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OPTIMAL TOUR PLANNING
WITH SPECIFIED NODES (*)

by Gilbert LaporTE (1), Héléne MERCURE ()
and Yves NoOBERT (%)

Abstract. — This paper considers the problem of determining the shortest circuit or cycle in a
graph containing n nodes and such that (i) each of k nodes (k <n) is visited exactly once; (ii) each
of the remaining n-k nodes is visited at most once. A branch and bound algorithm for this problem
is described. Results are presented for problems involving up to 200 nodes in the asymmetrical case
and up to 80 nodes in the symmetrical case.

Keywords: Travelling salesman problem; specified nodes; branch and bound.

Résumé. — On considére le probléme consistant d déterminer le circuit ou cycle le plus court
dans un graphe contenant n neuds et de telle sorte que (i) k neeuds (k <n) soient visités chacun une
et une seule fois; (ii) chacun des n-k neeuds restants soit visité au plus une fois. On décrit un
algorithme de « branch and bound » pour ce probléme et on présente des résultats numériques pour
des problémes asymétriques contenant jusqu’a 200 neuds et des problémes symétriques contenant
Jjusqw'a 80 neuds.

Mots clés : Probléme du voyageur de commerce; nceuds spécifiés; « branch and bound ».

1. INTRODUCTION

In its most common interpretation, the travelling salesman problem (TSP)
consists of determining the shortest route for a salesman wishing to visit each
of n cities once and only once [3]. Over the last three decades, this problem
has attracted the attention of several operational researchers and has led to
some significant developments in the O.R. field [6]. It is well known however
that in its pure form, the TSP seldom fits the routing problems really
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204 G. LAPORTE, H. MERCURE AND Y. NOBERT

encountered by salesmen since in practice, some of the restrictions of the
TSP may be lifted (see for example [11]) while extra constraints may have to
be incorporated (see for example [8, 10]).

The following problem studied by Saksena and Kumar [13], Dreyfus [4]
and Ibaraki [7] applies to situations where only a subset of the n cities have
to be visited by the salesman. More specifically, let N={1,..., n} be a set
of nodes (cities), K= {1, . . ., k} (k<n) a set of “specified” nodes (i. ¢. those
requiring a visit) and C=(c;;) a non-negative distance matrix defined on N2,
Each pair (i, j) defines an arc from i to j.

We wish to determine the shortest circuit passing through each node of K
exactly once; we shall refer to this problem as the STSP (TSP with specified
nodes). As was shown in [9], the difficulty of the problem depends largely on
the nature of C and on the degree imposed on nodes in N—K:

(i) if C satisfies the triangle inequality (i. e. if ¢;;<cy+¢; (i, j, k€ N)), the
STSP always reduces to:

— a TSP on N if the degree of nodes in N—K equals 2 (trivially) or if it
is greater than or equal to 2. This last case can be explained as follows.
Consider a node j in N—K and assume the degree of j must be greater than
or equal to 2 in the optimal solution. Any feasible solution can be represented
by a sequence of nodes in which j appears ¢ times (¢=1), i.e. it contains ¢
subsequences of the form (i, j, k;) where I=1, ..., t. All but one of these
subsequences can be replaced by (i;, k) since ¢;;+cj, =c;. Thus, all degrees
will be equal to 2 in the optimal solution; ’

— a TSP on K if the degree of nodes in N—K is less than or equal to 2
or unspecified. Indeed, all nodes j of N— K can be eliminated by using the
same argument as above. Therefore the problem presents little interest in this
case.

(ii) if C does not satisfy the triangle inequality, three cases can be disregar-
ded:

— the case where all nodes of N have a degree of 2 corresponds to a TSP
on N and need not be considered ;

— the case where all nodes of N—K must have a degree at least equal
to 2 is similar to the shortest complete cycle problem treated in [11];

— when the degrees of nodes in N—K are left unspecified, it suffices to
solve a TSP on K where each c;; is replaced by the shortest distance between
i and j (see [4]).

The only remaining case is that where C does not satisfy the triangle
inequality and where the degrees of nodes in N—K must be at most 2. This
short note presents an efficient algorithm for the solution of this problem.
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2. IBARAKTS APPROACH

The problem considered by Saksena and Kumar [13], Dreyfus [4] and
Ibaraki [7] is that of determining the shortest path between a source and a
sink, passing through a set of specified nodes exactly once and through the
other nodes at most once. It can be shown that this problem is very similar
to the STSP treated in this paper.

