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SUBGRADIENT OPTIMIZATION
AND LARGE SCALE PROGRAMMING:

AN APPLICATION
TO OPTIMUM MULTICOMMODITY

NETWORK SYNTHESIS
WITH SECURITY CONSTRAINTS (*)

by M. MINOUX (*) and J. Y. SERREAULT (2)

Abstract. — This paper is concernée with the solution of the following large scale optimization
problem: given a N-node, M-arc connectée graph G = [#"•; 4(\, détermine a M-vector Y=(Yu)ue% of
capacities associated with the arcs, meeting any one of p given (independant) multicommodity
requirements, and minimizing a linear cost function z = ^ y w 7 u . This probiem has important

applications in télécommunication network optimization and planning, when security constraints are
imposed.

As an alternative to linear programming techniques, it is shown how the use ofLagrangean relaxation
for décomposition purposes, and the use of subgradient algorithms to optimize the dual problems, lead to
a practical and efficient solution procedure.

Computational results obtained show that solutions within 5 to 10% of the optimum are easily
obtained at hw computational cosî. 7his is especially inîeresting in view of the f act that even moderate
sized problems (e.g. 50 nodes, 100 arcs, and p = 100) lead to very large scale linear programs (several
hundreds of thousands variables and constraints in node-arc formulation) for which even the most
sophisticated linear programming techniques could nöt provide exact solutions.

An explanation of the apparent superiority of subgradient optimization over the simplex methodfor
large scale programming is attempted in conclusion.

Keywords: Large scale linear programming, subgradient optimization, Benders décomposition,
Lagrangean relaxation, network synthesis, multicommodity flows.

Resumé. — Cet article se rattache au domaine de l'optimisation des grands systèmes et traite du
problème suivant : étant donné un graphe connexe G = [#\ %], déterminer un vecteur Y=(Yu)ue® de
capacités associées aux arêtes permettant de satisfaire un quelconque de p multiflots (indépendants)
donnés, et minimisant une fonction de coût linéaire z= £ yuYu. Ce problème a d'importantes

wet

applications dans l'optimisation et la planification des réseaux de télécommunications lorsque Von
impose des contraintes de sécurité.
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186 M. MINOUX, J. Y. SERREAULT

Comme alternative aux techniques de la programmation linéaire, on montre comment Vutilisation de
la relaxation lagrangienne, qui permet la décomposition du problème, et l'emploi d'algorithmes de sous-
gradients pour optimiser le problème dual, conduisent à une méthode de résolution pratique et efficace.

Les résultats de calcul obtenus montrent que de solutions à moins de 5 à 10 % de l'optimum sont
obtenues dans des temps de calcul très modestes. Ceci est particulièrement intéressant si Von considère
que même des graphes de taille modérée {par ex : 50 sommets, 100 arêtes, p = 100) conduisent à des
programmes linéaires de très grandes dimensions (plusieurs centaines de milliers de variables et de
contraintes en formulation arcs-sommets) qui ne pourraient être résolus de façon exacte par les
techniques de la programmation linéaire, même les plus élaborées.

Une tentative d'explication de la supériorité apparente des méthodes de sous-gradients sur la
méthode du simplexe pour des programmes linéaires de grandes dimensions est suggérée en conclusion.

Mots-clés : Programmation linéaire de grandes dimensions, optimisation par sous-gradients,
décomposition de Benders, relaxation lagrangienne, synthèse de réseaux multiflots.

1. PROBLEM STATEMENT AND FORMULATION

In the area of Télécommunication network design and planning, the problem
of designing a minimum cost network meeting multicommodity requirements
under security constraints is a fundamental one.

It has been shown in [2] and [3] that this problem can be formulated as follows:
Given a JV-nodes, M-edges unoriented multigraph G = [^, %], détermine a M-

vector of capacities Y=(Yu)usm assigned to the edges such that:
1 ) the capacities 7= ( Yu) are feasible for any one of p (given) multicommodity

flow requirements, d1, d2, ..., dp;

2) the total cost z= £ yu Yu is minimized, where yu dénotes the cost of one

unit of capacity on edge u.
This problem may be viewed as a generalization of the optimum network

synthesis problem treated by Gomory and Hu (1962) in the single-commodity
case.

