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TWO METHODS FOR MULTICRITERIA
HIERARCHIZATION OF DISCRETE ALTERNATIVES *)

by Gheorghe PAun (%)

Abstract. — The former method starts by numerically estimating the adequacy and the inade-
quacy (with respect to the initial data) of each statement “the alternative i appears in an aggregate
hierarchy on the j-th place” and constructs a preorder which maximizes the ratio of total sum of
adequacy values by the total sum of inadequacy values for the associated hierarchy. The latter
method involves usual concordances and discordances (as those in ELECTRE method) and tries to
construct a preorder relation on the alternatives set by choosing a set of pairs of alternatives which
again maximizes the ratio of total sum of concordances by the total sum of discordances. For both
methods there are optimal algorithms.

Keywords: Multicriteria decision making; Pseudoboolean programming; ELECTRE method.

Résumé. — La premiére méthode utilise des indicateurs & adéquation et d’inadéquation (cohé-
rents avec les données initiales du probléme) a chaque proposition du type « Talternative i apparait,
dans la hiérarchie agrégée, en j-iéme position » et construit, ensuite, la hiérarchie qui maximise le
ratio de la somme totale des valeurs d’ adéquation sur la somme totale des valeurs d’inadéquation.
La deuxiéme méthode fait intervenir des concordances et des discordances similaires d celles dans
les méthodes ELECTRE et vise @ construire une relation de préordre (sur les alternatives) en
choisissant un ensemble de paires d alternatives qui maximise de nouveau le ratio de la somme
totale des concordances sur la somme totale des discordances. Pour les deux méthodes, des
algorithmes optimisants sont proposés.

1. INTRODUCTION

Although there are so many methods for multiple criteria decision making
(MCDM) (see [3, 5, 7, 8], etc.), there is room for further methods. In
fact, the well-known Arrow’s impossibility theorem [1] simply “forbides™ the
existence of a completely accepted method, one that can make useless any-
different one. More practically speaking, there are various gaps in the “perio-
dic table” (like the Mendeleev’s one) of MCDM methods. The two procedures
we present here deal (of course, without escaping Arrow’s theorem conclusion)
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264 G. PAUN

with the problem of constructing a hierarchy on a (discrete) set of alternative
actions evaluated (not necessarily numerically) from more points of view;
from now, by MCDM we shall understand this particular problem. Some
features of these methods deserves to be emphasized:

— they work in ‘“‘concordance-discordance’ terms, hence seem to use most
of the information contained in initial data;

— they have an optimal character from two points of view: have explicit
quality criteria which should be maximized and have algorithms which maxi-
mize these criteria;

— when there are more optimum solutions, both methods provide us all
these solutions;

— the first method may produce aggregated hierarchies containing gaps,
a frequent phenomenon in actual decision making (“the first rank is assigned
to alternative i, the second is not granted, the third...”);

— both methods are pollynomially convergent, hence they are tractable.

2. THE FIRST METHOD

As usual in MCDM problems, let us consider a set of action alternatives:
A={a,,a, ...,a,}, n=2,
evaluated from m points of view (criteria):
Pv:P2 -+ > P m22,

whose relative importance in the concrete framework of decision is specified
by means of given weights (positive real numbers):

Wi Wa o ooy Wiy

The MCDM question is to construct a hierarchy of the alternatives (in
most cases, a preorder relation on A is looked for) which fits as well as
possible with the initial data. The passing from the words “fits as well as
possible...” to a concrete unambiguous quality criterion is the real task of
MCDM (as well as the practical task to construct an optimal hierarchy
according to this criterion).

Generally speaking, let us assume that for each alternative a; and for each
integer j, 1 £j<n, we can evaluate two parameters:

R.A.L.LR.O. Recherche opérationnelle/Operations Research



MULTICRITERIA HIERARCHIZATION OF ALTERNATIVES 265

¢; ;=the adequacy (with respect to the input data) of assigning action a; to
the place j (1 is the best place, n the worst one) in one arbitrary hierarchy
on the set 4;

d; ;=the inadequacy of assigning q; to the rank j.

