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PARAMETRIC INTEGER PROGRAMMING (*)

by Paul FEAUTRIER (*)

Abstract. — When anaiysing computer programs (especially numerical programs in which arrays
are used extensively), one is often confronted with integer programming problems. These problems
have three peculiarities:

— feasible points are ranked according to lexicographie order rather thon by the usual linear
economie function;

— the feasible set dépends on integer parameters;
— one is interested only in exact solutions.
The difficulty is somewhat alleviated by the fact that problem sizes are usually quite small. In

this paper we show that:
— the classical simplex algorithm has no difficulty in handling lexicographie ordering;
— the algorithm may be executed in symbolic mode, thus giving the solution of continuous

parametric problems:
— the method may be extended to problems in integers.

We prove that the resulting algorithm always terminate and give an estimate of its complexity.

Keywords : Mathematical programming; parametric programming; integer programming.

Résumé. — L'analyse sémantique des programmes (spécialement des programmes numériques
utilisant des tableaux), conduit à la résolution de problèmes de programmation mathématique en
nombres entiers. Ces problèmes ont trois particularités :

— les points faisables ne sont pas classés suivant une fonction économique linéaire, mais suivant
l'ordre lexicographique;

— le problème dépend de paramètres, eux aussi entiers;
— seules les solutions exactes sont intéressantes.
En compensation, la taille des problèmes à traiter est faible; il est envisageable de rechercher

une solution complète. Dans ce papier, nous montrons:
— que l'algorithme classique du simplex s'adapte sans difficulté au traitement de l'ordre lexico-

graphique;
— qu'il est possible de l'exécuter symboliquement pour obtenir la solution de problèmes para-

métriques continus;
— que cette technique s'étend à la résolution de problèmes en nombres entiers.
On prouve la convergence de l'algorithme ainsi obtenu et on donne une idée de sa complexité.

Mots clés : Programmation mathématique; programmation paramétrique; programmation en
nombres entiers.
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244 P. FEAUTRIER

I. INTRODUCTION

When analyzing computer programs in which arrays are used, one often
has to solve parametric integer problems. Consider for instance the following
(somewhat contrived) pièce of code:

for î: = 0 to m do

for j : = 0 to n do

a[2*i+j\:=i+jl

After exécution of these for loops, for which values of k is a [k] defined? If
so, what is its value? To answer these questions, note first that a [k] is assigned
a value for ail pairs (ij) such that:

Furthermore, the définitive value of a [k] is given by the latest such access.
Since the temporal séquence of accesses is given by the lexical ordering of
(z, ƒ), this imply that:

where (zmax, 7max) is the lexical maximum of the set:

Among other things, a[k] is undefined when ¥(k,m,n) is empty. While
one sees immediately that this occurs as soon as:

k>2m + n,

finding the proper value of zmax and 7max is by no means easy.
Generalizing from the above exemple and similar riddles, we are lead to a

study of the following problem:
— We are given a finite set of linear inequalities in a set of variables and

parameters.
— Both variables and parameters are restricted to positive integer values.
— We are required to find the lexical minimum of the feasible set (the set

of variable values which satisfies the given inequalities), as a function of the
parameters.
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PARAMETRIC INTEGER PROGRAMMING 245

Since there are various devices for replacing equalities by inequalities, we
may suppose that the only constraints are inequalities of the ^ 0 type. The
motivation of the change from lexical maximum to minimum lies in the fact
that lexical ordering is well founded. Hence the lexical minimum of sets such
as F above always exists, which is not true for the lexical maximum. In cases
of program semantics interest, there is always an upper bound in évidence
for each variable, and the change, if necessary, is easily done.

There are other différences with the problems one usually encounter in
opération research. The problems are quite small. The unknown count is
related to the maximum loop nesting, while the équation count is related to
the array dimension. Both these quantities are small integers. In opération
research, the éléments of the feasible set are ranked according to some linear
economie function. The lexicographie rule was introduced by Dantzig, Orden
and Wolfe in 1954 as a mean to prevent cycling in the case of degeneracy:
see [Dantzig]. In the model we are interested in, lexicographie ordering
replaces the classical linear economie function. It is a striking fact that the
same algorithm (basically Dantzig's Simplex) gives the solution in both cases.

Another important différence is that we are not interested in approximate
solutions. The information we gather will be used for restructuring programs,
and such transformations must be based on exact data in order not to
introducé errors.

