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CALCULATION OF OPTIMAL CHECKOUT INTERVALS
WHEN FAILURE RATE FIGURE INCREASES WITH TIME (*)

by Ubaldo G. FLORIO O

Abstract. — Given the shortcomings of the Poisson's model in describing the behaviour of Systems and
components subject to wear, the Weibull model has been considered and gênerai formulae have been
developedfor optimal checkout intervals. Exact and approximate solutions are derived and sensitivity
analysis is presentedfor populations of components for which thefailure rate increases linearly in time.

Resumé. — Devant les défauts du modèle de Poisson pour la description du comportement des
systèmes et composants sujets à l'usure, on a considéré le modèle de Weibull et on a développé des
formules générales pour les intervalles optimaux de révision. On calcule des solutions exactes et
approchées et on présente l'analyse de sensibilité pour des composants dont le taux dépanne s'accroît
linéairement avec le temps.

INTRODUCTION

In the electronic field, the Poisson model is widely used and appreciated. This
model consists of the assumptions that the failure rate of a certain population of
components is costant in time, that the failure are statistically independent of
each other, and that the probability of more than one failure in a very small time
interval dt is zero.

In spite of the criticism made of this model, it is universally adopted and is in
fact the standard basis for the optimal checkout interval calculations of
electronic Systems; this is justified by the ease of calculation, which at times is an
indispensable factor for the calculation performance itself ([1, 2]).

Among the cases in which the above simple approximation is insufficient to
find the solution to spécifie problems, the example of Systems with wear
phenomena which cause an increase of the failure rate in time is particularly
interesting.

An example of such a problem is the optimal checkout interval calculation of a
component which has been subject to wear during the acceptance tests and the

(*) Received May 1982.
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periodic préventive maintenance tests perförmed on it at regular time intervals
durîng ils sîorage in ths arsenal

The shnpfest hypothesis which can be ft>nnula£ed to take tnto account the
conséquences of wear is to assume an instantaneous faïlure rate linearly
Increasmg in time:

As is weü knowûj (1.1) is a particuiar case (m — 1) of the more gênerai

(1,2) z{t)

which represents the behavkmr in time of the instantaneous failure rate of a
population of components wfaose life duration h given by the probabiïity density
fonction:

(1-3)

known as ihc "Weibull distribution",
IÎÏ this csss the gênerai formula for reîiabillty:

(1.4) v(/=t f- O - €xp r - f' z(x) dxi

where t; is mission start time and tf mission end time, foecomes:

(1.5)

when the mission start comddes with the component life start* Le. ^ — 0
and tf—t.

The évaluation of the optimal checfcout întervaï in the case of (1,5) can be
anaiiticaily carried oui onïy m the case m — X (Rayteigh ïnodel), wh^ch i$ wïdeîy
koown m the üterature [3]+

In the mechanica* and electromechamcaï field it has the same importance of
the Fotssoîi's model in the eîectromc fieid, as (î , î) is suïtabk to represent the
behaviour of inany mechanicat and eleçtromechanical cotnponents and
Systems ([4, 5]).

For exampïe a balt bearmg is a very simpie component, ih& faiture rate of
which eau be assumed to depend onîy on wear. It behaviour is therefore
representable by formula (1, î)r

Other examples are the brushes of au eîectrio machine, a pump System for the
lifting of liqaid, etc,
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Therefore after having presented a gênerai model for the calculation of
optimal checkout intervais, this note extends Kamin's évaluation model [1] to
calculate optimal checkout interval for Systems subject to random failures with
following survival probability:

(1.6) v(0

The analysis is derived following the outline and symbology suggested by
Goldmann [2].

2. THE MODEL

In the case of the gênerai formula (1.5), the integrated value of operational
ineffectiveness during a cycle is [2]:

(2.1)
J o

where: T> checkout interval; q, checkout probability of failure; R, checkout
opération time.

Therefore average operational readiness is [2]:

(2.2)

with p, q, and R as input parameters.