We assume ¢; ; to be as greater and d; ; to be as smaller as the proposition
“a; occurs on place j” is more concordant with the initial data. Moreover,
we assume ¢; ;€R,, d; ;eR,, d; ;>0 for all i,j (R, is the set of nonnegative
real numbers).

Then, a natural criterion to evaluate the quality of a hierarchy:

h=@,a, ...,a), A={a,...,a,},

and this value is as greater as the hierarchy h is better.

We are lead to the following (more general) pseudoboolean [4] program-
ming problem: Let C, D be two nxm matrices, C=(c; ), D=(d, ), c;;eR,,
d;;eR, —{0}. For an n-tuple T=(jy,j, . . -,J,), 1 $j;S<m, 1Li<n, consider:

Cij
i=1

n 2

Z di,ji
i=1

VC,D (T)=

and:
M(C,D)=max{ V¢ p(T)| T=(ppjas - - -»jn) 12j;Sm, 1Z5iZn}.
Define the set:
0(C,D)={T|V,»(T)=M(C,D)}.

ProBLEM: Find (all) elements in the set O (C, D).

The problem was completely solved in [2] by means of the following
algorithm: For C,D as above, we construct the string of n-tuples T as
follows:

@ Td=(1,1,...,1);

vol. 18, n° 3, aoiit 1984



266 G. PAUN

(i) if Tki~1=(jx’j2- -+ ++Ja), then Tk‘=(jlv <« wsJi=ts JooJiwrs + - -5 Jn)y Where
Jji is choosed in such a way that:

Veo (T =max Vep (U - - osdiots Blivts «« <5 Jn)

18rSm
and j;#j; only when:

Veo (Ti"H< max Vep (s - - s diets Biens - - 2Jad)s
1SrsSm

(iii) Tk0+l =Ty.

Clearly, there is ko such that T,% ,=T2 for all k=k, Let k* be the
smallest k, as above and denote  (C, D, Tg)="T_2.

TueoreM 1 [2}: o (C, D, T O (C, D).

Consider now an n-tuple T=(j,,js, - . .,J,) €0 (C, D) and define the sets:

Jt(T)""':{k' 1§k§m, VC.D((il’ . "ji-—h k’jH-l’ .. -:jn))=M(Cr D) }’
1gisn

We denote o’ (C,D, T)={(5, 53, - - -, )| s;€J;(T), 1Si<n}.

TaeoreM 2 [2]: For any TeO (C, D) we have o’ (C, D, T)=0 (C, D).
Consequently,

0 (C, D)=M' (C9 D’ d (C) D! T(;)))'

In words, the algorithm proceeds as follows:
Step 1. Construct an arbitrary initial solution T.
Step 2. Improve componentwise the current solution.

Step 3. If the above improvement is effective, then go to Step 2, otherwise
go to Step 4.

Step 4. Construct the sets J; (T}3), 1 Li<n, as described above.

Step 5. Construct all the n-tuples T=(sy,...,s,), s;€ J;(T), 1Lign,
Stop.

ReMARKk 1: The best positions on each row do not provide us a global
optimal solution. For, let us consider the following example:

(32) »(33)
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MULTICRITERIA HIERARCHIZATION OF ALTERNATIVES 267

Although:
¢ c c c
12 Cu1 22 5, G2
dl.z dl,ﬁ d2,2 dﬂ,l
however:
C12+C, 6 < 3 _ i+
dio+d,, 8 6 d,,+d,,

A computer program was described in [2] which solves this problem.

Returning to our MCDM problem, the only question which we have to
answer is to suitably define the parameters c,; and d; ; associated to each
pair (alternative i, rank j), 1<i, j<n, for given initial data. We present here
only some suggestions for the ordinal case (when the initial data consists
of m hierarchies on A, induced by the m criteria). Denote by pl(a;, p)) the
place of the action g; in the hierarchy induced by the criterion p; Then, the
adequacy of assigning a; to the place j in an aggregated hierarchy can be
evaluated by: '

ey=2 w1+ |i—pl(a, p) )Y
k=1
or by:

= Z W 21— pHlay, ppl
k=1

whereas the inadequacy can be evaluated by:

m
d‘-i= Z Wy (1+ !j_pl(aispk)l)o
k=1
or by

di.1= Z Wy i~ pllag ool
k=1

Other such evaluations remain to be considered and checked.