Physically, each of the p given multicommodity flows represents the
requirements to be restored in one possible failure configuration of the network.
Thus, p is the number of failure configurations, and the network has to be
dimensionned so as to operate under any one failure configuration (for more
details about the physical problem, see [8]).

In practice, it should be noted that the (unknown) capacities Yu are pften
constrained to be integers. However, we observe that: 1) since very large scale
linear programs are involved, the quest for exact optimal solutions in integers is
hopeless; 2) there exist simple and efficient heuristic procedures (see [8]) for
converting an optimal continuous solution into an integer solution with very
little additional cost (hence, very close to optimality). For these reasons, we shall
restrict ourselves hère to the continuous problem, i.e. with the integrality
conditions relaxed.

R.A.I.R.O. Recherche opérationnelle/Opérations Research



SUBGRADIENT OPTIMIZATION AND LARGE SCALE PROGRAMMING 187

Now, the problem to be solved may equivalently be expressed as:

Minimize:

y y— y y y

(Po)
under the constraints:

( r=l , . . . , p ) ,

YeUM+,

where, for each r = 1, . . ., p, BY is the convex (unbounded) polytope of UM such
that Ye<3r if, and only if, there exists a multicommodity flow \|/r meeting the dr

requirements, and feasible for Y, that is to say: \|/r_ Y.

Using a node-arc formulation for the feasible multicommodity flow problem
(see [1], chap. 6 for instance) each polytope W may be seen as the solution set of a
linear program with 2.M.JV. variables and N2 constraints. With this
représentation, problem (Po) can be formulated as a linear program with about
2p.M.N. variables and pN2 constraints. For typical values of N, M,p(N = 50,
M =100, p=100) we find 106 variables and 250000 constraints: we are thus
confronted to very large scale linear programs, for which there is no hope of
getting exact solutions, even by means of the most sophisticated linear
programming techniques.

Our purpose, hère, is to show how subgradient optimization, used in
conjunction with lagrangean relaxation and décomposition techniques, has been
successfully used to cope with such very large scale linear programming
problems.

2. NECESSARY AND SUFFICIENT CONDITIONS FOR FEASIBLE MULTICOMMODITY
FLOWS

Instead of a node-arc formulation, another useful représentation of the 3Y

polytope will be used.
It can be shown, from duality theory {see [1], chap. 6 for instance) that Y e Çèr if

and only if the foliowing condition (#) holds:

For any M-vector 7r = (TTU)^O (7iu may be seen as a "cost" assigned to
edge.ue^):

TU. F - Y,nu-Yu^dr(nl (1)

where 9r(7i) is the cost of the minimum cost network meeting the
(multicommodity) requirement dr, with respect to the nu.

vol. 15, n°2, mai 1981



188 M. MINOUX, J. Y. SERREAULT

Note that 0r(7i) is easily obtained by assigning every component d'j of dr

(requirement between nodes i and j) to the minimum cost chain between i and j
in G relative to the nu(ue%). Thus, obtaining Br(n) in (1) reduces to shortest
path computations, a well solved problem in graph theory.

Condition (#) can also be reformulated as a maximization problem. Observe
that, if TU^O satisûes (1), so does X.n (VA,G U+) and thus, it is not restrictive to
impose a normalization condition, e. g.:

(1 dénotes the M-vector with all components =1).

Testing condition (#) then appears to be equivalent to:

Max

(FP) subject to:

(feasibility problem).

Let F*~F(K*) be an optimal solution oî (FP):
if F*^0, then (<$) holds and Y s 3)r\
if F* >0, then ^€) does not hold, since for TX*:

Problem (FP) may be solved by gêneralized linear programming (i. e.: column
génération techniques), but a more efficient approach (first suggested in [5] for
the maximum multicommodity flow problem) is to use a subgradient algorithm
(see section 6).

