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SOME REMARKS ON TWO DEGREES OF ASYMMETRY IN THE
TRAVEUNG SALESMAN PROBLEM (*)

by Bernd JEROMIN (*) and Frank KÖRNER (2)

Abstract. — The quaîity of a heuristic for the traveling salesman problem is déterminée by its
bound. Heuristics where the performance bounds depend on the asymmetry of the distance matrix
are discussed. Two types of asymmetry, its relations and the relationship between different
performance bounds are investigated. An algorithm for attaining a "good" and "easily-comput-
able" bound is described.

Keywords : Traveling salesman problem; heuristic algorithm; performance bound; degree of
asymmetry; subgradient algorithm.

Résumé. — La qualité d'une heuristique pour le problème du voyageur de commerce est
déterminée par ses bornes. Nous examinerons les heuristiques où les bornes de performance
dépendent du degré d'asymétrie de la matrice des distances. Nous étudierons deux types d? asymétrie,
leurs inter-relations et la relation entre différentes bornes de performance. Nous décrivons un
algorithme pour atteindre une borne qui soit "bonne" et "facile à calculer".

Mots clés : Problème du voyageur de commerce; algorithme heuristique; borne de performance;
degré d'asymétrie; algorithme subgradiant.

1. INTRODUCTION

The traveling salesman problem (TSP) can be described as follows. Find a
closed directed path (tour) T* with

V(T*) S V(T) for ail tours T,

where V (T) dénotes the length of the tour T. This problem is defined by the
distance matrix C = (ctJ), i9 j=l, . . ., n, where ctj dénotes the distance from
town i to towny'. There exist many algorithms for solving this problem

(*) Received in October 1987.
l1) Department of Mathematics, Technical University of Dresden, Mommsenstr. 13, GDR-

8027 Dresden.
(2) Department of Mathematics, Technical University of Karl-Marx-Stadt, Reichenhainer

StraPe 41, GDR-9022 Karl-Marx-Stadt.

Recherche opérationnelle/Opérations Research, 0399-0559/88/03 301 8/8 2.80
© AFCET-Gauthier-Villars



302 B. JEROMÏN, F. KÖRNER

(cf. e. g. [10]). We know two kinds of algorithms: the exact and the heuristic
algorithm. In both kinds of algorithms the symmetry (or asymmetry) plays
an important role.

Now we try to find an approximation tour Ta with:

V(Ta)St(QV(T*).

There are heuristic algorithms where the performance bound t (C) dépends
on the degree S (C) of asymmetry of C (cf. section 2). Otherwise, using a
heuristic algorithm for the symmetrie matrix D:=(C + CT) the estimated
performance bound contains the expression (1+S (C))/(l +k) which thus also
includes the degree of asymmetry of C [cf. relation (2)].

Another idea of assigning an asymmetrie C to a symmetrie matrix C is
given in [8]. But the dimension increases, in the worst case, by 2 and, further,
all matrices C do not fulfil the triangle inequality.

The quality of a heuristic algorithm is characterized by its performance
bound, that means a small bound ensures a priori a good approximation
tour Ta. In order to select a favourable heuristic method we shall therefore
also investigate the degree of asymmetry of C(ü) where c(u)ij=ciJ—ui + uj.
We compute the best attainable degree S(C(u*)) (cf section 3, 4). In the
proposed algorithm we choose as initial value the solution M" of a least square
problem (cf. section 2). In section 6 we introducé another proper degree of
asymmetry, ST(C). If the matrix C fulfils the triangle inequality then the
inequality ST(C)) S S(C(u)) holds for all w. Because the détermination of
ST(C) is, in gênerai, a very hard task we recommend to compute S(C(u*)).
At the end of the paper we define a socalled asymmetry gap and conjecture
an inequality.

2. NOTATIONS

The matrix C fulfils the triangle inequality (TI) if the following inequalities
are true:

(TI) cu S Cik + Ckj f° r aU h h k distinct.