Let us remark that this approach to MCDM can lead to partially filled
hierarchies (the algorithm in [2] can choose more elements on the same
column, hence more alternatives on the same place and thus some unoccupied
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268 G. PAUN

ranks appear). Moreover, the method provides us all the hierarchies of
maximum quality and we can choose that solution which satisfies some
further restrictions.

3. ANOTHER METHOD OF HIERARCHIZATION

This method starts by considering adequacy and inadequacy values associa-
ted to each pair (a; a)) of alternatives. As in ELECTRE method, for example
[6], let ¢; ; be a measure of the “concordance” of considering the alternative
a; better than the alternative g; in an aggregated hierarchy and d,; be the
“discordance” of placing a; before a, We assume again ¢ ;eR,,
d;eR,—{0}.

Our goal is to introduce a total preorder relation on the set A. Such a
relation can be defined starting from a given set of pairs in Ax 4 and
transitively closing the mutual relationships induced by these pairs. Clearly,
at least n—1 pairs must be considered in order to obtain a total relation
on A. Moreover, when all n(n—1) pairs (g, ;), i#J, in A x 4 are considered,
then we obtain a total preorder relation on A, but no structure is introduced
in this way: all the alternatives are considered on the same level of quality.
Consequently, we have to find the smallest set of pairs (a;, a;) which induces
a total preorder relation on 4 and which fits in the best way with the initial
data by means of our indicators of adequacy and inadequacy.

Thus we are Iead again to a pseudoboolean programming problem, namely,

¢ X;

M-

i

2 d; x;
i=1

maximize

s

where ¢, d;eR, d;#0, for all i, 1Sign, x;€{0,1}, subject to:

for given k<n.

First, we shall solve this more general problem and then we shall return
to MCDM questions. We again prefer an ad hoc framework, instead of
pseudoboolean programming theory.

R.A.L.R.O. Recherche opérationnelle/Operations Research



MULTICRITERIA HIERARCHIZATION OF ALTERNATIVES 269

Let C=(c), D=(d;), 1 £i<n, be two vectors of real numbers, ¢;=0, d,>0,
and let T=(j, ja, - . -,ji), 1SjiSn, ji#j, for all i£r. We denote:

k
Z Cir

i=1

Vep (M= %

Z dll

i=1

M, (C,D)=max { V¢, ()| T=(y, . . ., ji), 1Sji<n, ji#j, for all i%r}.

ProBLEM: Find (all) elements in the set:
0, (C, D)={ Tl Vc.p (=M, (C, D) }

Let us note that the first k positions in the decreasing order of the
numbers c¢;/d; do not constitute a solution. Indeed, let us consider the problem
characterized by:

C=@4,2,3), D=(1,4,2).

Although;
o I )
dy  d, 4,
however:
eytes 7 < Ca+Cy =§
dy+dy 9 dy+dy 6

therefore (1,3)¢0,(C, D).

The problem can be solved by an algorithm similar to that described in
the previous section. Let us consider the following string of k-tuples (denoted
by T):

() Te=(1,2,...,k),

(i) if

T"_l =019 . ',jr- pjnjr«i-b .. -’jk)’

T”z(jb .. "jr—l»j;’jr+b .. s.h)r
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270 G. PAUN
where j; is choosed in such a way that:

Veo (TH=max { Ve p (o -+ s dr-1s bdrers - - )|
1Stgn, t#j, for i=1,...,r—Lr+1,...,k},
Ji#J, for all 1SiLk, i#r, and j,#j, only if:
VC.D (Ts’—l) < VC.D (T:)’
@) TS ,=Tk
Clearly, there exists s, such that T2=T2%, for all s=s,. We denote
o, (C, D, T®)=T,, where s* is the smallest s, as above.

THEOREM 3: In the above circumstances, o, (C, D, T$)< 0, (C, D).