3. NEW FORMULATION OF (Po) AND A CONSTRAINT GENERATION ALGORITHM

It may be shown (see [2]) that, in order to check condition (#), only a finite
(though very large) number of n vectors need be considered (they correspond to
the extreme points of some convex polytope).

For multicommodity r, these vectors will be denoted by:

T T " ' 1 , * ' ' 2 , . . . , 7 l " ' a ' .

For simplicity, we note 6r> 1,Qr'2> . . . , 9 r ' a ' the corresponding values of 0r(7i).

R.A.I.R.O. Recherche opérationnelle/Opérations Research



SUBGRADIENT OPTIMIZATION AND LARGE SCALE PROGRAMMING 189

We now obtain a new représentation of polytope <3r by means of the foliowing
system of linear inequalities:

Ye9r

It follows that problem (Po) may be rewritten as:

Min y Y,

(Pi)
subject to:

(r=l f . . . , p ; ; = l, . . ., <xr),

7>0.

Of course, (Px) cannot be written explicitely, due to the enormous number of
constraints. The following constraint génération algorithm, closely related to the
Benders décomposition technique (cf. [15], and [17], chap. 7), had already been
suggested in [2] and [3] för sol ving this problem.

ALGORITHM 1 (constraint génération algorithm):
(a) Ai the current itération, solve arestricted problem (PR) consisting in only a

few constraints of(P 1). Let Y be an optimal solution of(PR).
(b) For r= 1,2, . . ., p:

Solve problem (FP) with Y= Y to check whether Ye@r. If the answer is "yes"
( F * ^ 0 ) then proceed to next r. If "no" (F* ^ 0) then the constraint:
7i*. Y ^ 0r(7i;*), violated by the current Y, is added to the current restricted
problem, and we proceed to next r.

(c) Two situations may occur:
(i) no extra constraint has been added in step (b): the current Y is an optimal

solution of(P1) and {Po)9 and the algorithm terminâtes;
(ii) some new constraints have. been added in step (b); thus forming a new

restricted problem.
Return ta (a).

Finite convergence of algorithm 1 was proved in [2], assuming that the
feasibility problem (FP) was solved exactly at each itération.

vol. 15, n°2, mai 1981



190 M. MINOUX, J. Y. SERREAULT

Sucha resuit, however, is mainly of theoretical interest. In practice, we are
much more interested in a good rate of convergence (even if not finite) rather than
achieving a finite (possibly slow) convergence. The following sections will now be
devoted to the question of obtaining an efficient implementation (in the above
sensé) of algorithm 1. For that, the main problems to be discussed are:

(a) how to start the itérations;

(b) how to solve the restricted problem at each itération;

(c) how to solve the p multicommodity feasibility problems (FP) at each
itération;

(d) when to stop the algorithm.

It will be shown in particular how subgradient optimization can be used to
solve these problems efficiently and thus provide good overall convergence
characteristics.

4. INITIALIZATION OF ALGORITHM 1 BY SOL VING A DUAL PROBLEM

Obviously, the key point in the efficiency of algorithm 1 is the choice of the
starting restricted problem; in other words, which constraints should be selected
out of (PJ to start the itérations ?

The main idea, here, is to solve a dual problem of (Po) obtained via
Lagrangean relaxation of the coupling constraints. The optimal (or suboptimal)
dual variables obtained are then used to build the starting restricted problem
(PJR0). A nice feature of the method, is that it is not necessary to solve the dual
exactly: good approximate solutions are sufficient. It also provides tight lower
bounds of the optimal value of the primai problem (Po).

Fist, we observe that, introducing the vectors of auxiliary variables Xr',
problem (Po) may be equivaiently written as:

(P'o)

Min y F,

subject to:

YeUM+,

(2)

where Xr=(Xr
u)ue%, and Xr

u is the actual total flow of multicommodity r through
are u in the network.

