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AN UPPER BOUND FOR THE SHORTEST HAMILTONIAN PATH
IN THE SYMMETRIC EUCLIDEAN CASE (*)

by Toan Tomescu (*)

Abstract. — In this paper an algorithm for obtaining a Hamiltonian path from a shortest
spanning tree of a complete weighted graph is proposed. As a consequence, two inequalities between
the costs of a shortest Hamiltonian path and a shortest spanning tree T in the symmetric Euclidean
case are proposed. These inequalities involve the diameter of T or the number of terminal vertices
of T and they become equalities in some particular cases.

Keywords: Hamiltonian path, Spanning tree, Triangle inequality.

Résumé. — Dans ce travail on propose un algorithme pour I'obtention d’ une chaine hamiltonienne
en partant de I'arbre minimal & un graphe complet non orienté valué. Comme conséquence I'on déduit
une borne du coit d’une chaine hamiltonienne minimale dans le cas ou les cotits satisfont linégalité
du triangle. Cette borne fait intervenir le diamétre et le nombre des sommets pendants de T, elle
devient une égalité dans certains cas particuliers.

Mots clés : Chaine hamiltonienne, arbre partiel, inégalité du triangle.

1. DEFINITIONS AND NOTATION

Let K, be the complete graph having vertex set V(K,)={1, ...,n} and edge
set E(K,)={ij|1=i<j<n}.
To each edge ij is associated a cost ¢ (i,j) =c;;2 0 such that:

C=(Cij)i,j=1,..n

isa symmefric matrix having ¢;=0 on the main diagonal.
Suppose also that elements of C verify triangle inequality:

ciiScicteij

for any i,j,k=1,...,n, i.e. ¢;; may be considered as a distance between
vertices i and j of K,.

(*) Regu février 1982. ) )
(Y) Faculté de Mathématiques, Université de Bucarest, Str. Academiei, 14, 70108 Bucuresti,
Roumanie.
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298 I. TOMESCU

THe cost of a path (cycle) of K, is equal to the sum of the costs of the edges
of this path (cycle).

A shortest spanning tree (SST) of K, is a spanning tree of K, having
minimum cost. In a similar way a shortest Hamiltonian path (SHP) and a
shortest Hamiltonian cycle (SHC) are defined.

The problem of determining a shortest Hamiltonian cycle of K, is also

iidv pivvivii (iviiv2 $88

known as the travelling salesman problem [4].

Some connections between SST’s problem and SHC’s problem ‘were
discovered by M. Held and R. M. Karp [5].

Using a similar method of penalizing vertices, N. Christofides proposed an
algorithm for solving SHP’s problem which starts from a SST of K, [3]. This
algorithm is not necessarily convergent and it produces a variety of spanning
trees of K, associated to matrices of costs preserving all SHP having two fixed
extremities. I. Tomescu proposed an algorithm for obtaining a Hamiltonian
path (HP) of K, [7] which is based on 3 types of transformations of a SST,
denoted respectively by 1, 2 and 3.

These transformations are used in order to decrease at each step the number
of terminal vertices (or leaves) of the tree, until it is obtained a spanning tree
of K, having exactly two terminal vertices, which is a HP of K.

No estimation is made in [7] about the error of the algorithm for obtaining
a SHP, even in the Euclidean symmetric case, when the costs satisfy triangle
inequality.

In the sequel we shall obtain such an evaluation if only transformations of
type 3 are applied.

For a spanning tree T of K, we shall define the distance dr(i,j) between
vertices i and j by the cost of the unique path of T joining i and j and the
diameter of T, denoted by diam (T), as

diam(T)= max dr(i,j)

1=i,j=n

We shall denote by ¢ (SST), ¢ (SHP), ¢ (HP), ¢ (SHC), the cost of a SST, SHP,
HP, respectively SHC of K,

The degree of a vertex x in a tree T is denoted degr (x).

An elementary subdivision of a nonempty graph G is a graph obtained
from G by the removal of some edge e=uv and the addition of a new vertex w
and edges uw and vw.

A subdivision of G is a graph obtained from G by a succession of elementary
subdivisions [1].

R.A.LR.O. Recherche opérationnelle/Operations Research
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2. UPPER BOUNDS FOR ¢ (SHP)

Suppose now that T is a SST of K, having ¢t (T)=t terminal vertices. If t=2
then T is a SHP of K,. Otherwise, t=3 and we shall describe an algorithm
which transforms T into a Hamiltonian path of K,, denoted HP, such that:

c(HP)£2¢(T)—diam(T).

For this, let i,j be two terminal vertices of T such that dr (i,j)=diam(T). If x
is a terminal vertex of T, x#1,j, there exists a unique path P : x, x;, X2, . . ., X
of T, p=1, such that degr(x,)=degr(x)=...=degr(x,-1)=2 and
degr(x,;)=3. There is a vertex v adjacent to x, such that v¢ V(P).