The balance of the paper is dedicated to the construction and proof of a
parametric integer programming algorithm. In paragraph 2, we will review
the classical continuous non-parametric simplex algorithm. Paragraph 3 will
extend this algorithm to the parametric case. The resulting technique is
equivalent to an algorithm of [Gal], albeit much simpler to understand and
to implement. In this paragraph we will introducé the concept of a problem
tree and use it to prove the convergence of the algorithm. Paragraph 4 will
deal with the integer case. The termination proof will resuit from a new
uniform bound on the length of the nonparametric algorithm by the same
techniques as those of the continuous case.

The conclusion will review our results and point to some unsolved prob-
lems.

n. THE DUAL SIMPLEX METHOD

In this paper, bold letters wül dénote vectors with integer or rational
coefficients. The notation x ̂  0, where x is n-dimensional, will mean:
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246 P. FEAUTRIER

Given an m * n matrix M and an m-dimensional vector v, our aim is to
solve the following problem:

Let F be the set:

(1)

Décide whether F is empty, and, if not, select one element of F according
to some préférence criterium.

F is the set of feasible solutions. In opération research, it is usual to use a
linear préférence function:

x is préférable to y iff c. x<c . y

where c is an n-dimensional vector and . dénote the scalar product. This
relation, however, is not an order. This leads to difficulties known in the
littérature as degeneracy problems. For reasons which have been given above,
we will rank the points of F according to the lexicographie order, noted as
« in the sequel. There would be no difficulty to extend our theory to the
linear case on condition that c §: 0.

The problem will be solved by a succession of changes of variables, until
we find ourselves in a situation where the solution is "obvious". A linear
change of variables is specified by an n * n matrix P and an n-vector u; the
old variables x are given in term of the new ones, y, by:

(2)

and the new feasible set is:

F* = {Py + u |Py + u^O,MPy + (Mu-fv)^0}. (3)

A common generalization of (1) and (3) is:

(4)

Initially, A is a unit matrix, b is null, C is M and d is v. We may consider
A and B as two blocks of an (m + n)* n matrix S, b and c as an (m + ri)
vector t and x and z as an (m + n) vector w. In the course of the resolution
process, vector w will stay fixed. The unknown vector y initially is a subset
of w (namely x) and will stays so, but the sélection will change as the solution
progress. In mathematical programming terminology, [S t] is the problem
tableau; the y's are the basic variables; the variables of w which do not
belong to y are non-basic.
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PARAMETRIC INTEGER PROGRAMMING 247

Sj (resp. St) will be the 7-th column vector (resp. the i-th row vector) of
S. The change of variable (2) is legitimate, first, if there is a value of y
associated to each value of x, i. e., if P is invertible. Second, y^O must be a
conséquence of the fact that x belongs to F.

What are the "obvious" cases? Suppose first that there is a row i of S
such that St ^ 0 and t^<0. Then, since x^O, there is no possible way of
having SlVx + t f^0. In this case, F is empty.

Next, note that the initial S is such that all its column vectors are lexico-
positive (they begin by a string of zero followed by a one). Suppose we are
able to maintain this property and that we reach a stage where b^O. Then
there is a member of F associated to x = 0, namely b. Any increase in the
value of x will add to b a lexico-positive vector; hence, b is the lexical
mimimum of F.

This leads to the following technique for the construction of P. Select an
index i such that t;<0, and a7 such that Stj>0, The corresponding row is:

Wi = s*..y + t„ (5)

Eliminate y,- in favor of w;. This is obviously an invertible transformation,
and W; ̂  0 is guaranteed. Xj is given by:

X j = W,/Sy- £ (SUt/Sy)y jk-VSy (6)

After this transformation, the new tableau [S'f] will have as its column
vectors:

(7)

(8)

(9)

Since Stj is positive, S'j will remain lexicopositive. For S'k to remain
lexicopositive, j must be choosen by the familiar rule: select the lexico-minimal
caracteristic vector SJSy from those with Stj positive. Element Sl7 is known
as the pivot, and formulas (7) to (9) define a pivoting step. Note that since t(-
is négative, M will increase in the process.

In mathematical programming terminology, one says that variable w£ enters
the basis and that y,. leaves it. The whole process may be seen as the sélection
of a submatrix T of S and the computation of its inverse. T is the product
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of elementary matrices of the form:

1 0 . . .
0 1 . . .

o

whose determinant is Sl7. Hence Z), the determinant of B is the product of
the pivots. By Cramer's rule, we know that the éléments of the transformed
tableau will be fractions whose denominator is D or one of its factors.

It is obvious that either we are in one of the two immédiate solution cases,
or else a choice of i and j is possible. Hence the algorithm does not stop
unless the problem is solved. But the algorithm is nothing more than the
sélection of n rows from the (m + ri) rows of S. There are only Cn

m+n different
choices, and since cycling is impossible by (9), the algorithm must terminate
eventually. Note that the above bound does not depend on the particular
value of S or t but only on the dimensions of the problem, m and n.

