O, there exist seRtt

such that Cs = M-M0, e r s = K,

Introducing dual variables f e Rm and veR, we characterize Q (K) by its
bounding hyperplanes:

; ' ^ 0 , i = l , . . . , r}

where (ƒ', rl), t= 1, . . ., r are the extreme rays of the polyhedral cone:

Q (K) always contains the reachable set after K transitions since the integral-
ity constraint has been dropped.

To retrieve the boundedness results, we observe that M (p) is bounded by
the optimal value of the following LP:

Max M(p)
-M + Cs=-M0

eTs = K

The dual problem is:

Min Mlf-Kv

Let (ƒ', Ü') be the vertices of the dual feasible set. Three cases must be
considered:

(a) There exists an (ƒ, v) dual feasible such that i;>0. Then, for large K,
the optimal value of the dual problem becomes négative, which implies,
because M(p)^0, that this value is — oo and the primai is infeasible. In other
words the reachable set is empty.

(b) for all the vertices, i/<0.

vol. 23, n° 1, 1989
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Then, for K large enough, the optimal yalue is Mjƒ— Kv where (ƒ v) is a
vertex such that tT=MintA Therefore, M(p) is not bounded when K-> oo.

f

(c) for all the vertices, 1/ ̂  0 and for at least one, say tf, v* = 0. Then, for K
large enough, the optimal value is min{Mj/J, js . 1.1^=0}. Observe that as
/ ^ 0 , we have at the optimal solution f(j?) =1 and we retrieve the bound
obtained in the precedent section.

IV. CONCLUSION

As we have just seen, all the properties we have investigated (boundedness,
semi-flows, liveness and simplification of implicit places) can be checked by
using standard Linear Programming instead of Integer Programming as used
in some packages like Ovide [8] and without Computing a basis of invariants.
This means that for that kind of analysis, very large Pétri Nets can be
handled whereas the use of Integer Programming leads to serious limitations
on the size of the net.

REFERENCES

[IJ G. BBRTHELOT and G. ROUCAIROL, Réduction of Pétri Nets, Lecture Notes in Computer
Science, vol 45, 1976, pp. 202-209.

[2] G. W. BRAMS, Reseaux de Pétri: théorie et pratique, Masson, 1983,
[3] J. B. LASSERRE, Consistency of Linear System of Inequalities, JOTA, vol. 49, N° 1, 1986,

pp. 177-179,
[4] K. LAUTENBACH and H. SCHMID, Use of Pétri Nets for Proving Correctness of Concurrent

Process Systems, Proc. 1974 LF.I.R Congress, North Holland, 1974, pp. 187-191.
[5] G. MEMMI, Applications of the Semiflow Notion to the Bound Dedness and Liveness Problems

in Petri Net Theory, Proc. 1978 Conf, on Information Sciences and Systems, John Hopkins
University, 1978, pp. 505-509.

[6] T. MURATA, State Equations, ControllabiUty and Maximal Matchings of Petri Nets, I.E.E.E.
Trans. Automatic Control, AC-22, 3, 1977, pp. 412-416.

[7] J. L. PETERSON, Petri Net Theory and the Modeiling of Systems, Prentice Hall, 1981.
[8] B. PRADIN, Un outil graphique interactif pour la vérification des systèmes à évolutions-parallèles

décrits par réseaux de Petri, Docteur-Ingénieur Thesis, Université Paul-Sabatier, Toulouse,
1979.

[9] M. SiMMQNNARD, Programmation lineaire, Dunod, 1962,

Recherche opêrationneHe/Operatîons Research