The following formulation for the STSP can be derived from Ibaraki’s
paper: let us define a binary variable x;; as follows:

(i) if i#j, x;; indicates the presence (x;;=1) or the absence (x;;=0) of an
arc from node i to node j in the optimal solution;

(i) if i=j, x; indicates whether node i is used (x;=0) or not (x;=1) in
the optimal solution.

The problem is then to:

P minimize 3, Y c; Xy,
i=1 j=1

subject to:
1) Z xy=1 (jeN),

i=1
(0] Z x,,=l (ieN),

j=1
©)] Y x=[S[-1 (<N SNK+#K SNK#Q),

i, jeS

“) x;=0or1 (i, jeN).

In this formulation, c; is set equal to:

(i) 0if ieN—K;

(ii) an arbitrarily large number M if ieK

This ensures that x; will be equal to zero if ieK; therefore all nodes
belonging to K will be used in the optimal solution.

Constraints (1), (2) and (4) require no explanations. Constraints (3) are
imposed in order to eliminate illegal subtours. As in the case of the TSP [3],
illegal subtours involving |S | nodes are eliminated by specifying that there
may be at most |S|—1 arcs linking nodes of S in the optimal solution. In
the STSP, illegal subtours are those which contain some but not all nodes of
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K since the optimal tour must contain all nodes of K. On the other hand, it
is not necessary to consider cases where § (N K= since it is never advanta-
geous (in terms of the objective function) to produce subtours disconnected
from K Thus, the optimal solution will contain only one subtour involving
all nodes of K and possibly some of N—K.

It can be seen that: ;

(i) if K=, (i. e. constraints (3) are removed), (P) reduces to an assignment
problem for which there exist efficient algorithms [1];

(ii) if K= N, this formulation is identical to that of the asymmetrical TSP
(see [3] for example);

(iii) otherwise, the difficulty of the STSP should lie somewhere between
that of the assignment problem and that of the TSP.

It is easy to solve (P) without resorting to the simplex method. Indeed,
the relaxed problem containing only constraints (1) and (2) is an assignment
problem. Constraints (3) and (4) can be handled by fixing some x;;s at 0
or 1 in a branch and bound tree. This is the essence of Shapiro’s method for
the TSP [14] later used by Ibaraki for the STSP. It can be summarized as
follows.

(i) At each node h of the search tree, we define E,, the set of arcs excluded
from the solution (at the first node of the tree, E,=(¥). An assignment
problem constrained by E, is solved.

(i1) Consider the subtours contained in the solution at node h. If there is
only one subtour, it constitutes a feasible solution and a backtracking proce-
dure is applied. Otherwise, consider the subtour with the minimum number
of arcs. This subtour is characterized by a set of nodes {r,,...,r,} and a
set of arcs {(ry, r3), . .., (Fm 1) }. To the descendant nodes j from node &
are associated the following sets of excluded arcs:

E;=E,U {("j» Tiv D}
where r, . =r,.

(iii) Branching is always made on the pending node having the least lower
bound for the problem.

(iv) The procedure ends when all branches of the tree have been explored,
according to the usual branch and bound rules.

Ibaraki reports computational results for a limited number of randomly
generated problems involving 21 and 31 nodes, on the Kyoto University
FACOM 230-60 computer. The assignment problems were solved by means
of Munkres’ algorithm [12].
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3. AN IMPROVED ALGORITHM FOR THE STSP

The main attraction of this algorithm lies in the fact that at each node of
the search tree, the problem solved is an assignment problem, and therefore,
the solution remains integer during the whole process. Furthermore, when
applied to the STSP, the algorithm really exploits the fact that the problem
is a relaxation of the TSP, as fewer subtours than in the TSP need to be
branched upon.

However, Ibaraki’s results can be improved by taking advantage of recent
developments in the construction of algorithms for the assignment problem
[1] and for the TSP (see for example [2]). Further, we feel that additional
computational tests are required to validate the suggested approach.

In their paper on the TSP, Carpaneto and Toth demonstrate that Shapiro’s
algorithm can be vastly improved by using a more efficient algorithm for the
assignment problem [1] and by modifying the rule for generating subproblems.
They use the partitioning scheme proposed by Garfinkel [5] to which they
add a refinement. At each node h of the tree, E, is defined as above and I,
is the set of all arcs included in the solution (at the first node of the tree,
I,=¢¥). Branching is made from the subtour with the minimum number of
arcs not included in I, (as opposed to the subtour with the minimum number
of arcs as in [14] and in [5]). E; is defined as in [14] and I, as in [5):

Im{ I, i j=1
! Ihu{(rs’ru+l):u=l’--uj"’l} if j>l'

The overall effect of this strategy is to drastically reduce the number of
nodes in the search tree. The authors report results for TSP’s ranging from
40 to 240 nodes.

