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PRIORITY RANKING AND MINIMAL DISAGREEMENT:
A WEAK ORDERING MODEL (*) (**)

by Ronald D. ARMSTRONGC1), Wade D. COOK (2),
Mabel T. KUNG (3), and Lawrence M. SEIFORD (*)

Abstract. — In an earlier paper by Blin a model is presentedfor determining a consensus among
a set of ordinal rankings. His model is designed specifically to dérive that linear préférence ordering
which exhibits the minimal amount of disagreement relative to the set of voter rankings. In this paper
we extend Blin's model to include the set of all weak orderings. Since this more gênerai formulation
cannot be solved via the standard linear assignment model, two algorithms are presented for
determining the optimal weak ordering. Computational results are provided.

Keywords: Ranking; consensus; algorithms; transportation; branch and bound.

Résumé. — Blin a publié un modèle pour déterminer un consensus parmi un ensemble de
rangements (rankings). Son modèle a été spécifiquement construit pour obtenir le rangement des
préférences qui minimise le désaccord relativement à t ensemble des rangements soumis par les
votants. Nous étendons ici le modèle de Blin de façon à inclure Vensemble de tous les rangements
faibles. Puisque cette formulation plus générale ne peut se réduire à un problème canonique
d'affectation linéaire, deux algorithmes sont présentés pour déterminer le rangement faible optimal.
Nous donnons des résultats numériques.

Keywords: Ranking; consensus; algorithms; transportation; branch and bound.

1. INTRODUCTION

In an earlier paper Blin [2] presented a model for aggregating individual/voter
préférences expressed as ordinal rankings. He has shown that by combining
voter responses into an agreement matrix an optimal ranking can be
determined by solving a simple linear assignment problem. While voters are
permitted to supply weak orderings (ties allowed), the model can be used only
to dérive the best strict linear ordering. In cases where the true optimum is not
a linear ordering the assignment approach is déficient.

In this paper we extend the results of [2] to the gênerai case where the
optimal (consensus) ranking is to be selected from the space of all weak
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310 R. D. ARMSTRONG et al.

orderings. A generalized assignment model is developed, and two algorithms
for solving the model are presented. Computational results are included.

2. A BDVARY SOCIAL CHOICE FUNCTION FOR WEAK ORDERINGS

Consider a social choice décision problem in which each of m voters
supplies a weak ordering of a set of n objects. Each ranking vector A\
1= 1, 2, . . ., m takes the form Al = (a\, . . ., al

n) where a\ is the rank assigned
to the zth object by the /th voter. For example, with n — 3 A = (2.5, 1, 2.5)
indicates that objects 1 and 3 are tied for second and third place (rank of 2.5),
and object 2 is ranked in first place (rank of 1).

Let us represent each vector Al by its associated binary matrix
P' = G>y) where:

1 if object i has rank y;
. . ,m, 7 = 1, 1.5,2, . . . ,n,

The matrix représentation of ,4 = (2.5, 1, 2.5), for example, is:

1
P = 2

3

1

0
1
0

1.5

0
0
0

2

0
0
0

2.5

1
0
1

3

0
0
0

REMARK : If attention is restricted to linear orderings, each matrix P is an
nxn permutation matrix (see Blin [2]).

In order to obtain a consensus ranking many criteria are possible. Following
the approach of Blin, a logical and widely accepted définition of an optimal
ranking is that which solves the following /* norm problem:

Model 1: Minimum Distance Model (J1 norm):

m i n

where the minimum is taken overall nx (2 n— 1) matrices Q corresponding to
weak orderings (Blin considers only linear orderings).

While Model 1 is simple in form, it is extremely difficult to handle due to
the special structural requirements of the (qi}). An alternative and far more
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tractable approach (Model 2) is based on the simple average of the Pl

matrices.

Define the disagreement coefficient:

i

Model 2: Minimum Disagreement Model:

min X

Subject to:

Ï = 1, 2,. . ., n,

j = l , 1.5,2,. . .,

where each variable Dj represents the number of objects having rank j . Define
the consensus ranking as that whose matrix représentation is X=(xl7).

Models 1 and 2 are generalizations (to the set of weak orderings) of the two
models given in [2],

We state the following two theorems. Proofs are straightforward and are,
thus, omitted.

THEOREM 2 . 1 : In the space of weak orderings Models 1 and 2 are equivalent

THEOREM 2.2: In the space of weak orderings the l1 and l2 distance norms are
equivalent when applied to Model 1.

Theorems 2,1 and 2. 2 are analogous to lemmas 2 and 3 respectively in [2].
While Model 2 is more convenient to deal with than Model 1, it cannot be

solved in a manner as straightforward as was the case for linear orderings
(see [2]). The string of variables Du Dl5, . , ., Dn must constitute a ranking.
While it is possible to reformulate (2.1) as a large integer programming
problem, direct application of any Standard I. P. algorithm would prove
ineffective even for moderate sized problems.
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312 R. D. ARMSTRONG et al.

