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RATIO REWARDS IN NETWORKS (*)

by V. AGGARWAL, Y. P. ANEJA and K. P. K, NAIR

Abstract. — An infinité horizon network flovo problem is considered where the objective is to
maximize the ratio of two types of discounted rewards which are proportional to the flows over the
corresponding arcs. Equivalence of this problem is shown to a special case of Markov ratio décision
problem and to another network problem with constant gains in which ratio of rewards is being
maximized. The simplex method is specialized to exploit the special structure of the later problem.

Keywords: Network flows, ratio rewards, Markov ratio décision problems, simplex methods.

Résumé. — Cet article porte sur un problème de réseau avec flot à horizon infini où la fonction
objective est de maximiser le rapport de deux types de récompenses escomptées. Ces récompenses sont
proportionnelles aux flots sur les arcs correspondants. On démontre que ce problème est équivalent à une
classe spéciale de problèmes de décision proportionnelle de Markov dans lesquels des matrices de
transition à chaque étape doivent être déterminées, et à un problème de réseau avec gains constants où le
rapport des récompenses est maximisé. La méthode du simplexe est spécialisée ajin d'exploiter la
structure particulière de ce dernier problème équivalent.

Mots clés : Réseau avec flot, rapport récompenses, problèmes de décision proportionnelle de
Markov, méthode du simplexe.

1. INTRODUCTION

There are several reasons for examining special structures in mathematical
programming. Extensions to more gênerai optimization problems at a marginal
expense of computational work, if can be accomplished, can lead to much wider
use of the algorithms. Also the investigation of problems with special structures
provides deeper insight into the problem itself.

This paper présents an extension of the special class of network with gains
problems arising in discounted deterministic Markov décision models, studied
by Dirickx and Rao [3] in the ratio reward context. It is seen that this problem is
actually an infinité-horizon finite-state network flow problem in which the flow
from the sources has to be distributed so as to maximize the ratio of two types of
discounted rewards which are proportional to the flows over the corresponding
arcs.

(*) Received in June 1979.
This work was supported in part under N.S.E.R.C. Grant No. A 3368.
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130 V. AGGARWAL, Y. P. ANEJA, K. P. K. NAIR

This problem, in turn, is shown to be equivalent to a special case of Markov
ratio décision problem of Aggarwal, Chandrasekran and Nair [1] in which for
each alternative action in a state the process moves to a state at the next step
deterministically. The policy itération scheme developed in [1] could be
specialised to dérive a solution of the above program. However this paper
employs the simplex method to exploit the one-tree structure of this problem.

2. STATEMENT OF THE PROBLEM

Consider a directed network (JV, A) with node set N and are set A. This
network is viewed over an infinité horizon at time periods n = 0, 1, 2, . . . For
each directed are (1,7) there are two numbers ctj, dtj > 0 and given the flow at time
n is ftj (n), the associated reward and cost, respectively, are given by ctj ftj (n) and
d-ijfij(n). Both the rewards and costs occurring in future periods are discounted
by a factor ot,O<a<l perperiod. Let each of the starting nodes ieJVbe sources
so that at the time period n = Q, the flows generated through the respective
sources are at>0 (z = l, . . . , N).

Letting ftj (n) be the flow in are (i, j) at time period n, the décision problem can
be stated as follows:

° 'eN JeN , (1)

n = 0 ieN jeN

S-t. £ /o-(0) = a„ ieN, (2)

Z fij(n)= E / ^ n - 1 ) , «=1 ,2 , . . . (3)

/£i(n) = 0, iJeN, n = 0, 1,2, . . . (4)

The above network problem as stated has a close resemblance to the
Markov Ratio Décision problem [1] of a special kind in which for each
alternative action in a state the process makes a transition deterministically. The
node set JV then corresponds to the state space and an element (i, j) of the are set
A corresponds to being in state i and selecting an alternative that causes a
transition to state j at the next epoch. The décision variables, fij(n)
(i, j eN, n = 0, 1, .. . ) represent the joint probabilities of being in state i and
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RATIO REWARDS IN NETWORKS 131

making a transition to state j at epoch n. The constants ai (i = l, . . . , N)
N

normalized as ai^ai /£ a[{i=l9 . . . , N) correspond to the initial probability

of being in the respective starting states ieN.
The problem (l)-(4) can be reduced to a program with a finite number of

variables using the following transformation:

xij= £ anfij(n)> hjeN. (5)
n = 0

The transformation is valid since /;j-(n) are finite being bounded by £ a£ and
ieN

0 < a < l . x£j. could be considered to represent an equivalent discounted flow
between nodes i and j over the reduced network. The program, therefore,
becomes:

(6)

(8)

In the formulation (6) through (8) the feasible set is indentical to that in a
network flow problem with gains [4]. But the objective in the current formulation
is a ratio of two linear functions while that in all gain problems treated in the
literature [4] is a linear function. Therefore available algorithms [4] for the gain
problem cannot be directly applied to the present problem. Thus the approach
considered here consists of transforming (6) through (8) to a linear program
using the method of Charnes and Cooper [2] and exploiting the one-tree
structure of the solution. Considering the relationship of the problem to the
special case of the Markov ratio décision process, one has an obvious lemma as
stated below.