R.A.I.R.O. Recherche opérationnelle/Opérations Research



SUBGRADIENT OPTIMIZATION AND LARGE SCALE PROGRAMMING 191

Now, let us associate wit h the coupling cons traint s (2) a Mxp- vector
p = (Pu) ( r= 1, . . ., p) (w= 1, . . . , M) of Lagrange multipliers (p ^ 0) and
consider the dual function:

where pr = {pr
u\=u ... iM.

We note that L (p) readily décomposes into a sum of p+1 terms:

L(p)= min {[y- £ p ' i r U £ min p'.A".

The first term may be written as:

M / P

«=1 \ r = l

and any bounded minimum is reached for Yu = 0 provided that:

Vue®. (3)

If condition (3) is imposed (which will be assumed later on) the first term
reduces to 0. The foliowing terms in L (p) are computed by (independently)
solving p problems of the form:

M i n , p r . X r ,

subject to:(Ôr)

We notice that the solution of (Qr) is nothing but the minimum cost network
meeting the àr requirements, the costs p^ (u e M ) being assigned to the edges of G.
Thus, each (Qr) is solved by means of shortest path computations (see § 2) and
the cost of an optimal solution Xr of (Qr) is exactly 0r (pr) previously defined in
section 2.

Since L (p) can be efficiently computed for any value of p [L (p) = — co if p does
not satisfy (3)]s the dual problem (D) of (P'o) can be stated as:

| MaximizeL(p),1 ) 1
vol. 15, n°2, mai 1981



192 M. MINOUX, J. Y. SERREAULT

We recall the following well-known results in Lagrangean duality (see [10] or
[I] appendix 3 for instance):

1) L(p) is a concave piecewise linear function;

2) Vp ^ 0: L(p) S L(p*) = y. Y*,

where 7* is an optimal solution of (Po) or (P'o) and p* is an optimal solution of
(D) (lower bound property);

3) for any p g; 0 satisfying (3) :

t(p) = (X\X\ ...,XP)

is a subgradient of L at p [Xr dénotes an optimal solution of (Qr)].

It follows that the dual problem (D) can be solved by means of a subgradient
algorithm of the following type:

PROCEDURE 1 (solving the dual problem):

(3) Step 0: p = p°(e.g. p °=0) .

(b) Step j : pj is the current solution.

Compute L(pJ) and f (pJ), a subgradient of L at ç>J.
(c) Let:p' = pj + \}t (pj) (Xj is a given step size). If p ' violâtes some constraints

(3), project p' on the corr esponding hyper planes, thus obtaining p".
Define pJ + 1 as the projection of p" on UM + .

$et j^j+l> and return to (b), or terminale as soon as a stop
condition isfulfiiled.

There are many possible choices for the step sizes Xj (see [1] appendix 3, [5],
[II] for instance) and for the stop criterion. The strategy used for solving the
examples of section 8 is the following (see [4]):

i _„ L~L(pJ)
where: ' 'll'OW

— L is an upper bound of L (p*), derived from a good approximate solution
obtained by a heuristic procedure applied to (Po) (a class of such heuristic
procedures is described in [8]).

— oc7- is a séquence of real numbers (0 < ot7- S 2) defined by a ruie of the
following type [4] :

(a) choose a 0 , Ko, No (in the examples of § 8), oco = 2, Ko = 200, No = 30. Set
a = aOî K = K0; (b) perform Kiterations with ocj = a; (c) set K *- max (K/2, No)
and oc <- a/2 and return to (b),

The stop condition may be allowing a maximum number of itérations, or
testing whether the step size becomes smaller than a given tolérance À,min (see
section 6).

R.A.I.R.O. Recherche opérationnelle/Opérations Research



SUBGRADIENT OPTIMIZATION AND LARGE SCALE PROGRAMMING 193

Now, let p = (pr) be the vector of Lagrange multipliers (dual variables)
corresponding to the best solution obtained by procedure 1 and consider the
following restricted problem of {Px ), the p constraints of which correspond to p1

 s

p2, . . ., pp respectively:

Min y Y,
Subject to:

(PR0)

Then, it can be shown that an optimal solution Y of (PR0) satisfies:

(4)

(see proof in [g]).
In other words, starting algorithm 1 with (PR0) will produce a solution Fwith

cost at least as close to the optimum cost as is L(p), the best lower bound
obtained by solving the dual(D).