From T we obtain two trees Ty and T7 defined as follows:

T, is obtained from T by deleting vertices x, x;, . . ., X,—1 and their incident
edges;

T is obtained from T by deleting edge x, v and inserting new edge xv, hence
V(T)=V(T)={L,...,n}.

Tt is clear that T is isomorphic to a graph obtained from T, by inserting p
new vertices on the edge x,v, or T; is a subdivision of T; and
t(Ty)=t(Ty)=t—1.

We can write:

¢(Ty)=c(T)—c(xp, v)+c(x,0) (1)

By applying triangle inequality we derive:
c(x,0)Sc(x,x1)+c(x1,0)=c(x, x1) -
+e(xx)+e(x2, ). .. Sc(x, x)+e(x1, x2)+ ...
+c(Xp—1, Xp) + ¢ (xp, V) =dr (x, X,) + ¢ (Xp, ).

From (1) we deduce that:

c(T)Sc(N)+dr(x,x)=c(T)+c(P) 2
If t=3 then t(T,)=1t(T})=2 and we define HP=T1. _

Otherwise, let y be a terminal vertex of Ty, y#i,j and the path:
Pyt 3, Y12 -V
of Ty, g=1, such that:
deng (yl)=degrl (yz)= .o =deg1-l (yq_l)=2 and deng (yq)g3.

vol. 17, n° 3, aotit 1983



300 1. TOMESCU

Since T is a subdivision of T, it follows that all terminal vertices and all
vertices of degree greater than 2 are the same in T, and Tj.

Hence we derive that there is a path @, between y and y, in T} such that
all vertices of this path different from y and y, have their degrees in T} equal
to 2. But degr, (yg)=3 implies that there exists a vertex w adjacent to y,
in T} such that w¢ V(Q;). From T; we obtain a new tree T, and from 7] a
tree T; which are defined as follows:

T is deduced from T; by the removal of vertices y, y, ..., y,-1 and their
incident edges and T is obtained from T by deleting edge y, w and inserting
new edge yw, hence V(T3)={1,...,n}.

T3 is a subdivision of T, and ¢ (T,)=t(T3)=t—2.

We derive also:

c(T2)=c(T1)—c (g W) +c(, W). ®)

By applying triangle inequality we get:

C(y, W)§C(}’,J’1)+C(}’1, W)é v
éC(Y,Y1)+C(J/1,}’2)+ AR +C(yq—1,J’q)+C(Yq» W)
=d110’,)’q)+c(yq’ W)=dr(y,yq)+0(yq, W)’

since T, is a subtree of T.
Hence (3) implies:

c(T2)=c(T) +dr (r, y)) =c(T1) +c(Py). 4

If t=4 then T3 is a Hamiltonian path and we define HP= T3. Otherwise, we
consider a terminal vertex z #i,j of T, and we obtain in a similar manner trees
T3 and T3 and so on.

Note that T; are subtrees of T containing all the i—j path of T
whereas T; are spanning trees of K,, as is illustrated in figure 1.

It follows that T,_ is the unique path P,_, of T joining vertices i and j and
T;-, is a Hamiltonian path of K,  We define HP=T;_,. From inequalities
(2), (4), ... we deduce that:

t—-3

c(HP)=c(T;-3)Sc(T)+ ), c(Py),

i=0
where Py=P.

R.A.LLR.O. Recherche opérationnelle/Operations Research
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302 I. TOMESCU

Since E(P) UE(P,)U...\UE(P,-,) is a partition of the edge set E(T)
of T (see fig. 1), we can write:

t—3 t—2
Y c(P)= Y, c(P)—c(P-2)=c(T)—dr(i,j)=c(T)—diam(T),
i=0 i=0

hence:

¢(HP) <2 ¢ (T)—diam (7). 5

This heuristic algorithm for obtaining a SHP may proceed as follows: at
each step is selected that terminal vertex x #i,j such that the increase of the
cost, equal to ¢ (x, v)—c (xp, v) to be minimum.

TueoreM 1: If HP is a Hamiltonian path obtained with the preceding
algorithm in the symmetric Euclidean case from T, which is a SST having t
terminal vertices, then:

c(HP)§2c(T)—diam(T)__<_2(l—%)c(T). 6)
Proof: It remains to prove only that:
2cm—diamm§2(1—%)cm, ™

or diam (T)=(2/t) c(T).

For this consider a terminal vertex a#i,j of T, where dr(i,j)=diam (7).
There exists a unique path a,a;,a,, ...,q,,b in T such that b is the unique
vertex of this path which belongs to the path between i and j in T (see fig. 2).