In the section to follow we present two branch and bound algorithms for
solving (2.1). The first is particularly simple to understand and apply, but is
limited with respect to the size of problems which it can solve. The second,
more complex, approach is designed to handle large problems. Computational
results pertaining to both procedures are discussed.

3. ALGORITHMS FOR THE MINIMUM DISAGREEMENT MODEL

3 .1 . An implicit enumeration algorithm

In this algorithm we create a solution tree consisting of partial rankings,
each of which has an associated bound. At each stage in the algorithm that
partial with the lowest bound to date is selected as the parent from which to
branch and create o ff spring partials. Each offspring will have one more object
ranked than did its parent. When a full weak ordering is finally obtained,
whose bound is not greater than any of those for the partials, that ordering
is optimal

The lower bound on all weak orderings is L = £ Oy. with Ou. being the
t

minimum element in the ith row of the disagreement matrix. An upper bound
U on all rankings can be obtained by solving (2.1) for the optimal linear
ordering. In stage 1 2 n — 1 partial rankings are created in which object 1 is
ranked 1, 1.5, 2, 2. 5, . . ., n. The lower bound on the partial having rank r
assigned to object 1 is Lr = L + (<ï>lr — Oi^).

At any stage in which the parent has, say / objects ranked, then the eligible
ranks which the (Z+l) st object can assume must be known at the time
branching takes places. For this purpose an eligibility vector E must be carried
along with each partial ranking R. E = (eu £i.5, . . ., en) is created as follows.

Initially:

f
j \

27-1 for j £ (n+ l ) /2 . j
2n-{2j-\) for ( + D^Kj^ J

For example, with n = 5 the allowable number of ranks at positions (1, 1.5,
2, 2. 5, 3, 3. 5, 4, 4. 5, 5) are (1, 2, 3, 4, 5, 4, 3, 2, 1) = £, respectively. Each
time a rank is assigned, certain other ranks become inéligible. For example,
if object # 1 is assigned rank 2. 5 then ranks 1. 5, 2, 3, 3. 5 become inéligible.
Hence, the partial ranking (2.5, —, —, —, — ) carries with it the modified
£-vector (1, 0, 0, 3, 0, 0, 3, 2, 1). Note that e2.$ now equals 3=4— 1; since one

R.A.I.R.O. Recherche opérationnelle/Opérations Research



PRIORITY RANKING AND MINIMAL DISAGREEMENT 313

object has been ranked at 2.5, at most 3 more can possess that rank. The
following rules are used to restructure E at each stage.

Rule 1: An even number of objects must be assigned at each non-integer
rank position (e. g. the number of objects ranked at position 2. 5 must be 0,2
or 4); an odd number of objects must be assigned at any integer position (e. g.
the number of objects ranked at position 3 must be 0, 1, 3, or 5).

Rule 2: If an object is being assigned an integer rank r (e. g. r = 2), and if no
other object currentiy possesses that rank then positions r— . 5 and r+ . 5 are
both set to zero in the E-vector and er is decreased by 1. If r is a non-integer
rank then positions r— 1, r — ,5,r+.5 and r+ 1 are all set to zero in E.

Rule 3: If the object being assigned to a position r is not the first in that
position we proceed as follows: If r is integer and an odd number of objects
(1, 3, 5...) has already been assigned (i. e. this is the 2nd or 4th or 6th... object
being assigned) then the two closest nonzero rank positions less than r and the
two greater than r are set to zero; er is decreased by 1. If an even number
currentiy have rank r then only er is decreased by 1.

If r is non-integer, and an odd number has been previously assigned then
only er is decreased (by 1 unit). If an even number has been assigned then er

is decreased by 1 and the two nearest nonzero ranks below and the two above
are set to zero.

The following is a statement of the essential steps of the algorithm:

Step 1: Compute an upper bound U by sol ving the linear assignment
problem associated with (2. 1) (i. e. using j = l, 2, . . ., n only). Compute the
lower bound L = ^O i J i . Generate the 2 n - l partial rankings of object 1 with

ranks 1, 1. 5, 2, . . ., and the associated (sorted) bounds

Store the partial rankings in 2n— 1 vectors Ru . . ., Rzn-i each of
dimension n. Create, using rules 1, 2, 3, the 2 n— 1 eligibility vectors
Eu • • . > E2n-i'

Go to Step 2.

