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AN UPPER BOUND FOR THE SHORTEST HAMILTONIAN PATH
IN THE SYMMETRIC EUCUDEAN CASE (*)

by Ioan TOMESCU (*)

Abstract. — In this paper an algorithm for obtaining a Hamiltonian path from a shortest
spanning tree ofa complete weighted graph isproposed. As a conséquence, two inequalities between
the costs ofa shortest Hamiltonian path and a shortest spanning tree Tin the symmetrie EucUdean
case are proposed. These inequalities involve the diameter of T or the number of terminal vertices
of T and they become equalities in some particular cases.

Keywords: Hamiltonian path, Spanning tree, Triangle inequality.

Resumé. — Dans ce travail on propose un algorithme pour l'obtention ctune chaîne hamiîtonienne
en partant de Varbre minimal d'un graphe complet non orienté value. Comme conséquence Von déduit
une borne du coût d'une chaîne hamiîtonienne minimale dans le cas où les coûts satisfont Yinégalité
du triangle. Cette borne fait intervenir le diamètre et le nombre des sommets pendants de T, elle
devient une égalité dans certains cas particuliers.

Mots clés : Chaîne hamiîtonienne, arbre partiel, inégalité du triangle.

1. DEFINITIONS AND NOTATION

Let Kn be the complete graph having vertex set V(K„) = { 1, . . . , n } and edge
set E(Kn) = {ij\lSi<j^n}.

To each edge ij is associated a cost c(iJ) = Cij^O such that:

is a symmetrie matrix having c« = 0 on the main diagonal.
Suppose also that éléments of C verify triangle inequality:

for any ij, k = 1, .. .,n, i. e. c(7 may be considered as a distance between
vertices i and j of K„.

(*) Reçu février 1982.
i1) Faculté de Mathématiques, Université de Bucarest, Str. Academiei, 14, 70108 Bucuresti,

Roumanie.
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298 I. TOMESCU

Ttie cost of a path (cycle) of K» is equal to the sum of the costs of the edges
of this path (cycle).

A shortest spanning tree (SST) of Kn is a spanning tree of Kn having
minimum cost. In a similar way a shortest Hamiltonian path (SHP) and a
shortest Hamiltonian cycle (SHC) are defined.

The problem of deterrnining a shortest Hamiltonian cycle of Kn is also
known as the travelling salesman problem [4].

Some connections between SST's problem and SHC's problem were
discovered by M. Held and R. M. Karp [5].

Using a similar method of penalizing vertices, N. Christofides proposed an
algorithm for solving SHFs problem which starts from a SST of K„ [3]. This
algorithm is not necessarily convergent and it produces a variety of spanning
trees of K„ associated to matrices of costs preserving all SHP having two fixed
extremities. I. Tomescu proposed an algorithm for obtaining a Hamiltonian
path (HP) of K„ [7] which is based on 3 types of transformations of a SST,
denoted respectively by 1, 2 and 3.

These transformations are used in order to deerease at each step the number
of terminal vertices (or leaves) of the tree, until it is obtained a spanning tree
of K^ having exactly two terminal vertices, which is a HP of K„.

No estimation is made in [7] about the error of the algorithm for obtaining
a SHP, even in the Euclidean symmetrie case, when the costs satisfy triangle
inequality.

In the sequel we shall obtain such an évaluation if only transformations of
type 3 are applied.

For a spanning tree T of Kn we shall define the distance dT(iJ) between
vertices i and; by the cost of the unique path of T joining i and j and the
diameter of T, denoted by diam ( T), as

diam(T)= max dT(i,j)

We shall dénote by c(SST), c(SHP), c(HP), c(SHC), the cost of a SST, SHP,
HP, respectively SHC of Kn.

The degree of a vertex x in a tree Tis denoted degrC*).
An elementary subdivision of a nonempty graph G is a graph obtained

from G by the removal of some edge e — uv and the addition of a new vertex w
and edges uw and vw.

A subdivision of G is a graph obtained from G by a succession of elementary
subdivisions [1].

