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CALCULATION OF OPTIMAL CHECKOUT INTERVALS
WHEN FAILURE RATE FIGURE INCREASES WITH TIME (*)

by Ubaldo G. Frorio (%)

Abstract. — Given the shortcomings of the Poisson’s model in describing the behaviour of systems and
components subject to wear, the Weibull model has been considered and general formulae have been
developed for optimal checkout intervals. Exact and approximate solutions are derived and sensitivity
analysis is presented for populations of components for which the failure rate increases linearly in time.

Résumé. — Devant les défauts du modéle de Poisson pour la description du comportement des
systémes et composants sujets & lusure, on a considéré le modéle de Weibull et on a développé des
Jformules générales pour les intervalles optimaux de révision. On calcule des solutions exactes et
approchées et on présente I'analyse de sensibilité pour des composants dont le taux de panne s’accroit
linéairement avec le temps.

INTRODUCTION

In the electronic field, the Poisson model is widely used and appreciated. This
model consists of the assumptions that the failure rate of a certain population of
components is costant in time, that the failure are statistically independent of
each other, and that the probability of more than one failure in a very small time
interval dt is zero.

In spite of the criticism made of this model, it is universally adopted and is in
fact the standard basis for the optimal checkout interval calculations of
electronic systems; this is justified by the ease of calculation, which at times is an
indispensable factor for the calculation performance itself ([1, 2]).

Among the cases in which the above simple approximation is insufficient to
find the solution to specific problems, the example of systems with wear
phenomena which cause an increase of the failure rate in time is particularly
interesting.

An example of such a problem is the optimal checkout interval calculation of a
component which has been subject to wear during the acceptance tests and the

(*) Received May 1982.
(1) c/o Selenia S.p.A., via Tiburtina, Km 12,400, 00131 Roma, Italia.
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periodic preventive maintenance tests performed on it at regular time intervals
during its storage in the arsenal.

The simplest hypothesis which can be formulated to take into account the
consequences of wear is to assume an instantaneous failure rate limearly
increasmg in time:

.0 g{y=Fkt

As is well known, {1.1) is a particular case {m=1) of the more general
(1.3 {8} ==kt

which represents the behaviour in time of the instantaneous failure raie of a
population of components whose life duration is given by the probability density
function:

- )
] f == m PR 1. 2l
a3 Fty =kt texp K J

known as the ““Weibull distribution”,
In this case the general formula for relinbility:

i
(1.4) vi{t=1,— zg)mexp[wf z(-t)d{l,
i)
where 1; is mission start time and 7, mission end time, becomes:
K '
i..s Ly == e s gL
.9 vy=exp( - o ),

when the mission start coincides with the component life starf, ie. 2,=0
and {,=t.

The evaluation of the optimal checkout interval in the case of {1.5) can be
analitically carried out only in the case m=| (Rayleigh model), which is widely
known in the literature {3].

In the mechanical and electromechanical field it has the same importance of
the Poisson’s model in the electronic field, as (1. 1) is suitable to represent the
behaviour of many mechanical and electromechanical components and
systems ({4, 5]}

For example a ball bearing is a very simple component, the failure rate of
which can be assumed to depend only on wear. It behaviour is therefore
representabie by formula (1. 1),

Qther examples are the brushes of an electric machine, a purap system for the
lifting of liquid, etc,
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Therefore after having presented a general model for the calculation of
optimal checkout intervals, this note extends Kamin’s evaluation model [1] to
calculate optimal checkout interval for systems subject to random failures with
following survival probability:

1.6) v()=exp(—p??)
with p=K/2.

The analysis is derived following the outline and symbology suggested by
Goldmann [2].

2. THE MODEL

In the case of the general formula (1.5), the integrated value of operational
ineffectiveness during a cycle is [2]:

2.1 A(T)=J [1—v(t)]dt+(1—q)v(T)j [1 —v(8)]dt+qRv(T)
R o
+[1=v(D]R.

where: T, checkout interval; g, checkout probability of failure; R, checkout
operation time.

Therefore average operational readiness is [2]:
2.2) 6n=1-20

with p, ¢, and R as input parameters.
By deriving previous equation, necessary condition for optimal T results:
2.3) TA'(T)—A(T)=0.