Step 2: At stage / select the partial ranking with the lowest bound (designated
Ri due to sorting). For each rank position; for which e,-^0 create an of f spring
from Ri (assume Ri has / objects), by assigning to object /+1 the rank
associated with that rank position. Update the lower bound on Ru and update
Et for each of the new (Z+l)-vectors using rules 1, 2, 3. If any Lr exceeds
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U—l, discard the associated partial ranking. Renumber all L, R, E
combinations such that L j ^ I ^ ^ . . .

Go to step 3.
Step 3: If Ri has all objects ranked, then Rx is optimal. Otherwise go to

step 2.

Example: Suppose 10 voters rank 5 objects. Let the rankings l be:

Object:
1
2
3
4 . .
5

1

1
2
3
4
5

2

1.5
1.5

5
4
3

3

4
5

2.5
1

2.5

Rankings for Voter

4

3
3
3
5
1

5

1
3
4
2
5

6

2.5
2.5
2.5
2.5

5

7

5
4
3
2
1

8

3
3
3
3
3

9

5
4
2
2
2

10

1
3
2
4
5

The corresponding disagrcement tnatrix is given by:

Object:
1 . .
2
3 .
4
5

Rank Position

1

7
10
10
9
8

1.5

9
9

10
10
10

2

10
9
8
7
9

2.5

9
9
8
9
9

3

8
6
±
9
8

3.5

10
10
10
10
10

4

9
8
9
7

10

4.5

10
10
10
10
10

5

8
9
9
9
Â

The best complete ranking is [1, 3, 3, 3, 5]=>L/ = 34. Hence, at each stage to
follow we will keep partial rankings only if the corresponding L r^33.

Step 1: L = 32 (sum of numbers underlined in above table). Initial E-vector:
£ - [ l 5 2, 3, 4, 5, 4, 3, 2, 1] e. g., this says that 2 objects can be assigned at rank
position 1.5.

The 2 n — 1 =9 partial rankings are (ranking of object # 1 only).
(1, - ) : L1=L + (7-7) = 32, £ = [0, 0, 1, 2, 3, 4, 3, 2, 1];
(1.5, —) : Li.5 = 34, discard since L>33;
(2, - ) : L2 = 35, discard;
(2.5, - ) : L2.5 = 34, discard;
(3, - ) : L3 = 33, £ = [1, 2, 1, 0, 4, 0, 1, 2, 1];
(3.5, —) : L3.5 = 35, discard;
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(4, - ) : L 4 = 34, discard;
(4 .5 , - ) : L4.5 = 35, discard;
(5, - ) : L5 = 33, £ = [1, 2, 3, 4, 3, 2, 1, 0, 0].

We therefore retain only partials (1, — ), (3, — ), (5, — ).

Step 2: Selecting the lowest bound of 32 on (1, — ) we compute new bounds.

(1, 2, —) : L 1 ( 2 = 35, discard;
( 1 , 2 . 5 , - ) : L l f 2.5 = 35, discard;
(1, 3, - ) : Lx, 3 = 32, £ = [0, 0, 1, 0, 2, 0, 1, 2, 1];
(1, 3 .5 , - ) : L i , 3 . 5 = 36, discard;
(1,4, - ) : L 1 , 4 = 34, discard;
(1, 4. 5, — ) : L i j 4 . 5 =36 , discard;
(1, 5, - ) ; L l f 5 = 35, discard.

We retain only (1, 3, - ) , (3, - ) , (5, - ) .

Branching from (1, 3, — ) we get only (1, 3, 3 - ) wit h a bound less than 34.

L1>3,3 = 32, £ = [0, 0, 0, 0, 1, 0, 0, 0, 1].

Branching from (1, 3, 3, — ) all bounds exceed 33.

We retain only (3, - ) and (5, - ) .

Branching from (3, —), only (3, 3, —) has a bound less than 34.

L3,3 = 33, £ = [1, 0, 0, 0, 3, ö, 0, 0, 1].

Branching from (3, 3, —), only (3, 3, 3, —) has a bound less than 34.

L3,3,3 = 33 £ = [ 1 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , 1 ] .

Branching from (3, 3, 3, — ), all bounds exceed 33.

We retain only (5, — ).

Branching from (5, —), only (5, 3, —) has a bound less than 34.
L5,3 = 33, £ = [1, 2, 1, 0, 2, 0, 1, 0, 0],

Branching from (5, 3, —), only (5, 3, 3, —) has a bound less than 34.

L5, 3, 3 = 33, £ = [1, 0, 0, 0, 1, 0, 0, 0, 0].

All partials generated from (5, 3, 3, —) have bounds greater than 33.

Hence, the optimum is the linear ordering (1, 3, 3, 3, 5).
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316 R. D. ARMSTRONG et al.

Since most voter responses were strict linear orderings in this particular
example, so also was the consensus. In gênerai, however, when a relatively
high percentage of the voters provide tied préférences, such a resuit wilî not
occur. There is, of course, no direct means of determining this in advance.