Proof: Let o,(C,D, T))=(sja - - -»ju) and consider a k-tuple
(sts - . ., S €0, (C, D). Suppose that &, (C D, TY) ¢ O, (C, D), hence:
k

Csy Z S

1 > t=1
k

dﬂt Z dh
t=1

Letf:{1,2,...,k} = {1,2,...,k} be an one-to-one mapping such that
J(i)=r whenever s,=j,. For each i=1,2, . . ., k we have:

-
]

i

-

k
X < ;1 i Cign T Cn

=1 =
x 2 .
2 dl: z d.ig—dlf(;)""ds:
t=1 t=1

Indeed, when j 4 =s,, then we obtain an equality and when j #s,, then we
obtain a (not necessarily proper) inequality because the algorithm of construc-
ting the vector o, (C, D, TQ) does not change the vector (j,, . . .,j,) when
one tries to replace c; ., by ¢,

We eliminate the denominators and sum all the above k+1 inequalities
(at least the first one is proper) and we obtain:

k k

k
PX Csy )y d+ DN “Jx( 21 di:_dlf(n+d=t)
t=

i=1 i=1 i=1t=1

ItMa-
M"'
ile

-
]

-

-

>Z o

and finally 0>0, a contradiction.

-

k
( ; c,m+c,t).
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MULTICRITERIA HIERARCHIZATION OF ALTERNATIVES m

In conclusion, the above algorithm (start by an arbitrary initial solution
and improve it componentwise while this is possible) constructs an optimal
solution of our problem. All the optimal solutions can be found in the
following way. For Te0,(C, D), T=(j,, . . .,j)), let us consider the sets:

B(D={r|réjpss=12...,i-1,i+1, ...,k
and Ve p (s « + s dimpo Bdiets - i) =M (C, D) },
for each i, 1£i<k, and define:
AL (C, D, N={ (51,55 ..., | s, e (D), 1Sigk,
s;#s; for all i#j, 154, jSk}.

TrEOREM 4: For each Te0,(C, D) we have o, (C, b, T)cO0, (C, D).
Proof: Let ji,j; € J¥(T) and j,,j, € J* (T), for i <t, j; #j;. We denote:

k k
a= Chp B= Z d;,

r=1 r=1
rei,2 r#l,t
therefore:
M, (C, D)= a+cp+cy - a+c;+cy, - a+c,,+c,;’
o B+d,+d, B+d;+d, B+d,+d;
that is:
) w+c,+c, =M, (C, D) (B+d;+d),
(2) m+CJ;+CJ‘mMi(C) D) (ﬁ+df;+dh)’
3) G.+Cj‘+cj;=Mk (C, D) (B+d)1+dl;)‘

Calculating (1) minus (2) we obtain:
@ ¢;—¢; =M (C, D) (d;—d;)
and from (3) minus (4) we obtain:
a+e;+c;=M,(C, D) B+d;+d)),
that is:
a+cy+Cy
L D)= ———
M. (C.D) B+d;+d;

vol. 18, n° 3, aoiit 1984



272 G. PAUN

Consequently,

(jls .. "ji—lajzaji+l’ .. "jt—laj:’jﬁ-l’ .. "jk)eot (C, D)

Consider now fnffEJf(T), jv];e":(’r)s JpJ'QEJ:(T), for i<t<s:
Ji#ii #j.#ji;. From the above argument we get that both the following
k-tuples are in O, (C, D):

(jl’ .. -’ji—lij;9ji+ls .. "jt—l’j;’jt+l’ .. "js—l$js’ja+l! .. -sjk)’
(il, .. "ji—l’jbjl+ls .. "jt—l’j;’jH»b .. -’js—-hj;’jﬂ-l’ .. !]k)

From j,, j; € J* (T) we obtain:

Tt=(jl’ . -aji-lijisji-l-v oo ':jt—hj:ajt+l’ MRS
js—l’jsajs+l’ . "jk)eok (C: D)’

therefore j,j; € J* (T)) and j,j, € J* (T,). Using again the first part of the
proof for T, we obtain:

. . o os . P
(]l’ s Ji—vJodivts - s Ji—vJoJivts - -

Js=1rJwds+1s « - -»J1) € 04 (C, D).