LEMMA 1: If xfj is a solution to (6)-(8), then there is also a stationary solution to

vol. 15, n°2, mai 1981



132 V. AGGARWAL, Y. P. ANEJA, K. P. K. NAIR

3. THE STRUCTURE OF THE SOLUTION

The fractional L. P. (6)-(8) can be reduced to a standard L. P. using the method
of Charnes and Cooper [2]. Denne the variables,

and:

3^ = x u . j / ^0 , ÎJeN. (10)

Hence follows the following problem denoted by (P):

cijytj, (11)
i S

s.t. £ y»-* I yji-aty=o, VÎ, (12)

I ldljyij=l, (13)

y,ytJZ0, iJeN. (14)

LEMMA 2: In any basic feasible solution to (P), y appears at a positive level,

Proof: Suppose y = 0 in a basic feasible solution. Then constraints (12) become:

Summing up over all /, we get:

N N

( i -oOl Zyo=o9

i.e. Y, Z ^ O ^ 0 ' contradicting constraint (13).

LEMMA 3: /n any basic feasible solution to (P) exactly one ytj > 0 for each i e N.

Proof: We first show that at least one ytj > 0 for each i e N, Suppose yiQJ = 0, V;
for some i0. Then constraint (12) for z = z0 becomes:

N

~a Z 3';ïo
 = ato"^>^> a contradiction.

j=i
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RATIO REWARDS IN NETWORKS 133

^Ance there are total JV+1 constraints, we have at most JV+1 variables at
positive level in any basic feasible solution. Thus there is exactly one ytj>0 for
each ieN.

COROLLARY: Any basic feasible solution to (P) is nondegenerate.

The interprétation of an optimal basic feasible solution is clear. If ytj > 0 in an
optimal basic solution, then arc (z, j) has to be chosen whenever state i occurs.

DÉFINITION: A one-tree of a finite directed network (N, A) is defined as
t/ = (C, T, E) with:

C = {il9 i2, . . . , im}9 T={jl9j29 . . . , ) „ }

C, T<^N, CnT=® and:

such that:

(i) Ec={(i,j)eE\(i,j)eC} is a circuit, and U contains no other circuit;
(ii) for each jqeT there exists a unique path in U to each ikeC.

With the aforementioned définition of one-tree, the following lemma can then
be shown easily.

LEMMA 4: Each basic feasible solution of (P) defines a collection of disjoint one-
trees.

4. THE SIMPLEX METHOD APPLIED TO (P)

It follows from lemmas 2 and 3 that an initial basic feasible solution is found
easily and at any itération of the simplex method, once an entering variable is
known, the variable to leave the basis is immediately determined. Hence the
values of the primai variables need not be computed and only the values of the
dual variables are required at each itération. To see that, let us first look at the
dual of (P):

(15)

S.t. nt-anj + dijn^Ctj, V(iJ)eA9 (16)

and:

£ 71,^ = 0, (17)

n and 7t/s unrestricted in sign. (18)
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134 V. AGGARWAL, Y. P. ANEJA, K. P. K. NAIR

Let { Uu U2, . . . , UQ} be the one-trees associated with a basic feasible
solution to (P). Let Uq = { Cqy Tqi Eq} where Cq = { iu î2, . . ., im) and
Tq = {ji,J2> --Jn} and ECq = {(iui2\ . . . , ( i m , h)}-

Defïne:

/*= f; [«"-^j/a-oo,
and:

m* = Êt^-^^.J/a-a") where w ^ .

F o r a n y n o d e iseUq, let { ( i s , z s + 1 ) . . . (is+t$i ix)} b e t h e u n i q u e p a t h f r o m z s t o

z*!. D e û n e :

z ,= y a.k-s
Ci t ,

k = s

and:

m s= V ak~sd: : where ï \ + f + i = ï i ,
k=s

and:

Defme, also:
a { s )-a t s + 1 and

By making use of complementary slackness the following lemma shows how
the dual variables in (D) can be determined.

LEMMA 5: Given a collection of disjoint one-trees {Ul9 . . ., UQ } associated

with a basic feasible solution, one can show that:

N o

q=l isUa
K = N Q

aimi+ ^ m* ^ a,a(i)

/or a node ieUq:

Thus once for each Uq, l*, m*, Z£'s and m/s are determined, the dual variables n
and 7C;'s can be obtained by the expressions stated above.

R.A.I.R.O. Recherche opérationnelle/Opérations Research



RATIO REWARDS IN NETWORKS 135

The variable to enter the basis is determined by calculating the following:

z* = minimum{nt — anj + dijn — ctj, 0}.
(i, j)

If z*=0, then the current basic feasible solution yields an optimal solution. If
z*<0,i.e.,forsomerands,rcr-a7i;s + drs7i; — c rs<0, thenarc(r, 5) can enter the
basis. According to lemma 2, we know the variable which leaves the basis.
Lemma 4 can be used again to détermine the new dual variables, and the simplex
method can proceed in this manner from itération to itération until an optimal
solution is obtained.