While the algorithm described above is simple to apply, expérience, based
on several test problems, indicates that the number of itérations increases
drastically with the number of objects. For problems involving more than 10
objects, storage requirements become excessive. To deal with the case where
larger numbers of objects are present, an alternate solution procedure has
been designed, computerized and tested. We outline the essentials of this
procedure below.

3 • 2. A transportation-based algorithm

This method begins by creating a relaxed version of problem (2.1) which
can be solved efficiently. If the optimal solution to this initial candidate
problem is feasible for (2.1) then that solution is optimal for (2.1). If not, two
new problems are created by further restricting (2.1) such that:

(a) the union of the feasible régions of the two problems is identical to that
of (2.1);

(b) the intersection of the feasible régions for the two new problems is
empty, and;

(c) a relaxation of either new problem is easily solved. One of the two
candidate problems is chosen at each stage, and its relaxation is solved. This
strategy is continued until the entire feasible région for (2. 1) has been
implicitly explored.

The initial candidate problem is:

X=(Xij) .

subject to:
5>,= 1, ï=l,2, . . ., n,

(3.2)
= 1,1.5,2,2.5, . . ., n.

0 = x l 7 = l , O^sj^ej, i= l , 2, . . ., n, 7=1, 1. 5, 2, 2. 5, . . ., n.

Problem (3.2) is a relaxation of (2.1). Additionally, it is a capacitated
transportation problem for which efficient solution procedures exist (see
Armstrong et al [1]). In f act, an optimal integer solution will be obtained
using an extreme point algorithm.

R.A.LR.O. Recherche opérationnelle/Opérations Research
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Let (X*, 5*) dénote the optimal solution to (3.2), and define
Df = ej — sfïoY each;. Recall that Df represents the number of objects ranked
at position j . It must now be verified whether or not the set of Df constitute
a ranking. This is accomplished by applying rules 2 and 3 given in the previous
subsection (as a matter of convention the { ek} set to zero by a given Df will
be those for which 2j — Df^k^2j-\-Df — 1). Now, provided each ek/2 is set
to zero exactly once we have a ranking. If at any stage there is a duplication
(overlap), then that Df which caused the overlap is chosen as a candidate to
be further restricted. Rule 3 implies that e1—ei.5 = e2 = 0 (since D1>5 = 2) and
ex 5 = e2 = e2 5 = e3 = e3 5 = e4 = 0 (sinceD* = 3). Since e2 (also ei.5) is set to
zero twice, we do not have a ranking. Hence, either Df5orD?can be
selected as a candidate to be restricted.

The restriction/)^^D£ means that the upper bound on sjoisejö — Df; that is,
at leastZ) *0 objects are assigned rank j 0 . This restriction does not directly
eliminate the optimal solution to the parent relaxed candidate problem.
However, it follows from rules 1 and 2 that the upper bound on certain Dj
adjacent to Djo can be decreased without eliminating a possible ranking. The
addition of these bound restrictions does, however, eliminate the optimal
solution to the parent relaxed candidate problem.

The restriction DJ0^Df — 1 places a lower bound of ejQ — Df0+ 1 onsJo. That
is, at mostD/0 — 1 objects are assigned rank j0 and the current solution
becomes infeasible.

When two candidate problems are created, the one with the
restriction DJQ ̂  Df0 is always chosen to be the current candidate to be
examined. A candidate problem can be fathomed as the result of obtaining a
ranking, finding no feasible solution or obtaining a linear programming
objective value greater than the objective value associated with a ranking.
After a candidate problem is fathomed, a new current candidate problem is
chosen with a last-in-first-out décision rule. The dual algorithm of Armstrong
et al [1] is used to solve all transportation problems with the final solution of
the last inspected candidate problem providing an initial dual feasible solution
for the current relaxed candidate problem.

Computational Results

The algorithm outlined in this subsection was tested using a FORTRAN
computer code on a CYBER 170/750. The results of the computational study
are shown in table A. Each test problem used fifty randomly generated weak
orderings. Times reported are CPU seconds required to verify the optimal
ranking.
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TABLE A

Computationai Results

# Objects

CPU time
# Transportation problems inspectée. . . .

10

.8
87

15

2.7
126

20

10.6
282

25

18.5
295

30

52.3
386

35

84.2
422

4. CONCLUSIONS

This paper has presented two branch and bound algorithms for determining
the consensus (optimal weak ordering) among a set of voter rankings. The
transportation-based procedure is capable of solving relatively large problems,
and in addition permits a number of variations of the standard consensus
problem (weights on individual voters, upper limits on the number of objects
to be r&nked m certain positions, 6te). Thus algentîinî hâs been âpplicd lo
other distance functions as well, and has proven to be an efficient
computationai tool in a wide variety of situations.
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