R.A.Î.R.O. Recherche opérationnelle/Opérations Research
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Z UPPER BOUNDS FOR c(SHP)

Suppose now that Tis a SST of Kn having t(T) = t terminal vertices. If t-2
then T is a SHP of X„. Otherwise, t ̂  3 and we shall describe an algorithm
which transforms T into a Hamiltonian path of K,» denoted HP, such that:

c (HP)^2c( r ) -d iam(T) .

For this, let ij be two terminal vertices of Tsuch that dT(i j) = diam(T). If x
is a terminal vertex of T, x^ij, there exists a unique path P : x, xly x2i . . . , x p

of T, p^ 1, such that dcgT(xi) = dcgT(x2) = . . . = deg r(xp-i) = 2 and
deg r(Xp)^3. There is a vertex v adjacent to xp such that v$V(P).

From T we obtain two trees 7\ and T[ defined as follows:
Ti is obtained from T by deleting vertices x9xu ...9xp-x and their incident

edges;

T[ is obtained from T by deleting edge xp v and inserting new edge xv, hence

It is clear that 7\ is isomorphic to a graph obtained from 7\ by inserting/?
new vertices on the edge x^u, or T[ is a subdivision of 7\ and

We can write:

c(n) = c(T)-c(xpyv) + c(x,v) (1)

By applying triangle inequality we dérive:

c (x5 »)gc (x, xi) + c (xi, i>) ̂  c (x, xi)

+ c (xp--1, xp) + c (Xp, I?) = d r (x, Xp) + c (Xp, v).

From (1) we deduce that:

(P) (2)

If t = 3 then ^(70 = t (Tl) = 2 and we define HP= T\.
Otherwise, let y be a terminal vertex of Tx, ^ ^ i j and the path:

of Tl5 ^ ^ 1 , such that:

degT1G
;i) = degr1(y2)=.*.=deg r i0;,-1) = 2 and
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300 I. TOMESCU

Since T\ is a subdivision of Tx it follows that all terminal vertices and all
vertices of degree greater than 2 are the same in 7\ and T\.

Hence we dérive that there is a path Qi between y and yq in T\ such that
all vertices of this path different f rom y and yq have their degrees in T\ equal
to 2, But degr'j (yq) è 3 implies that there exists a vertex w adjacent to yq

in T\ such that wfV(Qi). From 7\ we obtain a new tree T2 and f rom 7\ a
tree 7J which are defined as follows:

T2 is deduced from 7\ by the removal of vertices y,yi, •. .,yq-i and their
incident edges and T2 is obtained from Tx by deleting edge yq w and inserting
new edge/w, hence V(T2) = { 1, . . . , « } .

r 2 is a subdivision of T2 and
We dérive also:

c{yq,W) + c{y,w). (3)

By applying triangle inequality we g&t:

= ^rt O, ƒ,) + c (y«, w) = dT O, ƒ,) + c iyq, w),

since Tx is a subtree of T.
Hence (3) implies:

(4)

If t = 4 then T2 is a Hamiltonian path and we define HP= T2. Otherwise, we
consider a terminal vertex z^ij of T2 and we obtain in a similar manner trees
T3 and T'3 and so on.

Note that Tt are subtrees of T containing all the i—j path of T
whereas Tt are spanning trees of K„, as is illustrated in figure 1.

It follows that Tt-2 is the unique path Pt-2 of Tjoining vertices i and j and
Tt-2 is a Hamiltonian path of K„. We define HP=Tf_2- From inequaüties
(2), (4), ... we deduce that:

t-3

i = O

where P0 = P.

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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302 I. TOMESCU

Since E(P) U£(Pi) U . . .\JE(Pt-2) is a partition of the edge set E(T)
of T(sœfig. 1), we can write:

f-3 t-2

i — 0 i = 0

hence:
(5)

This heuristic algorithm for obtaining a SHP may proceed as follows: at
each step is selected that terminal vertex x^ij such that the increase of the
cost, equal to c (x, v) — c (xP) v) to be minimum.

THEOREM 1: ƒƒ HP is a Hamiltonian path obtained with the preceding
algorithm in the symmetrie Euclidean case from T, which is a SST having t
terminal vertices, then:

«(.-!)•
(6)

\ r /

Proof: It remains to prove only that:

/L-Mc(T), (7)

For this consider a terminal vertex a^ij of T, where d
There exists a unique path ayaua2, . . .,aryb in T such that b is the unique
vertex of this path which belongs to the path between i and j in T(see^g. 2).