If Rayleigh’s model (1.6) is assumed to be valid, this expression can be
analitically worked out.

In this case, through (1.6) and (2.1), eq. (2.3) becomes:
(2.4)

WP~ o(/PR)+(1=)(1+2pT") e ¢(\/pR) -2 ﬁ Te#" =0,
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where ¢ (x) is Kranp’s function, related to Laplace’s integral F(x) by [6]:

(2.5) o(x)=2F(/2x)—1.

Eq.(2.4) can be solved by means of numerical search techniques. As example, we
consider following cases:

p=0.1, g=0.2, R=1 day
and:
p=0.1, q=0.8, R=2.3 day

for which eq. (2.4) yields:
T*~1.1; T*=~3.6,

to be respectively compared with Kamin’s approximate solution
T,,=(2qR/p)"™

3. APPROXIMATE SOLUTION

As know, F(x) distribution function is amost linear near to the origin of
coordinates, i. €., it can be described with a sufficient accuracy by the first two
terms of series development [6]:

1 o x2 k—1

N N e L VI s Vg

3.1) F=5+

Linear approximation can also be used for exponential in eq.(2.4)
ie e*=14x([1, 2)).

In this way eq. (2.4) becomes through (2.5):
3.2 AT, p, g, R)=T>+R(1-29) T>—qR/p=0.
Simple cubic eq. (3.2) yields a good approximation (5 %) if R and resulting T
are<1/ \/55

Asexample in the wrong case: p=0.1, ¢=0.8, R=2.3, approximate solution is
T,=3.2 against T*=3.6 with a relative error percent of 119%,.
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4. MODEL SENSITIVITY

In order to explore the sensitivity of the model, differential analysis of eq. (3.2)
can be very useful to see the effect on the optimal checkout interval by varying the
input parameters.

In this study it is assumed that ¢ <0.5 and the input parameters were varied,
one at a time, over a range of values in order to obtain a set of solutions for
optimal inspection interval.

Therefore, by means of (3.2), we have:

o\ f gR
4.1) (gl’q——f;‘ pP’TB3T+2R(1-29)}"

Eq. (3.2) can be solved with respect to p:

- gR
T T[TP+R(1-2¢) T

“.2) )/

Therefore eq. (4.1) becomes through (4.2):

oT T [T+R(1-29)
@ ~<5‘5)R,q=‘5'§ 3T+2R0A-2¢)

An analysis of eq. (4.2), (4.3) shows that T=T(p) curve has a negative
sensitivity in the region of interest and validity of eq. (3.2),0<T< T, =1/ \/5;),
0<p<1;(i. e. when p increases along p axis, T asymptotically decreases to zero,
while sensitivity (4.3) decreases from oo to zero).

With reference to R and ¢ parameters, going on in the same way of egs,
(4.2) (4.3), we respectively obtain:

4' = __._P_Zﬁ._..___.
@9 R p—(1-2¢)pT*’
or\ _ lg—(-2¢) pT*
- <5§>p,q_p7”[3q—(1—2q)p’ﬁ]’
and:
_ (T+R) pT*
or _ R(1+2pT?)?

Eqgs.(4.4)(4.5) demonstrate that T= T(R) curve has a positive sensitivity in the
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region of validity of eq. (3.2),1.e.:0<T<1/,/2p and 0<R<1//2p i.e.as R
increases along R—axis, T also increases asymptotically from zero to
To={q|[p(1—2¢)]}'/* while derivative (4.5) decreases from oo to zero.

With reference to positive derivative (4.7), as ¢ and T increase along g-
T —axis, it decreases from oo to 2R.

The previous analysis demonstrates that the checkout optimal interval is
sensitive to the changes of input parameters, according to the above said
functional relationships.

It suggests that a good accuracy of input parameters would be necessary.

CONCLUSIONS

Given the shortenings of Poisson’s model in describing the behaviour of
systems and components subject to wear, the obtained results are an original
contribution to complete and improve optimal checkout interval evaluations of
analogous models.

Since Weibull’s model with m=1 can be analytically studied and is suitable to
represent the behaviour of many mechanical and electromechanical
components, this paper is devoted to populations of components for which the
failure rate increases linearly in time.

The author derives exact and approximate solutions and presents sensitivity
analysis.
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