Since L (p *) can be approximatèd as closely as desired by L (p) — the accuracy
depending on the number of itérations in procedure 1 — we conclude that solving
the dual provides a systematic way of getting good starting solutions for
algorithm 1.

Notice that, though y. Fis very close to y. F*, Fmay be quite different from
F*, thus itérations of Algorithm 1 are necessary any way.

5. SOLVING THE RESTRICTED PROBLEM

At each itération of algorithm 1, a restricted problem of the form:

y F = min y Y,

(PR)

has to be solved.

vol. 15, n°2, mai 1981
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194 M. MINOUX, J. Y. SERREAULT

Clearly, this could be done by the simplex method, but we found it better to
solve (PR) approximately by means of a relaxation scheme [12, 13] closely
related to subgradient optimization as shown in [5].

In fact, we notice that, each time (PR) must be solved, a good lower bound z of
Y Fis known: at the first itération, z = L(p); for subséquent itérations, z may
simply be taken as the optimal value of the previous restricted problem.

{PR) is then equivalent to:
Minimize s,

subject to:

( Î = I , . . . , $ ) ,

( Î = I , . . . , 4 ) ,

and an efficient (and easy-to-implement) way of finding the minimum e* is the
following itérative procedure:

PROCEDURE 2 (solving the restricted problem):
(a) E — E° (for example if 20% is an estimation ofhow close z approximates

y. 7, e° = 0.2).
(b) Look for Y satisfying the System oflinear inequalities:

(i)

using afixed number of steps of a relaxation procedure (e, g, = 5 to 10 steps). The
starting point is taken as the last feasible solution obtained.

(c) If a solution of(I) has been found, then decrease £ (e. g: e <- s/2) and return
to (b); otherwise increase e(e.g.: s «- (3/2)e) and return to (b).

The choice of this relaxation scheme, instead of the simplex method, has been
motivated mainly by its low memory requirements, and also by its easy
implementation. A drawback of the method might have been that it only
provides approximate solutions (though the accuracy can be made as high as
desired by increasing the number of itérations). In practice, however, it has been
observed that solutions sufficiently close to optimality could be obtained without
much computational effort, and thus the overall convergence of algorithm 1 was
not affected by the approximation. This is why it didn't appear necessary to use
the (dual) simplex method which, at first sight, could be thought of as a "more
naturaP' approach. Keep also in mind that the chief argument in favor of the
simplex method —getting exact solutions in a fmite number of steps —is only

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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of theoretical value: in practice, due to round-off errors, only approximate
solutions are obtained (even cycling or premature termination can occur), and
this is especially true for large scale problems.

6. SOL VING THE FEASIBILITY PROBLEM (FP)

Once the current solution Y of (PR) has been obtained, we have to check
whether Ye@r for r = l , . . . ,p. In section 2, this problem was shown to be
equivalent to:

Max Y

(FP) subject to:

71. 1 = 1 , 71 = 0 .

It may be shown (cf. [1], chap. 6). That:
1) F(n) is a piecewise linear concave function of n;
2) F(n) is not everywhere differentiable, but for any TT^O (TU. 1 = 1) a

subgradient y(n) of F at n can easily be computed.
y (7t) is obtained as follows: if Xu (n) dénotes the total flow through edge u on

the network of minimum cost Qr (n) (see § 2), then y(n) = X(n)—Y Hence, y (n) is
obtained as a by-product of the shortest path computations performed for
gettinger(7r).

It follows that each feasibility problem (FP) may be solved with a subgradient
algorithm such as:

PROCEDURE 3 (solving the feasibility problem):
(a) 7i° is the starting point {for instance n° = 0).