In practical terms, ail we need for an implementation of the above algorithm
is to record the tableau of the problem, i. e. the matrix S and the vector t If
we are given a linear préférence function with positive coefficients, we just
add it as the first line of the tableau, whose column vectors remain lexico-
positive. This is the familiar dual simplex algorithm. One may observe that
initially n iines of S constitute a unit matrix; and that the pivoting steps
simply scatter these Iines in the problem tableau. It is customary not to
record the unit part of S, thus reducing the complexity of a pivoting step
from O(n.(m + n)) to 0{m.n). When working with lexicographie ordering,
this optimization will disturb the numbering of the unknowns and hence
change the final solution. In the interest of legibility, we wili suppose in
the sequel that we always work with the complete tableau; in a practical
implementation, a more sophisticated programming technique must be used.

HL CONTINUOUS PARAMETRIC PROGRAMMING

The next step in the solution is to suppose that the constant terms in (1)
are no longer numbers but depend linearly on p parameters. As a matter of
convenience, we will suppose that these parameters (which are noted as a
/?-dimensional vector z), are positive integers.

Recherche opérationnelle/Opérations Research
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The current version of (4) is then:
Let F(z) be the set:

^ 0 , x ^ 0 } . (10)

Décide for which values of z F(z) is empty. For other values of z, express
the lexico-minimal element of F(z) as a function of z.

The idea of the solution method is to exécute the dual simplex algorithm
in a symbolic way, as one would do if working with pen and paper. For the
algorithm to become a program, one needs to know the algebraic nature of
each datum in the process. From an inspection of (10), it is clear that initially
the éléments of S are numbers, while the éléments of vector t are linear
forms. Furthermore, inspection of (7) to (9) shows that this property remains
true after a pivoting step, i. e. that the parameters remain confined in the
constant terms. From (9), for instance, we deduce that the formula for a
component of t' is:

Here tk and tt are both linear forms, while (S^/S^) is a number.
However, before a pivoting step, one must choose the pivot. Here again,

as soon as i is known, the choice of j dépends solely on S, and hence is
independent of the value of z. The choice of f, on the other hand, is controlled
by the rule that tt should be négative. This clearly depend on z, and the only
possibility is to split the problem in two subproblems according to the sign
of tt. When this is done, the value of z is no longer arbitrary: in one
subproblem it is constrained by tf(z)^O, and by the opposite inequality in
the other one. When the next choice must be made, according to the sign of
tfc (for instance), tfc(z)^0 may or may not be compatible with t f(z)^0. If
compatible, the value of z will be further constrained both by t f(z)^0 and

We are thus driven to introducé a further element in problem (10): a set
of linear constraints on the parameters,

These inequalities on z will be called the context of the problem. Restricting
z to positive integer values will simplify the handling of these constraints.
We will suppose that the initial context of the problem is not empty.

The algorithm will proceed by building a problem tree, i. e. a tree whose
nodes are labelled by a problem tableau S, t, K, h. In such a problem, the
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sign of component tt of t may be positive, négative or unknown. It is unknown
if both t£(z)^0 and tf(z)<0 are compatible with the context. The sign is
known if only one of these inequalities is compatible with the context. Lastly,
it will never be the case that none is compatible with the context: that would
imply that the context is empty.

If all tt are positive, then the node is a success leaf. If there is at least one
négative t,, then we attempt a pivoting step according to (7)-(9), which may
lead to failure or to success. In the first case, the node is a failure leaf. Its
context delimits a région of the parameter space where F(z) is empty. In case
of success, the original node will have an only son whose problem will be
the resuit of the pivoting step.

In the remaining case, select a t̂  whose sign is unknown. The original node
will have two sons with the same problem tableau. In one of them, the
context will be augmented by tt-(z)^O5 and in the other one by tf(z)<0.