By deriving previous équation, necessary condition for optimal T results:

(2.3) TA'(T)-A(T) = 0.

If Rayleigh's model (1.6) is assumed to be valid, this expression can be
analitically worked out.

In this case, through (1.6) and (2.1), eq. (2.3) becomes:

(2.4)
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where q>(x) is Kranp's function, related to Laplace's intégral F(x) by [6]:

(2.5)

Eq. (2.4) can be solved by means of numericai search techniques. As example, we
consider foliowing cases:

p = QA, 4 = 0.2, K = l day
and:

p = 0A9 4 = 0.8, R = 23 day

for which eq. (2.4) yields:

7*^1.1; 7 ^ 3 . 6 ,

to be respectively compared with Kamin's approximate solution
Top=(2qR/Pr2:

3. APPROXIMATE SOLUTION

As know, F(x) distribution function is amost linear near to the origin of
coordinates, i, e., it can be described with a sufficient accuracy by the first two
terms of series development [6]:

1 1 oo Y 2 l c - 1

Linear approximation can also be used for exponential in eq. (2.4)

In this way eq. (2.4) becomes through (2.5):

(3.2)

Simple cubic eq. (3.2) yields a good approximation (5 %) if R and resuiting T
are < 1/^/2 p.

As example in the wrong case:/? = 0.1, q = 0.8, R = 2.3, approximate solution is
r a = 3.2 against 7* = 3.6 with a relative error percent of 11 %
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4. MODEL SENSITIVITY

In order to explore the sensitivity of the model, differential analysis of eq. (3.2)
can be very useful to see the effect on the optimal checkout interval by varying the
input parameters.

In this study it is assumed that q<0.5 and the input parameters were varied,
one at a time, over a range of values in order to obtain a set of solutions for
optimal inspection interval.
Therefore, by means of (3.2), we have:

(4 u (Ë\ =_4 =

\dp)Kq fT p2î[3f+2R(l-2q)]-

Eq. (3.2) can be solved with respect to p:
(4 7\ — ^

' ; P~J\fr'+R~(ï~-
Therefore eq. (4.1) becomes through (4.2):

(4
p j 8 l ! qR

An analysis of eq. (4.2), (4.3) shows that T=T(p) curve has a négative
sensitivity in the région of interest and validity of eq. (3.2), 0 < T< TL = 1 /s/ïp;
0 <p < 1 ; (i. e. when p increases along p axis, Tasymptotically decreases to zero,
while sensitivity (4.3) decreases from oo to zero).

With référence to R and q parameters, going on in the same way of eqs,
(4.2) (4.3), we respectively obtain:

\8RJp., pTt&q-O-iqjpï*]'
(4 5)

and:

(4.6)

(4 T) (8T
\dq)P,R

Eqs. (4.4) (4.5) demonstrate that T= T(R) curve has a positive sensitivity in the
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région of validity of eq. (3.2), i. e.: 0< T< Hyflp and 0<R < l/^/ïp i. e. as R
increases along R — axis, T also increases asymptotically from zero to
To = {q | [p(l — 2 q)\ }1/2 while derivative (4.5) decreases from oo to zero.

With référence to positive derivative (4.7), as q and T increase along q-
T— axis, it decreases from oo to 2.R.

The previous analysis demonstrates that the checkout optimal interval is
sensitive to the changes of input parameters, according to the above said
functional relationships.

ït suggests that a good accuracy of input parameters would be necessary.

CONCLUSIONS

Given the shortenings of Poisson's model in describing the behaviour of
systems and components subject to wear, the obtained results are an original
contribution to complete and improve optimal checkout interval évaluations of
analogous models.

Since WeibulFs model with m = 1 can be analytically studied and is suitable to
represent the behaviour of many mechanical and electromechanical
components, this paper is devoted to populations of components for which the
failure rate increases linearly in time.

The author dérives exact and approximate solutions and présents sensitivity
analysis.
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