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A DISCRETE TIME QUEUEING SYSTEM
WITH DEPARTURES HAVING RANDOM MEMORY (*)

by U. K. Gurra (%)

Abstract. — This paper deals with a discrete time, first-come-first-served, single channel queueing
system in which arrivals have zero-step memory ihile departures have sometimes zero-step memory and
sometimes one-step memory. Generating functions for the steady state queue length probabilities have
been obtained explicitly for two models. Finally, some particular cases have been discussed.

Résumé. — Cet article traite d’un systéme de file d’attente a temps discret, a canal unique, ou le
premier arrivé est le premier servi. Les arrivées sont statistiquement indépendantes des arrivées et
départs précédents, tandis que les départs sont correlés. On obtient explicitement les fonctions
génératrices des probabilités de la longueur de la file d’attente dans le cas stationnaire.

Quelques cas particuliers sont examinés pour terminer.

INTRODUCTION

Cox and Miller [1] consider a discrete time, limited space, single channel, first-
come-first-served queueing system in which arrivals and departures are
statistically independent of the previous arrivals and departures (i. €. arrivals and
departures with zero-step memory —to be defined later) and obtain equilibrium
probability distribution of the queue size. Chaudhry [2] considers the steady
state behaviour of a discrete time, single channel, first-come-first-served
queueing problem in which it is assumed that the arrivals at two consecutive time
marks are statistically independent, whereas the departures are correlated (i.e.
departures with one-step memory—to be defined later). However, it is not
uncommon in practice to find situations where departures have sometimes one-
step memory and sometimes zero-step memory. For example, let there be two
clerks X and Y in an office. There arrive certain confidential files sealed and
written on the cover “A4” or “B” and certain general files. File “A” is to be kept
by X and file “B” isto be handed over to Y by X for necessary action. Out of the
general files, some are kept by X himself and the remaining are allocated to Y
by X for disposal. If we now identify respectively the departure and no departure

(*) Regu avril 1978.
(!) Department of Mathematics, Kurukshetra University, Kurukshetra-132119, India.
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186 U. K. GUPTA

at a service channel with the keeping of a file by X to be disposed of by himself
and allocating a file to Y for disposal, then:

(1) if a file coming to X is found confidential:

(@) he has to keep it with himself irrespective of the fact that he had/ had not
kept a file with himself at the previous time mark if “ 4" is written on the cover of
the file,

(b) he has to allocate it to Y irrespective of the fact that he had /had not kept a
file with himself at the previous time mark if “ B is written on the cover of the file;

(2) if a filecoming to X is a general one, X keeps it with himself or allocates it
to Y depends on whether he (X) had/had not kept a file with himself at the
previous time mark.

Case (1) corresponds to departures with zero-step memory while case (2)
corresponds to departures with one-step memory.

In this paper we shall study the steady state behaviour of a discrete time, single
channel, first-come-first-served queueing problem in which arrivals have zero-
step memory but departures have sometimes zero-step memory and sometimes
one-step memory. Two models (4) and (B) are considered. If just before a
transition mark ¢, the system is empty and an arrival takes place at ¢,, then: (i} in
model (4), it can not leave the system at the same time mark i. e. the probability
of its departure and no departure at the same time mark ¢, is zero and one
respectively; (i) in model (B), it has got equal chances of departing and not
departing at the same time mark ¢,i. e. the probability in each caseis 1/2. In each
model, probability generating function of the queue length is determined. Also
queue length probabilities are determined explicitly. Mean queue length,
variance etc. have been found out in these models. Some particular cases have
also been added.

In a problem like this the whole time axis is divided into a number of intervals
separated by transition marks t, t;, t, . . .. The arrivals/ departures can occur
only at these transition time marks. If arrivals(departures) at a transition mark
are independent of whether there were arrivals(departures) or not at the previous
transition marks, they are called arrivals(departures) with zero-step memory or
to have zero-step memory. If arrivals(departures) at a transition mark ¢,
depend on whether there were arrivals(departures) or not at the previous
transition mark ¢, only, they are called arrivals(departures) with one-step
memory or to have one-step memory.