It remains to say how the compatibility of a set of linear inequalities is to
be tested. We have supposed that ail numbers that enter in our algorithms
are rationals. As a conséquence, the context may be stored as a set of forms
with integer coefficients. It is easy to bring tf(z) to this form by multiplication
by a suitable number; t^(z)<0 is brought to the canonical form/(z)^0 by
changing ail signs and subtracting one from the constant term. One is then left
with the problem of deciding the feasability of a system of linear inequalities in
integers. This is a nonparametric programming problem, which may be solved
by well known techniques [Greenberg]; see also the following paragraph,

The resulting algorithm may be summarized in the following terms:

ALGORITHM Q

To solve the parametric continuous problem with tableau <S, t(z) > in the
context Kz + h^0:

— (1) Détermine the signs of the components of t(z) in the context

— (2) If ail t;(z) are positive, the solution is given by the first | x | com-
ponents of t(z);

— (3) If there is a négative ^(z), then either:

— (3.1) Ail éléments of SA are négative, and the solution may be written
as oo, indicating that it does not exist;

— (3.2) There is at least a positive So; a pivoting step is executed, giving
a new problem < S\ t'(z) >. The solution of the initial problem is the same as
that of the problem < S', t' (z) > in the context Kz + h^O;
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— (4) In the remaining case, select a t̂ (z) whose sign is unknown; let x +
and x_ be respectively the solutions of <S, t(z) > in the contexts:

The solution of the initial problem is:

if tf(z)^O then x+ else x„

UI. 1. The correctness proof

That the above algorithm is partially correct is obvious, since it does
nothing but reproduce in a symbolic way the moves of the dual simplex
algorithm. Does it always terminate?

Note first that the problem tree is finitely branching. A node has at most
two sons (in case (4) above). Hence, by König lemma, if the tree is infinité it
has an infinité branch. Second, the number of splitting steps between two
pivoting steps is bounded by m, since there are only m + n components of
t(z) and since n of those are always null Lastly, note that by construction,
all contexts are non void.

Select a node on the infinité branch whose distance to the root is greater
than mC^+n, and a value of z which belongs to its context. Executing the
dual simplex algorithm for this value of z will lead to the choosen node in
more than C^+„ pivoting steps, in contradiction to a previously obtained
bound.

III. 2. An example

To bring the initial problem in the canonical form (10), one has to introducé
new unknowns:

ï = m — i,

and to replace one équation by two opposite inequalities. The result is:
Find the lexical minimum of:

vol. 22, n° 3, 1988
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The initial tableau is:

ƒ 1 k m n Sign

f
ƒ
Cl

1
0

- 1
0

- 2
2

0
1
0

- 1
1
1

0
0
0
0
0
0

0
0
0
0

- 1
1

0
0
1
0
1

— 1

0
0
0
1
2

- 2

0
0
+
+
?

?

The first four rows are null or positive, while the last two rows sign is
unknown. We must split the program in two subprograms according to the
sign of ( — k + 2 m + n).

Suppose first this linear form is non-negative. This clearly implies that the
last row cannot be positive. (This fact is easily proved by showing that the
corresponding program is unfeasible; we omit the details for brevity sake.) A
pivoting step is indicated; the variable d will enter the basis in place of
variable ƒ. The resulting tableau is:

(B)

r
ƒ

b
c
d

context:

i

1
- 2
- 1

2
0
0

0
1
0

- 1
- 1

1

1

0
0
0
0
0
0

k

0
- 1

0
1
0
0

m

0
2
1
2
0
0

n

0
1
0
0
0
0

Sign

0

+
?
0
0

Here, all rows have non négative constant terms with the exception of the
b row. There are two cases according to the sign of k — 2m.

If k— 2m^0, all constant terms are non négative and the solution is
apparent:

f = ~k + 2m + n.

If not, another pivoting step is necessary: b enters the basis in place of f.
b d 1 k m n Sign

(C)
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r
ƒ
a
b
c
d

1/2
- 1
- 1 / 2

1
0
0

1/2
0

- 1 / 2
0

- 1
1

0
0
0
0
0
0

-1 /2
0
1/2
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

+
+
+
0
0
0
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context

k -2 m ^0
-k + 2m 4-n^0

Here, all constant terms are non négative, and the solution is:

i'=-fc/2 + m,

The remaining case is — /c-h2m + n<0. Going back to tableau (A), we see
that all coefficients in the c row are négative and hence that the program is
unfeasible.

We may splice all the above results and express the resulting formula in
term of the original unknowns i and j:

if(fc-2m>0)then m

k~2m
, k/2

else
0

else oo.

Since the problem is two dimensional, the result could have been obtained
by inspection of figure 1. The interest of our method is that it can be used
whatever the dimensionality of the problem.

IV. THE INTEGER CASE

We must now take into account the restriction of x to integer values. There
are several techniques, for which the reader is referred to [Greenberg], [Taha]
or [Minoux], In the present context, we must select an algorithm whose
moves may be carried out even if the constant terms depend linearly on
integer parameters, and whose complexity is uniformly bounded with respect
to the constant terms. The cutting plane algorithm of [Gomory] answers to
these requirements. Paragraph IV. 1 describes it; the convergence proof is
given in paragraph IV. 2. In the next paragraph we will devise its symbolic
version; the termination proof will follow in a straightforward way.
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2i + j - 2m + n

2m < 2i + j - k < 2m + n

Figure 1

Recherche opérationnelle/Opérations Research



PARAMETRIC INTEGER PROGRAMMING 2 5 5

IV. 1. An integer programming algorithm

The problem to be solved may be expressed in the following way:
Let F be the set:

(11)

where N is the set of positive integers. Décide whether F is empty and, if
not, select its lexical minimum.

