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OPTIMUM AGE REPLACEMENT POLICY
WITH TWO FAILURE MODES (*)

by NAOTO KAIO (!) and SHUNJI OSAKI (l)

Abstract. — In this paper, we treat the optimum âge replacement model with discounting, in
which two types of failure modes are considered. întroducing an exchange, a replacement, and
a salvage costs, we obtain the optimum policy which minimizes the expected total discounted
cos t. It is shown that, under certain conditions, there exists a finit e and unique optimum policy.
Furthermore, the relations to the earlier contributions are shown.

Résumé. — Dans cet article, nous traitons du modèle d'âge optimal de remplacement avec
amortissement, dans lequel deux types de modes de panne sont considérés. En introduisant des coûts
^échange, de remplacement et de réparation, nous déterminons la politique optimale qui minimise
Vespérance du coût total avec amortissement. Il est montré que sous certaines conditions il existe une
politique optimale finie et unique. En outre, on montre les relations avec des recherches antérieures.

1. INTRODUCTION

Many contributions have made to âge replacement policies (e. g., Barlow
and Proschan [1, p. 85 ]> Fox [2 ], and Osaki and Nakagawa [3 ]). An âge replace-
ment model is easy to be applied to real Systems for its simplicity.

In this paper, we treat the âge replacement policy, especially, the âge replace-
ment model with discounting in which two types of failure modes and a salvage
and some other costs are considered. In real Systems, it can be considered that
two types of failures, i. e., a catastrophic one and a dégradation one, occur
independently.

In particular, we use the continuous discount rate, and obtain the optimum
policy to minimize the expected total discounted cost. We show that there
exists a fînite and unique optimum policy under certain conditions. Finally,
we also show the relations between the results of this paper and the results
obtained in the earlier contributions.

(*) Reçu juin 1978.
0) Department of Industrial Engineering, Hiroshima University, Hiroshima 730, Japan.
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2. MODEL AND ASSUMPTIONS

Consider a one-unit system, where each failed unit is scrapped. The planning
horizon is infinité and a unit starts operating at time 0. If the unit does not fail
up to a prespecified time instant toe [0, oo), the unit is exchanged by a new
identical unit at that time instant t0. If the unit fails before that time instant t0,
the failed unit is replaced by the new one at the failure time instant. Exchange
(replacement) is made instantaneously, and exchanged (replaced) new unit
takes over its opération immediately. The similar cycle repeats itself again
and again.

Assume that the lifetime for each unit obeys an arbitrary mixture distribution
a1F1 (t)+a2F2 (t), where ax ^ 0, a2 ^ 0, and ax + a2 = \. Ft (t) ( i= l , 2) has
a density j \ (t\ i. e. it may be considered as that the index i= 1 implies a catas-
trophic failure and i=2 implies a dégradation one. The costs considered here
are the foliowing; a constant cost c0 is suffered for the exchange of a nonfailed
unit at the prespecified time instant t0, a cost ct is suffered for the replacement of
a failed unit by a failure mode i (i= 1, 2) before the time instant tö, and a cost k
per unit time is suffered for the residual lifetime of the exchanged unit which is
still able to operate. Furthermore, we introducé an exponential type discount
rate a (> 0), where a unit of cost is discounted e~at after a time interval t9 and
assume 'that ct> c0 (i=l,2), and co+k/a> 0. These assumptions seem to
be reasonable.

Under the above assumptions, we define an interval from the beginning of
the unit to exchange (replacement) as one cycle, and analyze this model noting
that each exchange (replacement) time instant is a régénération point.