(b) At step k, nk is the current solution.
Compute Qr(nk) and y(nk) using a shortest path algoriiiim.
(c) Define K'= Kk + Xk.y(nk) (Xk is a step size).
Project n' on UM+ (Le. : whenever 7^<0, set 7ĉ  = 0), and define:

Set k ^- k+1 and go to step (b).
Just as for procedure 1, various stratégies for the choice of the step sizes Xk have

been studied (see [1], appendix 3). One possible choice [14] is:

x - x {G)k
k~ ° II Y(«*) II '

where Xo is the initial step and 0 < a < 1. For a proper choice of X and a, see [11].
vol. 15, n°2, mai 1981
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The use of a subgradient algorithm in procedure 3 is justified by the fact it is
not necessary to solve (FP) exactly for getting a good approximate solution of
the global problem (Po). As will be shown in section 7 below, testing s-feasibility
is sufficient, and thus, it is easy to see that the itérations in procedure 3 may be
stopped as soon as:

[n* is an optimal solution of (FP)], which holds if:

i.e. :

Now, testing this condition generally reduces to checking whether the step size
Xk becomes smaller than some threshold value. For instance, if the Xk are
computed according to the rule:

(g)*
k °\\y(nk)\\ '

and assuming that Xo and a are chosen in such a way that: nk -> n*. Then:

l—o

In this case, procedure 3 will be stopped at itération k when:

X0(o)k
 < £ X(a)k-1

<

l-o ^ \\j(nk)\\ I-o '
If the g-optimal solution obtained is such that F(7t*)>0, then it is used to

generate a new constraint:

which is added to the current restricted problem (PR). Observe that the
constraints thus generated are not necessarily constraints of(P1), though it is
easy to show that they are convex combinations of constraints of (Px).

7. STOPPING THE ITERATIONS

If the feasibility problems (FP) were solved exactly at each itération, finite
convergence of algorithm 1 can be proved (see [2]). Clearly this finite convergence
property does not hold any more when an approximate method like procedure 3
is used, and a stop criterion is necessary.

R.A.LR.O. Recherche opérationnelle/Opérations Research
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We say that YeUM+ is e-feasible with respect to multicommodity r if
Y+e.le@r. In other words, by adding £ to every Yu(ue<%) SL feasible
multicommodity flow can be found. For testing E-feasibility of the current
solution in algorithm 1 a good approximate algorithm is sufficient.

For example, procedure 3 with a stop criterion ensuring e-optimality, as
discussed in section 6, is well suited. The "feasibility program" described in [6]
and [16] can also be used, and offers the additional advantage of providing a
primai solution.

A possible stop criterion is then the following: given e, stop at step (b) of
algorithm 1 as soon as the current solution Y is e-feasible for each
multicommodity r — 1, . . ., p.

Clearly, then, Y+e. 1 is a solution of (Po), thus y. (Y + £ 1 ) is an upper bound
of the optimum cost y. F*, and we have:

Hence, for £ small enough, the algorithm will terminate with a good
approximate solution.

Computational expérience (section 8) shows that for e ~ 5 %, no more than 4
to 8 itérations of algorithm 1 are necessary to terminate. Such a fast convergence
seems primarily due to the quality of the starting restricted problems obtained
from procedure 1.

8. COMPUTATIONAL RESULTS

The numerical experiments presented here concern the basic network shown
in figure 1 with N = 12 nodes and M = 25 edges, on which are routed, in normal
opérations, 66 distinct point-to-point requirements. We consider here six
different problems. For instance, in problem 1 every requirement is routed on
one single path (unirouting) on the basic network; in problem 2 every
requirement is split into two equal parts routed on two edge-disjoint paths on the
basic network (birouting). Problems 3 to 6 have been built in a similar way.