We will suppose, with no loss of generality, that M and v have integer
coefficients, which implies that M x + v is an integer vector. The solution will
proceed, as in II, by a succession of variable changes according to (5) and
(6). As we have seen, the new independant variable, yi9 is either one of the x
or one of the constraints. Hence y,- will also be constrained to integer values.
However, as (6) shows, not all integer values of yt will resuit in intégral
values for x. Hence an integrity constraint for x must be introduced explicitly.
The correct generalization both of (4) and (11) is:

eN}. (12)

The dual simplex algorithm as given by (7) to (9) will eventually terminate,
with non négative vectors b and d. There is no guarantee that these vectors
are integers; it follows that the solution is not necessarily given by x = 0. The
only information we have is that the solution u is in F, that the column
vectors of A are lexico-positives and that, since x g; 0,

b«u.

The principle of the cutting plane method ([Gomory]) is to add a new
constraint to (12) in such a way as to exclude the continuous optimum while
keeping all feasible integer points. The new constraint or eut must be a
conséquence of:

xeN.

To dérive a eut, select the first row i of A such that b£ is not an integer. If
there is no such row, the current b is intégral and the program is solved. Let
D be the common denominator of the A{j and of bf. If:
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then

=O (modD). (13)

It is interesting to reduce this congruence to lowest terms by replacing all
integers by their remainder when divided by D. Let us use the sign % (in the
C fashion) for the remaindering operator:

if a = bq + r where 0 ̂  r < b,

then a % b — r.

(13) is equivalent to:

I((DSy)%D)xJ=(-Dt l)%D (modD), (14)
j

or

Since the left hand side is positive, while ( — Dtt) %D is positive and less
than D, we see that k is non négative and hence that:

YJ((DSij)yoD)xj-(~Dti)%D^O. (16)

j

Note also that:

Z ((DSU) %D) ( — Dti) %D. . ,
J Xy =fe, (17)

a positive integer. Hence we may add as a eut:

and the format of the problem will not be changed.

The new row will have a négative constant term; to restore feasibility, one
or more pivoting steps must be executed. The algorithm will proceed until
either the feasible set is proved to be empty or a feasible integer solution is
found. Since cuts are conséquence of the program constraints, adding a eut
does not eliminate any integer solution; if the feasible set is found to be

Recherche opérationnelle/Opérations Research
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empty, this prove that the initial program had no integer solution. On the
contrary, if a solution is found, an argument similar to the one given in II
will show that it is the lexico-minimal one.

IV.2. The convergence proof.

The classical convergence proof (see e. g. [Greenberg] or [Schrijver]) is based
on the observation that the constant term b in program (12) lexicographically
increase at each step of the algorithm, but is bounded by an eventual solution.
Since we are equally interested in cases where there is no solution, our first
step will be to construct an enlarged program whose solution always exists
and is simply related to the solution, if any, of the original program. The
convergence proof will then follow along classical lines. Finally, with the help
of a theorem of Cook et al [Cook], we will give a uniform bound on the
maximum number of cuts.

IV. 2 .1 . The enlargedproblem

Starting from program (11), let x0 be a new unknown; let F+ be the
program:

F + = {<xo ,x>|xo ,xeN;xo + Mx + veN}.

It is quite clear that F+ is not empty; take

xo = max(0, -Vi)

and
x = 0.

Next, if F is not empty and has lexical minimum u, then < 05 u > is the
lexical minimum of F+ . Conversely, if < M0, U > is the lexical minimum of F+,
then either uo = 0, and u is the minimum of F, or MO>0, and F has no
solution.

In the course of the resolution of F+ s as long as the new variable x0

remains in the basis, all columns of the tableau except the first will start with
at least one zero. Hence, the first column will never be choosen as the pivot
column unless it is the only candidate, which means that x0 leaves the basis,
that its optimum value will be non zero and that F is unfeasible. In other
words, at any given step in the resolution of F, the tableau is obtained from
the corresponding tableau for F + by deleting the first column and the first
row. It is easily seen that this property is also true when cuts are added,
since source rows are the same and so is D. We conclude, then, that the
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complexity of F + is an upper bound on the complexity of F. Hence it is
sufficient to give a convergence proof in the case where an intégral solution
exits.