3. ANALYSIS AND THEOREM

The expected total cost per one cycle is

<P- (to)=c0e-ato [a1F1 (to)+a2F2 (t0)]

, (1)

_ °
where \|/ (. ) = 1 — \|/( .)in gênerai. Just after one cycle, a unit of cost is discounted
as foliows; ~tQ

5 a ( f 0 ) = l - a 'e-*' [a1Fl (t) + a2F2 (t)]dt. (2)
J o
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Thus, when a unit starts operating at time 0, the expected total discounted cost
for an infinité time span is

l C l \e'atdF1 (t)+a2c2 \ e~«tdF2 {t)+k f

f a j ' ° ^ " ' { a ^ « + a 2 F 2 (t)}dt\x {a1F1 (t)+a2F2{t)}dt | / | a | e'a'{a1F1 (t)+a2F2 (t)}dt \ (3)

Fox [2]), and

Ca(oo)= [ f l lClFÏ (a)+a2c2F* (a)]/ [ f l^* (a)+a2F* (a)], (4)

where Ff (a)= e '^dF, (t) (ï=l, 2).
Jo

Differentiating the expected total discounted cost Ca (t0) with respect to t0,
setting it equal to zero and arranging it, we have qa (to)=0, where

q« (to)= [H ao)/oc»(co + fe/a)] [ l - 5 a ( t o ) ] -9 a (hl (5)
where

H (to)= [{cl-cù)a1f1 (t0) Hc2~c0)a2 f2 (t0)]/ [a1F1 (to)+a2F2 (t0)]. (6)

It is further noted that

qa (oo)= [-a (co + k/a) + H (c»)] [ { a ^ Ï (ot)+a2F* (a)}/a]
.FKa)] . (7)

Here, we have the following theorem for the optimum exchange time t$
minimizing the expected total discounted cost Ca (t0). The proof is given in
Appendix,

THEOREM 1 : (1) If H (t0) is strictly increasing and qa(<x>)> 0, then there
exists a finite and unique optimum exchange time t$ (0 < £$ < °°) satisfying
qa(to)=0 and the corresponding expected total discounted cost is

Ca(tS)=H(tJ)/a-(c0 + fc/a). (8)
(2) /ƒ H (t0) is strictly increasing and qa (oo) ^ 0, or if H (t0) is decreasing,

then the optimum exchange time is tg ^ oo, i'. e. a unit continues to operate until
itfails. The corresponding expected total discounted cost is given by the formula (4).

4. REMARKS

We have treated the âge replacement model with two failure modes, and
have obtained a theorem on the optimum exchange policy minimizing the
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expected total discounted cost Ca (t0). lt has been shown that there exists a
fînite and unique optimum exchange policy under certain conditions.

In particular, if F1 (t)=F2 (t)=F (t), c^c^ and fc=0, then this model
coincides with the model discussed by Fox [2 ], and the expected total discounted
cost is

, ( / „ ) = ^ ( ' " " - F l / n l + c , \ \ > y l c l F i t ) \ j \ o L \ ° e~*'~F(t)dt |.

L J 0

(9)
J o _J ' L J o —I

Moreover, we have

F(t)dt , (10)

which is equal to the expected cost per unit time in the steady-state for the age
replacement model with no discounting (see Barlow and Proschan [1, p. 87]).

APPENDIX

THE PROOF OF THEOREM 1

Differentiating Ca (t0) with respect to t0 and setting it equal to zero imply
the équation ga (ro)=0. Further,

qf
aL(t0)=Hf (t0) [1— 5 a (to)]/aL. (A-l)

First, we assume the case that H (t0) is strictly increasing. Thus, we have
that q'a (t0) > 0, i. e., qa (t0) is strictly increasing.

If qa (oo) > 0, then there exists a finite and unique t$ (0 < t$ < oo) which
minimizes the expected total discounted cost Ca (t0) as a finite and unique
solution to qOL(to) = 0, since qa (0) < 0 and qa{t0) is strictly increasing and
continuous. Substituting the relation of qa {t*)—Q into Ca (t%) in the formula (3)
yields the formula (8).

If qa (oo) S 0, then Ca (t0) S 0 for any non-negative t0 and thus Ca (t0) is
a strictly decreasing function. Thus, the optimum exchange time is tg-*oo.

Secondly, we assume the case that H (t0) is decreasing. Thus, we have that
q'a (t0) S 0, i. e., qa (t0) is decreasing. We have that ga (oo) < 0 since qa (0) < 0,
i. e., Ca (̂ 0) is a strictly decreasing function. Thus, the optimum exchange time

0 "* °°* Q.E.D.
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