For each problem, the p multicommodity-flows to be considered are obtained
as follows. One failure configuration consists in the total breakdown of any one
edge of the basic network. Now, to each failure configuration (to each edge)
corresponds a spécifie multicommodity flow composed of all the point-to-point
requirements that were passing through the broken edge in the basic network.
Thus, problems 1 to 6 consist in p = M = 25 non-simultaneous multicommodity
flows. Finally, all the costs y. F are expressed in percentage of the cost of the basic
unirouted network.

vol. 15, n°2, mai 1981
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) Lille

Reims

7)Nancy

Limoges (5 G) Lyon

Figure 1. - Test network

We give for problems 1 and 2:

1) The séquence of lower bounds obtained by procedure 1 (tables I and IV).

TABLE I

Probiem 1; séquence oj louer-bounds.

j

L{pj)(%)

10

7

100

21

200

27

300

32

400

35

N.B.: /„(p)here js a function of M(M-l ) = 600 variables.

2) The solutions obtained after solving the successive restricted problems
(PR) (tables II and V). Only the first nve components of the solutions Y of (PR)
are shown.

TABLE II

Probiem 1; solving îhe restricted probiem {PR)
[N.B. Q = number of constraints of (PR)]

Itération

0

1

2

3

4

5

6

Q

25

35

42

49

52

55

58

Yi

88.6

96.2

104.0

98.5

103.8

104.3

106.3

Y2

89.4

79.3

74.6

84.0

83.2

83.9

81,3

44.4

44,7

57.9

57.9

60.3

61.0

60.1

Y*

60.4

107.3

120.5

110.6

111.7

113.6

116.0

r5

61.3

70.2

62.9

67.1

70.0

69.9

70.1

y.Y{%).

35.0

35.5

35.5

35.7

35.2

35.9

35.2

R.A.I.R.O. Recherche opérationnelle/Opérations Research



SUBGRADIENT OPTIMIZATION AND LARGE SCALE PROGRAMMING 199

3) The first five components of the integer solution obtained with the heuristic
method of référence [8], and its cost which is an upper bound of both the
continuous and integer optimums (tables III and VI) (3).

TABLE III

Problem 1; integer upper-bound via an approximate algorithm

Y,

124

y2

83 65 117 75

y-Y(%)

36.9

Less detailed results concerning problems 3 to 6 have been summarized in
table VIL

TABLE IV

j

L(ç>j)

10
(%)

- 2

Problem 2

20
(%)

4

séquence ofîower bounds

30
(%)

12

40
(%)

18

50
(%)

21

60
(%)

22

70
(%)

22.8

We observe that, in most cases, solutions very close to the exact continuous
optimum are obtained. The maximum relative error is (36,9 — 35,2)/35,2 = 5%
for problem 1 and (31,9-31,5)/31,5 = 1,3% for problem 2.

TABLE V

Problem 2: solving the restricted problem {PR)

i

0

1

2

3

4

G

25

46

61

74

83

y,

0.2

2.4

46.5

30.9

28.6

y2

28.9

71.2

74.7

79.4

69.3

Yi

121.8

64.5

111.9

82.8

93.0

0.1

69.5

48.3

33.3

.42.2

93.3

6.0

55.2

61.5

62.2

JY{%)

26.6

27.6

31.4

28.2

31.5

(3 ) Comparing the cost of the solution obtained with the cost of a feasible integer solution (which is
an upper bound of the cost of a continuous optimum solution) may lead to underestimate the actual
quality of the results. Thus, it may be asked why we did not perform the évaluation by simply
comparing with the exact continuous optimum solution. The answer is straightforward: getting such
a solution is the very problem that we originally wanted to solve The motivation of our work lies
precisely in the observation that, even for networks of rather moderate size (like those studied here)
exact solutions were very difficult, if not impossible, to obtain by classical linear programming
techniques. In contrast, approximate integer solutions are rather easy to obtain via heuristic
procedures, as those described in [8].
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Moreover, it is seen that very few main itérations of algorithm 1 are necessary
and that the total number of constraints added to the starting restricted problem
is thus quite moderate.

TABLE VI

Problem

Yi

34

2: integer upper-bouna

y2

73 103

via an approximate algorithm

Y*

44

Y5

68

yY(%)

31.9

The algorithm has been implemented on a HB 6080 computer. For the various
problems tested on the network of figure 1, the program needed about 40 K
words of memory and about 20 minutes of processing time.