JF. 2.2. The convergence proof again

Let

F = { x | M x + veN;xeN} (19)

be a program with solution u. Let Fn be the transformée! program just after
the n-th eut:

Fn = { Ain) y + b(w) | Ain) y + b(n) e N; C(n) y + d(n) e N }

and let F* (with similar notations) be the program just after the pivoting
step on the n-th eut. Let o (ri) be the source row for the n-th eut. By (18) the
constant term in the n-th eut is:

£><»>

while the pivot is:

(DMA^\n)j)%D(n

DM

By (6),

W + D(„) (D(„) AW } % Din) A* W P

where b(^\n) and A^\n)j are both positive.

We note the upper bound:

/ƒ)(») Ain) \o/ r)<n><
\U ^a (n) j) /oU =

from which follows:

in)

• (20)
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Let

where q (n) and r (ri) are both integers with:

From the above follows:

y (22)

The last inequality is strict since, for the row a(n) to be choosen as the
source row, b^n) must be fractional The algorithm is such that b is lexicog-
raphically increasing, which implies that b± is non decreasing in the usual
sense. We have just proved that each time the first row is used as the source
row, there is another integer namely {b^} (x) between b("} and bi(n).

Consider now a eut whose source row is not row 1, which implies that bj
is intégral. Let j be the pivot column of the next step. Then either Slj = 0,
and bx does not change, or S i y>0, and bx increases. If the resulting value is
intégral, then bj has increased by at least 1; if not, the next eut will use row
1, and bl will increase beyond {bx}.

Let us say that a eut is a 1-cut if either row 1 is the source row, or S' l j>0
where j is the index of the pivot column in the next step. From the above
discussion, we see that if the n-th eut is a 1-cut, then there is an integer in
[bf^bf*1*], and these integers form a strictly increasing séquence. If K^ is
the number of 1-cut between steps 1 and n, then;

b W - b f ^ ^ - l . (23)

We know that F has a lexical minimum w, that u belongs to Fw at each
step of the process, and hence that there exists values of y such that:

(24)

From this we deduce, since A(n) columns are lexico-positive, that:

b(n)«u

(x) Where {x} dénotes the least integer which is greater or equal to x.
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and specifically that:

This in turn imphes that the total number of 1-cuts is bounded. There is a
step Ni such that b f ^ b ^ for n^Nx; bÇ*1* is intégral. By the définition of
an 1-cut, after step Nl9 pivoting is confined to those columns whose first
element is null. In any row i, let J+ (resp. J?, Jf ) be the set of column
indices j such that Su>0 (resp. Sy=0, Sy<0). From (24) we deduce the
bounds:

VjinJj: OSyj^^^- (25)

which stays valid for the rest of the procedure, since the first row of the
tableau does not change anymore. In row 2, any A%) with j in J\ will be non
négative, to insure that the corresponding column is lexico-positive. In other
words:

Jz^Jx' (26)

from which follows the bound:

bP = oa-I^y^u2+ I (-^HiZjP. (27)

From this we deduce, by the same argument as above, that the number of
cuts on the second row is bounded. The same argument may be repeated for
all rows of the tableau. It follows that, after a finite number of steps, all
coordinates of b will be intégral, and the algorithm will terminate.

In the sequel, we will say that row i has settled after step Nt if bjB) = bjWi)

for all n^N? We have just proved that b\N^> = ül and that after step Nl9 for
jeJf, yj = 0. This is tantamount to saying that, as soon as row 1 has settled,
the remaining unknowns are found by solving a deflated program, whose
tableau is constructed from the current S by deleting the first row and all
columns in Jj1".

IV. 2 .3 . A uniform bound

From (23) we deduce that the total number of 1-cuts is less than:

X={u1-b<°»+l}> (28)
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where b(0) is the continuous optimum, This number may be uniformly
bounded by a technique adapted from a resuit of Cook, Gerards, Schrijver
and Tardos [Cook] (see also [Schrijver], Theorem 17.2).

u and b(0) are both in the original feasible set F:

Mu + v^O,

Mb(0) + v^0,

These constraints may be summarized as:

where S is the matrix and t is the vector

Distribute the rows of S in two matrices S+ and S_ with the properties
that:

5 + u>5 + b ( 0 ) ,

Let t be distributed accordingly into vectors t+ and t_. Consider the cone

C = {x |S + x^0;S_x^0} . (29)

It is clear that u — b(0) e C.C is generated by a set of linearly independent
integer vectors {a15 . . . ,a t} whose coordinates are no larger than D, where
D is the largest nxn subdeterminant from S. Hence:

and by Caratheodory's theorem, there are at most n non-zero terms in the
above sum.