In this paper, arrivals have zero-step memory while departures have
sometimes zero-step memory and sometimes one-step memory i.e. departures
are associated with a random variable X, call it memory random variable, such
that it assumes values 0 or 1. The probability that X takes the value 1is p and
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DEPARTURES HAVING RANDOM MEMORY 187

that it takes the value 0is g such that p+ g =1. Within one transition duration X
can have only one value either 0 or 1. The value of X from Oto 1 orfrom 1to O
can change only just after a transition time mark and it will remain the same upto
the next transition time mark. When X assumes the value 0, it means departures
have zero-step memory and when X assumes the value 1, it means that
departures have one-step memory.

MODEL A

The queueing model investigated in this paper involves the following
assumptions:

(1) The probability of an arrival and no arrival at a transition mark is A; and
Ao respectively such that Ay +A, =1.

(2) The probability of more than one arrival or more than one departure at a
transition mark is assumed to be zero.

(3) When the system is empty just before a transition time mark ¢, and a unit
arrives at t,, the probability of its departure at ¢, is zero and that of no departure
is one.

(4) When just before a transition mark t,,; the queue length is n>0 and
X =1, then:
(1) if there is a departure at t,:
Prob. (departure at ¢,.;)=a;,,

Prob. (no departure at t,,,)=a;o;
(i1) if there is no departure at t,:
Prob. (departure at ¢, {)=aq;,
Prob. (no departure at t,,,)=aq0-

Thus the Transition Probability Matrix (T.P.M.) for departures and no
departures at two consecutive time marks ¢, and ¢, is given by:

To Lsa

no departure departure

no departure at ¢ a a
From ¢, p r 00 01
departure at ¢, ayo aj,

Whel'e Qoo +a01 =dajo +all =1.
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188 U. K. GUPTA

(5) When just before a transition mark t,,,; the queue length is n>0 and
X =0, then:
Prob. (departure at t,,,)=by,

Prob. (no departure at t,,,)=b,,

such that by +by=1.

(6) The system follows the “First-Come-First-Served” queue discipline.
Define:

PX), (, +0)=Probability that just after the transition mark ¢, the queue length
(mcludmg the one being served) is n, X =1 and there was no departure at the
transition mark t,.

P®), (¢, +0)="Probability that just after the transition mark ¢, the queue length
is n, X 1 and there was a departure at the transition mark ¢,.

P© (t,+0) =Probability that just after the transition mark ¢, the queue length
is n and X =0.

P,(t,+0)= Probability that just after the transition mark ¢, the queue length
is n.

The queueing system described above is governed by the following equations:

PO (8, +0)=p Ao ago P (t,—0)+ Ao a1 PV (,—0)
+Xobo PO (t,—0)+Ag ago PPy o(t,—0)+ Ay ay0 PV 24,1(t,—0)
+A; bo P2, (2,—0)] for n=2, (1)
P®, (1, +0)=p Ao oo P (£, — 0)+ Ao aso P (2, ~ 0) + Ao bo P (,—0)
+01 Po (1, —0)+ 4y Py (1, —0)+ 2, PE (2, —0)], (2)
P (8, +0)=p[ho PG)o (t, —0)+ho PGy (t, —0) + 1o PG (¢, —0)], 3)
PO, (t,+0)=p[ho aos Pui}, o (t,—0)+ Ao ays Py 1 (£, —0)
+Xo by PR (t,—0)+2Aq agy PO (2, —0)+ Ay ayy P (1,—0)
+A; b, PO(t,—0)) for n=1l, (4
P, (t,+0)=p[Ao ag1 PP (1, —0)+ g agy Py (2, —0)+ 2o by PO (t,—0)], (5)
PO (¢, +0)=q [Mo aoo P (t,—0)+ Ao aso Py (t, — 0)+Ao bo PV (t,—0)
+Xo @01 P21, o (6, —0)+ Ao ayy PS4, 1 (8, —0)+ Ao by PO, (,—0)
+21 800 P21, 0 (6, —0)+ 11 a10 P2y 1 (8, —0)+ )y bo P24 (£,—0)
4y agy PP (6, —0)+ 2y ayy PPy (2,—0)
+A1 by PO (£, —0)) for n=2, (6)
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PP (t, +0)=q Mo oo P (t,— 0)+ Ao az0 PY) (2, — 0) + 1o by PV (£, — 0)
+Xo ao1 PEY (t, —0)+ Ao ayy P§); (t,—0)+ 1o by PP (1,—0)
+M1 PG (8, —0)+ 2y PG)1 (£, —0)+4y PQ (1, —0)
+hiaoy PLo (6, —0)+ Ay ayy Py (8, —0)+4y by P (1, ~0)], (7)
P (1, +0)=q Ao PE)o (t, —0)+ 1o PEy (1, —0)+ 1o PE (£,—0)
+Xoao1 P{)o (6, —0)+ Ao ay1 P (8, ~0)+ Ao by PV (2, —0)], (8)
P,(t,+0)=PY% (t,+0)+ P (t,+0) + PV (t,+0)  for n=0. 9