TABLE VII

Problem 3

Problem 4

Problem 5

Problem 6

Procedure 1

Lower
bound

obtained

43,6

46,8

36,0

32,6

Number
oi

itéra-
tions

250

250

250

250

Algorithm 1

Number
of

itéra-
tions

4

4

4

4

Total
number
of cons-
traints
(PR)

72

76

69

71

Cosl
of final

solutions
(PR)

44,9

47,5

37,3

34,6

Approxi-
mate al-
gorithm
upper
bound
(integer

solution)

49,6

55,8

41,7

37,6

Relative
error
(%)

9

17

12

9

It should be noted that by now, this program is far from achieving the best
possible implementation. Such possibilities as using the dual variables obtained
at itération k as starting solution for solving the p feasibility probîems (FP) at
itération fc +1 have not yet been used.

An improved version is presently beeing studied, and significant savings in the
computation times are expected.

9. CONCLUSION: ON THE EFFICIENCY OF SUBGRADIENT OPTIMIZATION APPLIED

TO LARGE SCALE PROBLEMS

The practical efficiency of subgradient optimization for solving large scale
problems was first put int o évidence by the pioneering work of Held and Karp [4]
on large travelling salesman problems and in a subséquent paper [5] where the
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method was applied to other problems like assignment and feasible
multicommodity flows. Since that time, it has been successfully used to cope with
a number of other important problems, such as: minimum cost multicommodity
flows (Kennington and Shalaby, [19]) generalized assignment problems
(Legendre and Minoux, [18]), etc.

The problem and the results presented hère which, as far as we know, seems to
be the first application of a subgradient technique in the context of Benders
décomposition, further confirm the pratical interest of the method for treating
large scale problems.

Though theoretical analysis has not fully succeded in explaining this efficiency
yet, some efforts have been made to get some understanding of it. The work of
Goffm [11] throws some light on the subject. The convergence of a subgradient
algorithm applied to a convex (or concave) function can be shown to be linear,
and he shows that the maximum sustainable rate of convergence a is related to

the so-called condition number % of the function (a = N / l —x2)- Briefly, % is the
cosine of the largest angle between a subgradient at any point and the direction
to the closest point in the (convex) set S of optimum points. With some
additional assumption, it can be shown that the distance between the current
solution and the optimum set S decreases as fast as ak (k is the itération number)
(see [11] for proofs). For instance, with a condition number x = 0-3 we get
a~0.95 and reducing the distance to the optimum set S by a factor 1000
requires about 120 itérations. These results are very useful to understand why
subgradient optimization may be superior to linear programming. First, let us
try to estimate how the computational effort required by the simplex method
increases with the size of the problem. Suppose that worst-case problems (i. e. for
which running time grows exponentially with the size) are pathological ones, and
that we only deal with average-case problems. According to statistical
observations, the average number of itérations roughly appears to be
proportional to the size of the problem measured by the number of constraints
M. Since the computational effort per itération grows at least as M2, an overall
estimation of the average complexity of the simplex method is O (M3), This
means that increasirig the size by a factor 10 results in a factor 1000 on the
computation time.

Now, what about subgradient optimization? Suppose that, within a given
class of problems, the condition number of the function to optimize can be
considered as constant (independant of the size of the problem). From the above
convergence results, it follows that the number of itérations needed to get a given
précision on the resuit (e.g. : reducing the initial distance by a factor 1,000)
would be constant, and independant of M, the size of the problem. Under this
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assumption, it is clear that for large scale problems (i.e. : M large enough)
subgradient optimization would be inherently superior to linear programming.
Though the fact that the condition does not depend on the size is still a
conjecture, the success of subgradient algorithms on many large scale problems,
like the one studied hère, tends to show, as already noticed in [11], that the
associated condition numbers (surprisingly) remain rather high, and gives some
support to the conjecture.
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