In the same way one can prove that each k-tuple in &, (C, D, T) belongs
to 0,(C, D).

THeoReM 5: For each Te O, (C, D) we have 0, (C,D)c «; (C, D, T).

Proof: Consider T=(i,, i, ...,i,)€0,(C,D) and let J*(T), 1Zigk,
be the sets constructed as above. Let wus suppose that
0,(C,D)—,(C,D, T)#Z and let T =(j,,...,j;) be an element of
0, (C, D) which does not belong to «/; (C, D, T) and no permutation of T”
belong to this set. Consequently, there exists indices t, 1 <t=<k, for which
j.¢J*(T). We permute the sequence T in such a way that whenever
js€{iy - . .,ix}, then jo=i. Let us denote by S the set {1,2,...,k}, by S,
the sequence of indices ¢ for which j, e J (T) and by S, the sequence of
indices t for which j, ¢ J* (T). Clearly, S, US,=8,S,NS,=, S,# and
S, also contains those positions for which j,=i_; moreover, in any sequence
of the form (i, . . .,i,_1,jpip+1s - - -5 i) We have j, #i; for each s#r (in other
words, each such sequence is a—not necessarily optimal —solution of the
problem).

R.A.LR.O. Recherche opérationnelle/Operations Research



MULTICRITERIA HIERARCHIZATION OF ALTERNATIVES 273

As j,eJi (T), teS,, we obtain:
k
Zl Cg.‘*'c."

s#¢

k

Zl d, +d,
a¥#t

=M, (C, D).

As j, ¢ J5 (T), teS,, we have:
k
L ¢t
s=1

s#t
k

Y d,+d,
s=1

s¥t

<M, (C, D).

We eliminate the denominators of these relations (they are strictly positive),
then we sum them member by member, and, by denoting:

k k
o= Z Cip B= Z di:’
t=1 t=1

we obtain:

k k k k
21 @—c)+ zl ¢, <M,(C,D) ¥ B-d)+M,(C,D)Y 4,
s= 8= s=1

3=1
that is:
k » k
(k—=Da+ Y ¢;, <M, (C,D)(k—1) B+M,(C,D) Y, d;.
s=1 s=1
As Te0,(C, D), we have:
% _M,(C, D),
B
therefore:
(k=1 a=M,(C,D)(k—1)P

vol. 18, n° 3, aoiit 1984



274 G. PAUN

and, from the previous inequality, we obtain:
k k
Y ¢;, <M, (C, D) Y d,.
s=1 s=1
This means that (j,, . . .,j,) is not an optimal solution of the problem, a
contradiction. In conclusion, T" € o} (C, D, T), hence
0,(C,D)ca, (C,D, T)

and the proof is over.
Consequently, 0,(C,D)=«; (C, D, o, (C, D, TY)).

The following theorem can be useful when we actually have to solve the
previous problem:

THEOREM 6. For C, D, k as above, let us consider the set:

m={)

1. If k<p, then:

ﬁ=max ﬁ}, card M=p.
d; 1siza d;

0,(C, D)= {(iy, . . ., i) | i;#i, and i;e M for each j}.
2. If k>p, then for each:
TeO0,(C, D), T=(p ..., 0,
we have M{i,, ... i.}.
Proof: We use the following assertion whose proof is left to the reader: if

S=(y .- -»Jju) €0:(C, D),
then

O

Vep(S)= = for all s¢S.

&

1. Clearly,

R.A.LR.O. Recherche opérationnelle/Operations Research
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and the inequality is proper if and only if there is s, 1<s<k, such that
¢;/d; < max (c;/d;). Point 1 of the theorem follows from the above assertion.
1stsk

2. If k>p, then T contains at least an element which does not belong
to M, hence:

™M=

¢
1 4 Ci
< max —.

15isa d;

i

~
i -
K

-~

Using again the above mentioned assertion, we obtain point 2 too and the
proof is complete.

A significant result with respect to our initial purpose, that of MCDM, is
the next theorem, which enlightenes the dependence of M, (C,D) on the
values of k.