For steady state, as r - o0

PRi(t,£0) > POY (i=0, 1),
P (t,1:0) > P,
and
P,(t,+0) > P,.

Define the generating functions for the steady state probabilities:

R, 1,9)=Y o"P®  (i=0,1),

n=0
R, 0)= Y o"P?,
n=0
R(@= ) o"P,.
n=0
Letting r — co in equations (1)-(3), multiplying by appropriate powers of o,
summing over n from 0 to oo and making use of the generating functions, we get:
[pago—h(@)]R(x, 1, 0)+pao R(x, 1, )+pbgR(et, 0)+pK=0. (10)
Similarly dealing with equations (4)-(5) and (6)-(8):

pag R(a, 1, 0)+[pa,; —ah(@)]R(x, 1, 1)+pb; R(a, 0)—pK =0, (11)

q(ao; +aage) R(x, 1, 0)+q(ay; +aao)R(e, 1, 1)

+[g(by+aby)—ah(w)]R(x, 0)—q(1—a) K=0, (12)

where

1

h@)=———
= e
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190 U. K. GUPTA

and
K=a01 PB{’0+a11 P(ol,)l +b1 Pg)).
Writing (10), (11) and (12) in the Matrix form and making some elementary
row transformations, we have:
p—h(x) p—ah() P
Paoi pa;,—ah(e) pb;
q(ags +oage) qlay+aae) qby+abe)—ah(w)

R(a, 1,0) 0
x| R@,1,1) | = pK (13)
R(x, 0) q1-)K

Solving (13):
_Kpah(cx)[l—och(oc)]
N A(o)

R, 1, 1)=Kp°°h$°)(g)'(°°)_1],

Kqah?(o)[1—«o]
A(o)

R(a, 1, 0)

R(a, 0)=

where
A(w)=oh(x)[p(ao: —011)+{Pa11 +gb; +a(page +gbo) } h(o)— o h? ()],
so that

R()=R(x, 1,00+ R(x, 1, 1)+ R(a, 0)
_ K(1—a)g(a)
p(ao1 —a11) g% (@) +[pai; +gb; +a(pago +gbo)l g (@) —o

[where g (o)=1/h(c)=Ao +A; 0]
K()\.o +)\.1 CZ)

= . 14
Ro+A10)(Proaor+phyas;+gb)—2 o a4
Using the normalising condition Lt R({a)=1, we get:
a—=>1-0
K=phoao, +pAria;+gby—A4,. (15)
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Therefore:
(Mo +A;0)(pAroaoi +pAyar; +gby—Ay)
R(a)= . 16
@ (Mo+ria)(phoaoy +pryar; +gb)—A o (16)
Applying Leibnitz differentiation formula to (16), we obtain:
11 4
P,=— —
AoAi(pA - "
oM (p 0‘101‘*‘;;»,1011'*"1}71 7»1)(%) for n=1
= (17)
ho(pAoaogs +phyays +gby—Ay) _
X for n=0

where

X=Xo(proao,+pAiay+gby)
and (18)
Y=A{1-(proaos +pAiay;+qby)]

It is obvious that the steady state queue size distribution exists if

pagy +qby
1+plag —ay,)

Y/X<1 ieif <

The left side of this inequality is obviously the mean number of arrivals at a
time mark and we prove below that the right side is the mean number of
departures at a time mark.