It is easy to prove that all u' of the form:

u' = b(0) + X <4 aks where 0 S &'kè ak,
k

are in F. From this we deduce that for all k, b(0) + ak ak is in F. Since b(0) is
the lexicographie minimum of F, this implies that either ock = 0 (in which case
ak may be ignored in the sequel), or 0«ak.
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We claim that a k ^ l . If this were not true, we could construct u' = u —ak;
u' is in F since O^oc£ = ocfc— 1 ̂ otfe, and u' is intégral. Furthermore, u '«u ,
which contradict the définition of u.

From this we deduce:

K^nD. (30)

If the original problem is not integer feasible, K is bounded by the number
of cuts for program F+5 which is easily seen to be less than (n+ \)nD (since
a sub-determinant for S+ may be written as an alternate sum of (n+1)
subdeterminants from S),

The above bound is the uniform bound we require for the termination
proof of the parametric version of Gomory's algorithm. It is known that the
bound:

is strict. Whether the above bounds share the same property is unknown and
is left for future research.

IV. 3. The parametric version of the Gomory algorithm

We already know how to parametrize the dual simplex; it remains only to
show how to parametrize the construction of a eut. Refer back to formula
(18). The first point is the détermination of D, We noted in II that D is a
factor of the determinant of the basis, which is equal to the product of the
pivots. It is a simple matter to keep track of this product. The construction
of the eut is equally valid if the determinant is used in lieu of the common
denominator.

Next, the Stj are known numbers; there is no difficulty in computing
(DSij)%D. The problem lies in the évaluation of (-Dt£(z)) %D9 a non
linear function of z. Let us introducé a new notation. If t is a linear form
and / i s a numerical function, (ft) will stand for the form whose coefficients
are obtained from those of t by componentwise application of ƒ One has,
for instance:

but this commutativity property is not always true, as for instance in:

=t(z) (modD).
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To obtain the required eut, introducé a new parameter

q = ((-Dti)%D)(z)+D. (31)

q is a positive integer, since both the components of z and the coefficients
of ((—Dtf) %D) are non négative, q is completely defined by two linear
constraints:

0 ^ ( ( - D t , ) % D ) - ^ D ^ D » l 5 (32)

which must be added to the context. Obviously, a q such that (32) is true
always exists. Hence adding (32) to the context does not restrict the possible
values of z; it merely gives a linear définition of q.

The analogue of (15) is:

YJ((DSijy/0D)xj=({-Dty/oD)(z)-qD+kD, (33)
j

A eut follows in the usual fashion. The complete parametric integer pro-
gramming algorithm is analogous to algorithm (Q) with the following
changes:

ALGORITHM N

— In step (3.2), keep track of £>, the product of the pivots.

- Step (2) is replaced by the following. If all t̂ (z) are positive, select the
earliest row i such that (DSl7)%I> and (Dti(z))%D are not identically 0. If
no such row exists (in particular if D = 1), the solution has been found; it is
given by the first |x | components of t(z).

If such a row exists, add (32) to the context. Add to the tableau the new
row:

^ V ^ ^ 04)

where the Tik are the coefficients of (( — Dtf)%Z>) and start again at step (1).
The convergence proof is a straightforward conséquence of the uniform

bound of paragraph IV. 2. 3. If the solution tree is infinité it has an infinité
branch. Since there are exactly n candidate rows for a eut, on the infinité
branch there is a row which does not settle, and a node a such that no row
settles beyond a. The remainder of the branch address the solution of a
deflated program which is constructed as indicated in IV. 2. 3. Let r be the
deflated unknown count, and let D be the largest óf all r x r subdeterminant
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in the deflated tableau. Select a node P which lies more than r ( r+l )D
1-cuts away from a, and a value of z which belongs to the context of p. It is
clear that sol ving the deflated problem for this value of z will contradict (30).

IV.4. The introductory exemple again

The beginning of the computation is the same as III. 3. The solution
associated to tableau (B) clearly is intégral; hence, (B) is a success node. In
the case of (C), the solution is fractional and the determinant D is 2. The
source congruence is:

b + d — H 2 m = 0 (mod 2).

In the notation of (32), t£ is -Je+2m, and ((-Dt£)%D) is simply k. To
construct a eut, we introducé the new parameter

and the eut is:

Two inequalities are added to the context:

After a pivoting step on e and b, one gets:
e d 1 k m n q Sign

i' 1 0 0 0 1 0 - 1 +
ƒ
a
b 2 - 1 0 1 0 0 - 2 + (D)
c
d
e

context

2
1
2
0
0
1

- 1

1

1
0

- 1
- 1

1
0

0
0
0
0
0
0

-k
~k

k
-k

- 1
0
1
0
0
0

+ 2 m
+ 2 m

0
0
0
0
0
0

1
0
0
0
0
0

+ n

2
1

- 2
0
0
0

-2q

?