In case of C fulfils (TI) a in [3] presented heuristic algorithm, an extended
version of an algorithm of Christofides [1], yields a tour Ta with:

1.5S(C)Fc(T*). (1)

It seems useful to détermine the best possible value of S (C).
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If T is a tour then the tour in the opposite direction is denoted by T'. Let
C' be the transposed matrix C and we obtain Va(T)^Vc(T). Let T* be an
optimal tour with respect to the matrix C and T** be an optimal tour with
respect to the symmetrie matrix D. If we have calculated a tour Ta with

VD(Ta)£r(n)VD(T**)

then we get

min {Vc(Ta\ Vc,(Ttt)} g (1+ S (C))/(l +k)- r(n) VC(T*) (2)

where

femin{Fc(ra), Vc.(Ta)}=m3ix{Vc(Ta), VC,(T„)},

and iS (C) dénotes the degree of asymmetry of the matrix C.
Sketch of the proof:

(1 + k) • min {Vc (Ta), Vc, (Ta)} = VD(Ta)Sr (n) VD (T*+)

^ r (n) VD (T*) ^ (1 + S (C)) • r (n) Vc (T*).

We always have k §: 1, and therefore:

1( + ( ) ) ( n ) VC(T*).

Relation (2) shows that the quality of Ta dépends on the bound
(l+5(C))/(l+/c)-r(n) which should be as small as possible. Therefore we
try to find a small value of the degree of asymmetry of C.

Now we consider the foilowing degree of asymmetry:

S(C): =

+ oo if there exists an index pair i, j with
sign(cy) #sign(c/i)

max {Cijfer : for all ï, j with cjt ^ 0} else.

In the foilowing we investigate the degree of asymmetry under transforma-
tions of the type

c(M).j.:=cl7-u£ + wJ, (3)

If C fulfils (TI), so does C(u) for all vectors u.
Now we try to find a vector w* with:

S (C (M*)) ^ S (C (M)) for all u. (4)
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In [9] the following least square approach is discussed in order to obtain
an approximation for u*. Let

and détermine a vector u" with:

f(u")£f(ü) for all u. (5)

Obviously, we have S(C(u*))^S(C(u")). If C fulfils (TI) then the matrix
C{iï') has the following properties {cf. [9]):

(a) S(C(u"))£n-l.

(b) c(«")y ^ 0 for all f, 7 with i #7'.

(c) If there exists an index pair 1,7(1 ^7) with c(u")l7=0 then the original
problem is equivalent to a problem with n— 1 towns. We delete the row i
and the column 1 (or the row 7 and column 7).

(If c {u")i} = 0 then c (u")^ = 0 and we get c (u")ki — c (u")kj for all

Now we discuss an algorithm for determining a vector u* as (4).

3. THE INITIAL PROCEDURE

Let C fulfil (TI). In the other case use the transformation from [5] and [7]
in order to get a matrix which fulfils (TI). We compute

ckk : = min {cik + ckj — ctj ; 1, 7, k distinct} for all k

and af ter that

CU: = °ij ~ j (C« + cij) f O r

Obviously, the transformed matrix fulfils (TI).

Compute a vector u" as (5). Delete all éléments (rows and columns) with
c(u")t~0. Now we have a matrix C(u") with c(u")tj > 0. It is easy to show
that then c (i**)y > 0 follows.
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4. THE SLJBGRADIENT ALGORITHM

A solution M* of (4) can be determined by means of the following algorithm.
After the initial procedure we have to solve the optimization problem

S (C(u))-> min, ueRn.

We apply the subgradient technique from [2],

With ftj (M): = c (u)u/c (u)^ we obtain:

Vfij(u) = (c(u)jiy
2(cij + cji)(0, . . ., 0, - 1 , 0, . . ., 0, 1, 0, . . ., 0)r.

i J

Let I(u):={(iJ): i *h S(C(tt))=/y(w)}. Then we have

ÔS (C (u)) = conv {VftJ (u) : (i, j) e I(u)}

(e/ e. g. [2]).

Now we sketch the well-known subgradient algorithm:

ALGORITHM:

S0:Setu°: = u"[as(5)];fc: = 0.

SI: Détermine a vector skedS(C(uk)).

S2: Calculate (choose) the step size tk ^ 0.

S3: uk+1:=uk-tks
k; Jfc: = Jk + l; Go to SI.