Figure 2

R.A.LLR.O. Recherche opérationnelle/Operations Research
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Since dr (i, j)=diam(T) it follows that:
dr(a,b)<d;(i,b) and dr(a,b)<dr(, b),

hence:
2dr(a, b)<dr (i, b)+dr(b,j)=diam(T),

or:
1
dr(a,b)< 5 diam (7).

Any edge not belonging to the path between i and j in T joins two consecutive
vertices of a path of the form a,a,, .. .,a,b in T, where a#i,j is a terminal
vertex of T and b lies on the i—j path in T. This implies:

c(D=dr( )+ Y dr(ab)

a®i,j
. t—2 t ..
<diam(T)+ —2——d1am(T)= Edlam(T),

or.
diam (T)2 2 ¢(T)

and (7) is proved.
COROLLARY 1: If SHP is a shortest Hamiltonian path in the symmetric

Euclidean case and T is a SST with t terminal vertices, the following inequalities
hold:

c(SHP)§2c(T)—diam(T)§2<1—;)0(1'). ®)

If the star K; ,—; is a spanning tree of K, such that the cost of any edge of
E(K;,,-1)is equal to 1 and the cost of any edge of E (K,)\ E (Kj,,-1) is equal
to 2, the triangle inequality is verified.

In this case K, ,—; is a SST of K,, c(SHP)=2n—4, ¢(K; ,-1)=n~1,
diam(K;,,-1)=2, t=n—1 and all inequalities of (8) become equalities. This
case is shown in figure 3.

Now consider the spanning tree T of K, composed from the path
1,2,...,n—t+2 and t—2 edges: 2,n—t+3; 3,n—t+4;...;t—1,n, where
n22(t—1), t=4 such that the cost of any edge of E(T) is equal to 1 and the

vol. 17, n° 3, aout 1983



304 I. TOMESCU

cost of any edge uv e E (K,)\ E (T) is equal to dy (4, v). An illustration is given
in figure 4.

Figure 3

Figure 4

In this case the triangle inequality is satisfied, T is a SST of K, having
t(T)=t terminal vertices and c¢(T)=n—1, diam(T)=n—t+1. For a SHP of
K, at least t—2 terminal vertices of T are internal vertices, hence:

c(SHP)2c(T)+t—2=n+t—3.

R.A.LR.O. Recherche opérationnelle/Operations Research
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It follows that we can choose:

SHP: 1, 2, n—t+3, 3, n—t+4,...,t—1, n, t, t+1,...,n—t+2, and
¢(SHP)=n+t—3.

‘We obtain:

c(SHP)=2c(T)—diam(T)<2<1—%>c(T)

since the inequality is equivalent to n>¢+ 1, which is true because n=2t—2
and r=4. :
Note that if the proposed algorithm is applied to T we find a SHP of K,

CoroLLARY 2: If HP is a Hamiltonian path produced by the proposed
algorithm in the symmetric Euclidean case from a SST having t terminal
vertices, it follows that:

o 3-1)
c(SHP) = t)

This inequality results from (6) since ¢ (SST) <c(SHP).

D. Rosenkrantz, R. Stearns and P. Lewis [6] proved that in the symmetric
Euclidean case if T is a SST of K, then ¢(SHC)£2c¢(T) (see also [2]). This
result appears also as a consequence of the theorem 1:

CoroLLArY 3 (Rosenkrantz, Stearns, Lewis): If the costs satisfy triangle
inequality then:

c(SHCO)=2¢(T),

where T is a SST of K,.

Proofs If HP is a Hamiltonian i—j path obtained with the proposed
algorithm, then adding edge ij we find a HC for which the cost is equal to:

c(i,j)+c(HP)=dr(i,j) +2c(T)—diam (T)=2c(T).
It follows that ¢ (SHC)Z2¢(T).

CoroOLLARY 4: IfHC denotes the Hamiltonian cycle obtained in the symmetric
Euclidean case from the Hamiltonian i—j path HP by adding edge ij, then:

¢ (HC) £2¢(T) <2 (¢ (SHC) —¢ (emay)),

where T is the SST from which HP is deduced and ep,, denotes an edge of SHC
having maximum cost. '

vol. 17, n°® 3, aotit 1983



306 1. TOMESCU

Proof- By the removal of the edge e, of SHC we get a HP, which is a
spanning tree of K, hence:

ciT S e SHC —¢ {€max)-

Note that this upper bound for the cost of HC is the same as for the
Hamiltonian cycle obtained by the nearest insertion rule {NIR procedure
of {4]), proposed by ID. Rosenkrantz, R. Stearns and P. Lewis [6}.

From corollary 4 it follows also that:
c{(HC) 1
Pl lohet A=l T
c¢(S8HC) n
since:
c(SHC)
-

C{Cman) 2
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