LemMA 7: For C,D as above, we have

M,(C,D)2M,(C,D)z. .. 2M,(C,D).

Proof: Let us consider the vectors:
Tk =(i1, « s ey i,,)EOg (C, D),
Ti+1=0U1s - - -2Jk+1) €044, (C, D).

We denote:
k k
W=, Cip Be=2 d,
t=1 t=1
k+1 ‘ k+1
Oy 41 = Z Cjp Be+1= Z d;,
t=1 t=1
hence:
% _M,(C,D), 2t -M,,,(C D)
Bk k+1
and for each T'=(if, . . ., i), 1 Zi;<n, we have:

5 > Vep(T).
B,

vol. 18, n° 3, aolit 1984



276 G. PAUN

Therefore, for each t=1,2, . . .,k +1, we obtain:

o o %x+1Cy

ﬁh B ﬁl"‘l—dj‘» )

We eliminate the denominators, add the obtained k + 1 inequalities and we
obtain:

(k+1) ot By — % Bror Z(k+1) oy g Be—By Oy

hence:
koy Bess 2k oy Bo
therefore:
EE ; aﬁ"’l
Br  Brer

that is M, (C, D)2 M, ., (C, D) and the proof is terminated.
Let us now return to our initial problem. For given vectors:

C=(cl'2, CL3, ..y Cl,n’ Cz’l, ey C,,_,,_l)

=(c}, €3 . - .5 Chm—1)) (concordances),
D=(d1.2’ d1,3’ “ sy dl.u! dz)l, d2_3, “ oy du.n—l)

=(d}, d3, . .., dyu-1)) (discordances),

we use the above algorithm for k=n—1 and construct the set of k-tuples
of pairs of action alternatives corresponding to vectors (iy,...,iJ),
. k k

15i;<n(n—1), such that i, #i, for r#s and ), ¢;/} d; is maximum. If
j=1 j=1
the reflexive transitive closure of some such k-tuple of pairs of alternatives is
a total preorder relation on the set 4, then the problem is solved. In the
opposite case, we either increase k by one and look for (k + 1)-tuples of pairs,
or we construct all k-tuples of pairs associated to vectors (iy, ...,i) for
which V¢ 5 ((Gy, . . ., i) 2 M, (C, D) (better than a (k + 1)-solution, but not
necessarily optimal for k —see Theorem 7). By repeating this procedure, we
can eventually find an s-tuple of pairs which leads to a total preorder relation
on A, is optimum with respect to the quality criterion V., and has the
smallest s. This is the aggregated hierarchy which solves our MCDM problem.
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4. FINAL REMARKS

Both the above methods request a large amount of calculus, hence they
need a computer in order to be practically implemented. However, the
algorithms are easy to be programmed and they seem to be rapidly conver-
gent.

Indeed, let us assume that C=(c;), D =(d;) are vectors of positive rational
numbers. By multiplying these numbers by a positive constant we obtain two
vectors C’, D’ which lead to an equivalent problem, in the sense that

M, (C',D)=M,(C,D), 0,(C’,D)=0,(C,D),
'dk (C’ D; T(?)'-:dk (C'9 D,’ TOO)-
Consequently, it is sufficient to examine the convergence for C, D constituted
of integers. Clearly,

k 1

Vep (T2 = >0,
en(To)2 k. max d; max d,
15ign 15ign
k. max c;
M, (C, D)< — 52" _ max ¢,
k 15isn

At each step of the algorithm (a step means the replacing of a component
of the current solution, thus strictly improving its quality), the current solution
quality increases at least by:

1

k? max d?
1Sisn

Consequently, the algorithm finds an optimum solution in at most:

1
max ¢;— ——— ) k* max d?<k? max c; max d
1gis<n max d; 1sisn 1sisn  13Sizn
1s5isn

steps. Each such step involves at most n—k trials to improve the current
solution, hence the algorithm converges pollynomially.

A similar argument works for the algorithm in [2] presented in Section 2.
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Note: Useful discussions with M. Biluti and V. Dobrescu are acknowled-

ged, as well as many helpful remarks the referee made on an earlier version
of the paper.
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