Figure 2
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Since dT (ij) = diam(T) it follows that:

dT (o, b) ̂  dT (i, b) and dT (a, b) ̂  dT (ƒ, 6),
hence:

or:
-

Any edge not belonging to the path between i and j in T joins two consécutive
vertices of a path of the fonn a, au . . . , ar, b in T, where a^i, j is a terminal
vertex of T and b lies on the f— j path in T. This implies:

diam(T)= -

or:
2

and (7) is proved.

COROLLARY 1: If SHP is a shortcst Hamiltonian path in the symmetrie
Euclidean case and Tis a SST with t terminal vertices, thefollowing inequalities
hold:

(8)

If the star Klt„-i is a spanning tree of K„ such that the cost of any edge of
£(^i,n-i) is equal to 1 and the cost of any edge of £(iCt)\E tKi,„-i) is equal
to 2, the triangle inequality is verified.

In this case KUn-1 is a SST of K^ c(SHP) = 2n-4 , c(KlflI-i) = n - l ,
diam(K1(n-i) = 2, t=n— 1 and all inequalities of (8) become equalities. This
case is shown in figure 3.

Now consider the spanning tree T of K» composed from the path
1,2, . . . , n - t + 2 and t—2 edges: 2 ,n - t + 3; 3,n-£+4; .. . ; t - l , n , where
n^2 ( t -1 ) , t ^ 4 such that the cost of any edge of E(T) is equal to 1 and the
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304 î. TOMESCU

cost of any edge uveE (IQ\E (T) is equal to dT (w, v). An illustration is given
in figure 4.

2 5 t-1 t

Figure 4

In this case the triangle inequality is satisfied, Tis a SST of K„ having
t(T) = t terminal vertices and c(T) = n-\, diam(T) = n-t+ 1. For a SHP of
K„ at least î—2 terminal vertices of T are internai vertices, hence:

R.A.I.R.O. Recherche opérationnelle/Opérations Research



SHORTEST HAMILTONIAN PATH SYMMETRIC EUCLIDEAN CASE 305

It follows that we can choose:
SHP: 1, 2, n - t + 3, 3, n-f + 4, . . . , f - 1 , n, t, t+1, .. , ,n- t + 2, and

We obtain:

f c(T)- - j

since the inequality is equivalent to n>£+ 1, which is true because n ^ 2 t - 2
and t^4 .

Note that if the proposed algorithm is applied to T we find a SHP of K„.

COROLLARY 2: If HP is a Hamiltonian path produced by the proposed
algorithm in the symmetrie Euclidean case from a SST having t terminal
vertices, it follows that:

c(HP) ^

c(SHP)-

This inequality results from (6) since c (SST) ge (SHP).
D. Rosenkrantz, R. Stearns and P. Lewis [6] proved that in the symmetrie

Euclidean case if T is a SST of K„ then c(SHC)g2c(T) (see also [2]). This
result appears also as a conséquence of the theorem 1:

COROLLARY 3 (Rosenkrantz, Stearns, Lewis): If the costs satisfy triangle
inequality then:

where T is a SST of K„.

Proof: If HP is a Hamiltonian i—j path obtained with the proposed
algorithm, then adding edge ij we find a HC for which the cost is equal to:

It follows that c (SHC) ̂  2 c (T).

COROLLARY 4: If HC dénotes the Hamiltonian cycle obtained in the symmetrie
Euclidean case from the Hamiltonian i—j path HP by adding edge ij, then:

where T is the SST from which HP is deduced and emax dénotes an edge of SHC
having maximum cost.
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306 I. TOMESCU

Proof; By the removai of the edge e^ of SHC we get a HP, which is a
spaimmg tree of K*, hence:

Note tfoat thïs upper bound for the cost of HC is the same as for the
Hamtltoman cycle obtaiiïed by tbç nearest insertion raîe (NÎR procedure
of j4J), pFOposed by 0 . Roseakrantz, R. Stearns and R Lewis [6].

From coroltary 4 it foîïows aîso that:

since:
c(SHC)
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