But, in gênerai, there is not a monotonous convergence of the function
values S(C(uk)). In order to obtain a "good" subgradient and therefore
monotonous convergence, we choose in step SI sk as a vector in the direction
of deepest descent.

Let S (C (uk)) = conv {al9 . . . , am} and B : = (bpq) with bpq : = aT
p aqy

p, q=l, . . ., m. Thus we solve

h (v) : = vT B v -» min

subject to Ü ^ Ö , 5] r j = 1-

Let Ü* be a solution of this problem. Then set sk : = Av* with
A = (a1, . . ., a j . Because it is in gênerai very difficult to solve (6) exactly
we solve in our case (6) approximately.
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5. NUMERICAL PROBLEMS

A subgradient algorithm for determining the best attainable degree of
asymmetry is presented. If we know the degree then we can décide by
inequality (2) whether it is better to consider the asymmetrie matrix C and
to use methods for the asymmetrie case or it is better to calculate D — C + CT

and to use methods for the symmetrie problem.
A program is written in FORTRAN for solving the problem (4). The

numerical experiments show: at almost all itération points uk the function
5(C(.)) was differentiable, i. e. we have, in practice, a gradient method.

Now we consider the following example. Let

c.j = 0 for all i9 j with i > j and j <Z k

ctJ = 1 for the remaining pairs with i ̂  j9 (7)

fc = l, . . ., n - 1 .

Further, S(C(u*)) = /c for k = l, . . ., n - 1 .
This example demonstrates that it is useful to détermine the value S (C (M*))

in order to get sharp inequalitities (1) and (2).
For n = 20 and k = 2 we have obtained the following values S (C(u°)) = 19,

S (C (M1)) -3.67 and S (C (M2)) -2.06.
Randomly generated problems show the following. The values S(C(uk))

decrease very fast in the first phase of the algorithm. Later we have the bad
convergence of the (sub-)gradient method. Only in the last phase we need
subgradient techniques.

6. ANOTHER DEFINITION OF THE DEGREE OF ASYMMETRY

We introducé now the following définition of the degree of asymmetry:

-h oo if there exists a tour T with

meix{Vc(T)/Vc(T):Vc(T)^O} else.

Under transformations as (3) we obtain ST(C(u)) = ST(C) for all vectors u.
It is easy to détermine the value S (C) but it is, in gênerai, very difficult to

get ST(C).
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For example (7) we obtain ST(C)^(n—l)/(n — k) for fc = l, . . ., n— 1.
If C fulfils the triangle inequality then we have VC(T) ̂  0 and if there

exists a tour T' with VC(T")=O then Fc(7) = 0 holds for ail tours T (cf. [4]).
Hence, ST(C) ^ 5 (C) holds for ail matrices C with (77).

An interesting proposition is: ST(C)=l iff C(u") is symmetrie (c/ [11]).
In this case we obtain

1 - S T(C) = S (C (M*)) = S (C (M")).

For the example (7) (k — n— 1) we get

n - 1 = 5 T(C) = S(C (w*)) = S (C («"))•
Therefore, if C fulfils (77) we obtain the following inequality:

1 ̂  ST(C) ̂ S(C(u*)) ^S(C(u")) ^ n-\.

7. ON THE ASYMMETRY GAP

We consider only the case where C fulfils (77). We have

and example (7) (k — n— 1) demonstrates that this inequality is sharp. Further,
we obtain

S(C(u"))S(n-l)ST(Cl

and example (7) (fc = 2) shows that this inequality is asymptotically sharp.

The value of d with

S(C(u*)) = d(C)ST(C)

is called the asymmetry gap.

If the asymmetry gap is large the estimations (1) and (2) are bad. It is
possible in both cases to use the value ST(C) but we can calculate only the
value 5(C(M*)) easily.

For example (7) we obtain d(C) = k(n — k)/(n—l).

Further, we conjecture that the following inequality is true:

~l)) i f n i s e v e n '
(n+l)/4 if nisodd

for all matrices C with (77).
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Finally we have

VD(T**)ZnVc(T*\

and example (7) (k = n — 1) shows that this inequality is tight.
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