+
0
0
0

> 0
> 0
> 0
> 0

The new determinant is 2 x 1/2=1. The sign of the f row is unknown. In
case — k +n +2 <?^05 the solution is:

f = m — q

j'=—k -f n +2q.
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In the opposite case, we first exécute a pivoting step on f and d, giving:

e ƒ 1 km n q Sign

rƒ
a
b
c
d
e

context

1
0

- 1
0

- 2
2
1

- 1

1
- 1

0
1
0

- 1
- 1

1
0

0
0
0
0
0
0
0

-k
-k

k
-k
+ k

0
0
0
0

- 1
1
0

+ 2 m
+ 2 m

1
0
0
0
0
0
0

0
0
0
1
1

- 1
0

+ n

— n

- 1
0
0
0
2

— 2
0

-2q
+ 2q
~2q

+
0
0
+
_
+
0

> 0
> 0
> 0
> 0

(E)

Here, all rows are positive with the exception of d, whose constant term is
— k +n +2q. But — f c + n + 2 ^ ^ 0 i s i n the context of (E), and hence row
c is négative. Since both coefficients ( — 2 and —1) are négative, (E) is a
failure node. The algorithm has terminated.

We may write the final solution as:

if(fc-2m>0)then

then

k-2m

k~2(k~2)

elseoo

elseoo.

From this the value of a[k] may be easily computed. An interesting fact is
that we have detected another case in which a[k] is not defined:
n — (k — 2(fcH-2))<0. This occurs only for odd values of k if n = 0; it would
be very easy to overlook this error.
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V. CONCLUSION

The algorithm we have given has been implemented and has been found
to be reliable for small problems as are found in the semantics analysis of
computer programs. lts theoretical complexity is quite high; in practice, we
have found it to share the well known property of the simplex, which while
exponential in the worst case, has a high probability of being polynomial In
fact, we have found the complexity of the algorithm to be commensurate to
the complexity of the solution, and one cannot ask for less.

The running time may be reduced by various devices. We note that part
of the problem tableau is a unit matrix, which does not carry useful informa-
tion. The corresponding rows may be deleted, thus reducing the computa-
tional burden by a factor of m/(n + m). This is the so-called revised form of
the simplex algorithm. In our case, we must keep track of the deleted rows
in order not to disturb the lexicographie ordering.

Expérience shows that most of the running time is spent in testing the
feasibility of auxilliary Systems in step (1) of the algorithm. A large speed-up
is obtained if we detect cases in which the sign of t((z) is "obvious"; this
include:

— after a pivoting step, the constant term in the pivot row is null;
— the constant term of the new eut is always négative;
— if all coefficients of tf(z) are of one and the same sign, then since z^O,

^(z) is of this sign;
— in a pivoting step, we add to t^z) a positive multiple of the pivot

column. If both addends are of the same sign, the sign of the result is not
changed.

Since the termination of the algorithm dépends on distinguishing between
integers and non-integers, care must be taken to avoid rounding errors. It is
possible to use infinité précision rational arithmetic as is available in some
programming environments (e. g. bc in the Unix system or the rational
arithmetic package of some versions of Lisp). This is, however, unduly
wastefull. Note that at each step DStj and D tt(z) (where D is the determinant
of the basis, i. e. the product of the pivots) are intégral. The problem tableau
may be represented by the triple (D,DS,D t(z) >, in which all éléments are
integers. The algorithm may be entirely reformulated in this new représenta-
tion (in fact, the analogue of (7)-(9) are slightly simplified). Rounding errors
disappear, to be replaced by potential overflows, a much simpler proposition.

While the algorithm is guaranteed to terminate with a correct solution,
this solution is by no means unique. In step (2) and (3), and also in a eut
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construction, there are degrees of freedom, which may be exploited to speed
up the algorithm (e. g. by selecting the "best" pivoting row or the "deepest"
eut).

In our case, there is one more choice: the choice of the splitting row in
step (4). For instance, if the c and d rows of our exemple are interchanged,
the solution is:

elseoo

elseif (fc-2m^0)then

else if( —

then

m
k-2m

else oo

elseoo (36)

This is equivalent to but slightly more complex than (35). We would be
interested in using this degree of freedom to obtain the "simpiest" solution.
This however is a very difficult problem, which is left for future research.
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