Certain observations can be made which lead to some computational savings
in updating the dual variables. Since the dual variables are linked by a coupling
constraint in (D), a change in one causes change in others. However certain /,-'s
and m '̂s need not be recomputed. Suppose (r, s) is an arc which enters the basis.
Denoting the new value of /'s and m's by primes, the changes can be
accomplished as follows: five cases have to be considered. Define, first:

Tq = {j\je Tq such that there is a path from; to r in Tq).

If r, se Uqi the following three cases arise:
(i) r é p a n d se 7^;

(ii) r é p a n d s£ Tq,
(iii) reCr

If nodes r, s belong to different one-trees, say r e Uq and seUh, then two cases
arise:

(iv) reTq;
(v) reCr

In case (i), a new one-tree is created, say U'p = (C'p, Tp, E'p) with Cp = {r, s and
ail nodes along the path between r and 5}, Tp=Tq — Cp and E'p defmed
accordingly. Ail /'s, m's associated with U'p have to be recomputed. The one-tree
Uq changes since the nodes in Tq arc deleted from it; the /'s and m's associated
with the remaining nodes are left unchanged however.

In case (ii), l'r = crs + oc ls and mf
r = drs + a ms. For a node i e Tq, if (z, j) is an arc in

the one tree, /J = c^ + oc/} and m'^d^ + am'y For ail other nodes /'s and m's
remain unchanged.

In case (iii), circuit Cq is broken up, the one tree Uq is updated with Cq = {5, r
and all the nodes along the path between s and r}, and T'q = (Tq u Cq) — C'q. E

f
q

changes correspondingly. Ail /'s, m's, /* and m*, and oe(i)'s associated with this
updated one-tree have to be recomputed.

vol. 15, n°2, mai 1981



136 V. AGGARWAL, Y. P. ANEJA, K. P. K. NAIR

In case (iv), we have Tq=Tq—Tq and Th = ThuTq. Hère lf
r = crs + als,

m'r = drs + ams7 a('r) = aa(s). Similar to case(ii), for a node i e ^ , if (i, j) is an arc in
the one-tree, then ZJ = c u + a^ s m'^d^ + am'j and a('0 = a.a ( ' jT For ail other
nodes Vs and ra's remain unchanged.

In case (v) the number of one-trees decreases as Uq disappears and
Th=Th\j Tq\jCr Only the quantities associated with this one updated tree
have to be recomputed.

5. A NUMERICAL EXAMPLE

A five node problem with c^/d^ values for the alternative actions as shown in
table is considered. Arcs of the form (i, i) are not included; however, the
algorithm can handle a network with this type of arcs also. Given are also
a ~ 1 0 0 for i = l , 2 , . . . , 5 and a = 0.8.

Itération 0; Arbitrarily start with two 1-trees:

y 12 = ) ; 2 5 = y 5 1 = l> 3^34 ^ 4 3 = 1>

and other y o = 0.

Itération 1; Set / t = 0 , mx=0 and obtain:

Z2 = 5.2, m2 = 5Ay 1$ = ^-, m5 = 3,

^ , = 29.0164, mf1}= 17.0492.

Set / 3 = 0 , m3 = 0 and obtain:

/4 = 10, w4 = 4a /*2) = 47.2222, mf2) = 25.5556.

Hence obtain, T I = 1 . 7 5 and get:

TCJ = -0.8197, K2= -4.7746, n5 = -1.9057,

7C3 = 2.5, K4 = 5.

Calculation of z* leads to z* < 0 for arc (1, 4).

Hence arc (1, 2) leaves and (1, 4) enters.

Itération 2: Nodes 1 and 4 corresponding to arc (1, 4) belong to two different
1-trees respectively. The updating of the tree falls under the case (v), and there is
only a single 1-tree now:

/3, m3, /4, m4, J* = Z(*2) = 47.2222, m* = wi(*2) = 25.5556,

remain the same as in itération 1.

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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TABLE

Data of the Problem

137

\ j
i \>

1

> 2

3

4

5

1

4 X

X 5

3 X

X 2

5 X

X 6

4 X

X 3

2

10 X
X 4

8 X

X 5

7 y ^

y / 9

10 y ^

y/ 5

3

5 X
X 3

4 > /

y ^ 5

10 X

X 4

9 X

X 8

4

2 X

X 2

6 y '

X 7

9 >/

>/ 6

7 y /

>/ 6

1
5

5 X
X 2

2 v ^

y / 3

3 X

X 5

5 X

X 10

É
Obtain new values of:

/1 = 10, mi = 5.2; Z5 = 12, m5 - 7.16;

/2 = 11.6, m2 = 8.728.

Hence obtain TI = 1.8230 and get:

7c3=0.6351, 7C4 = 3.2161:

7i! = 0.9270, 7i5 = - 0.7274, n2 = - 4.0508.

Calculation of z* leads to z*^0 .

Hence the current solution is optimal.
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