We therefore suggest applying a similar approach to the STSP: i. e. we use
the same relaxation as Ibaraki but the approach developed by Carpaneto

and Toth for the solution of the assignment problems and for generation of
the subproblems.

4. COMPUTATIONAL RESULTS

It is now well known that the computational performance of subtour
elimination algorithms such as those described by Shapiro [14] and by Carpa-
neto and Toth [2] varies greatly according to whether C is symmetrical (i.e.
c;y=cy for all i, je N) or not. In the first case, this type of approach is less
efficient since a large number of subtours involving only two nodes are
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generated and have to be eliminated; this phenomenon is far less frequent in
asymmetrical problems, We have tested the algorithm on both types of
problems.

The algorithm was first tested on a series of asymmetrical problems ranging
from 80 to 200 nodes. The ¢;;'s for these problems were randomly generated
frorn a uniform distribuiion on [, 100} For each value of n, k was sucoessively
set at n/4, n/2, 3n/d and n. Five problems of each type were solved; table I
reports average values. ARl problemns were solved on the University of
Montreai Cyber 173 computer, using an FTIN4 compiler. Memory appears
to be the main factor limiting the size of the largest problems which could
he solved by the algorithm: all problems involving no more than 200 nodes
could be solved within 20 seconds; however, problems containing more than
200 nodes  required more than the maximum memory allowed
{ 200000, words).

For & given value n, we observe that the time regired to solve the problem
is not monotonic with respect to &: there appears to be & peak at about #/2
and a trough at 3x/4. {The peak was noted by Ibaraki {7], but not the

Tame [
Rexults for asymmetrical problems
{average values om 5 random problems)
) ks nfd k=nf2 kw3nid ko
Time .65 k5. 7] 334 313
o~ AP !‘) 9.6 280 338 410
""" QY 56 108 152 156
Nodes {4 EXi} 4.4 5% &6
[ Time 596 6,69 a7 5.79
190 AP 250 30.6 205 36.0
""" 9 114 154 10 218
! Nodes 52 556 52 T4
Time 8.52 109 5.66 6,59
160 AP 4.8 I8 6.4 572
"""" Q 100 24 114 16.2
‘Nodes 6.2 36 6.2 5.6
. Time R0 18.19 1216 15,30
%00 AP 154 53.0 66,0 128.0
----- Q 8.5 26.8 28 358
Nodes 26 14 18 134

("} AP: nuenber of assipnment problemy solved.
{3} ¢ number of subproblems inserted in the queue (see [21).
{*) Nodes: number of nodes explored in the branch and bound tree
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trough.) These results were confirmed by solving several small problems
(n=20 and 30) with all values of k from 1 to n.

The algorithm was also tested on symmetrical problems not satisfying the
triangle inequality. These were generated as in the asymmetrical case with
the additional requirement that ¢;;=c;. As expected, a very large number of
subtours involving only two nodes were observed, leading to excessive
memory requirements; computation times were also larger than in the asym-
metrical cases but in general better than those reported in an earlier paper
on the symmetrical STSP [9]. Results for problems ranging from 20 to
80 cities are reported in table II

TasLe 11
Results for symmetrical problems
[average values on the number of successful problems out of 5 (*)}
n k=n/5 k=2n/5 | k=3n/5 k=4n/5 k=n
. Time 0.09 0.19 0.54 1.81 4.56
2 AP () 6.8° 10.2 25.2 77.2 179.6
T 4.0 6.4 19.0 450 106.4
\ Nodes (4 338 58 134 38.6 88.6
Time 0.50 4,07 23.72 21.65(4) )
40 AP 18.2 79.2 390.6 315.2
e Q 10.6 53.0 226.8 256.5
‘ Nodes 104 39.2 197.8 162.0
{ Time 291 23.62 © © ©
6 AP 49.6 203.0
s Q 2.2 140.0
Nodes 25.4 103.2
( Time 148 (0) (0) {0) (0)
80 | AP 145.2
Tt Q 85.6
\ Nodes 71.0

(*) Whenever the number of successful problems is less than 5, this is indicated in brackets.
(%) AP: number of assignment problems solved.

(*) Q: number of subproblems inserted in the queue (see [2]).

(*) Nodes: number of nodes explored in the branch and bound tree.
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