Just after a time mark ¢, , the queueing system can be only in three states Eg, E,
and E, —states Eq, E,, E, respectively mean the system has zero memory, the
system has memory one and there was no departure at t,, the system has
memory one and there was a departure at t,. Now the stochastic matrix P can be

written as
E, E, E,

Ey | g pby pby
E, 4 DPGoo Paoi
E, | 9 pao pai,

Let z,, z,, z3 stand for the limiting probabilities of the states E,, E;, E,
respectively. Then the vector Z=(z,, z,, z3) is given by:

ZP=1Z. (19)
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192 U. K. GUPTA

Solving (19):
Zy=q,
_ p(gbo+paso)
1+p(ao—ayy)’
_ plgby +pao,y)
_1+P(a01—au).

22

3

Thus

mean number of departures at a time mark
=z bl +22 Aoy +Z3 agq
__ Pdo:t gby
1+p(agy —ayy)
Mean Queue Length

Differentiating (16) w. r. t. a at o= 1, the mean queue length (i. e. the expected
number in the system), L, is given by:

Aoy
L= .
PAoGoi+phia +gby—Ay

(20)

Variance

L, being an expected value, fluctuations in the number waiting can occur,
which can be best seen by calculating the variance, V"

V=R"(1)+ R’ (1)—[R’' (1)]?

=>"o Alo—=A)(proaor +pAyay, +qb1)+7‘4ﬂ
(PhoGoy +PAy ary +gby —Ay)?

@1

Expected Number in the waiting line

L,, the expected number in the waiting line (excluding the one being served)
can be determined as:

L,=Y (n=1DP,
_ AM1—(pAoaos +pAias;+gby)]
(PMoaor+priass+gb)(phoaos +phyari+gby—)y)

22
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The probability that not less than a given number is in the system

The probability that the number in the system is greater than or equal toj(=1)
is given by:

hisd }\.0)\.1 Y J
= — 2
nng.. G <X> (23)

[X and Y being given by (18)].

If we put j=1, we get A, /(phoaoy +p A ar; +gb,), the probability that an
arrival must wait.

PARTICULAR CASES

(1) If we put p=0 and g=1 in (16), we obtain the generating function for the
queue length for the queueing system in which departures have simply zero-step
memory:

R(OL)=O\'0 +Ay ) (by —Ly) ’

(24)

which is the same as (21) of Chaudhry, except for notations.

(2) If we put p=1 and ¢=0 in (16), we obtain the generating function for the
queue length for the queueing system in which departures have only one-step
memory:

R(a)= (Mo +Ay o) (Ao ags —Ag ayo)
(Ro+r10)(Roaos +Aiar)—Aio

25)

For ayo=a,, and a4, =a;, we have the result (12) of Chaudhry, except for
notations.

(3) If we put p=g=1/21in(16), we obtain the generating function for the queue
length for the queueing system in which departures have equal chances for
having one-step memory and zero-step memory:

_ (Mo+Aia)(Aoagr +Aray +by—22y)
(7\.0‘{')\.1 (x)(}\-oa(n +>\.1 ajq +b1)—27\.1 o

R(®) (26)

MODEL B

In this model the assumption (3) of model (4) is modified as follows:

When the system is empty just before a transition mark ¢, and a unit arrives
at t,, then its departure and no departure have equal chances to happen at ¢,.
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194 U. K. GUPTA

That is, if just before a transition mark ¢,, the system is empty and an arrival

takes place at t,, then

1
Prob. (departure at ¢t,)= 7

1
Prob. (no departure at t,)=§.

Proceeding as in model (4), we see that the system is governed by the following

steady state equations:

P =plhoago Pi o +Agaro Py +hobo PO+ Ay age P2 o
+Ag a0 P8y +X bo P2] for

1
P(11,)0=P|i7bo ago P{g+hoaro Py +ho by P(10)+7v1§P$)1,)0

1 1
s P, +x15p§,0>],

Py =p ko P30 +ho P31 + 4o PY],
PO =p[hoaot P o+hoas P2y 1 +hoby P2,y
+)\.1 dp1 Ps,{)o"l')\.] aiq Pglf)1+)\’l bl Pslo)] for

P, =P[7¥0 agy PPo+Aoayy Py +hoby PO

1 1 1
+MEP$,{)0+MEP$){’1 +hig

PO =q Ao ago P +No a0 PV +ho bo PY + Ao ao: P21, o

nx2,

Psm],

1 1
+hoary PRy 1+ Roby P2y + A ago PRy 0+ Ay aro Py o

+ A1 bo Py + 0y agr P+ Ry ayy Py
+X by PO for

P(10)=CI|:7&0 ago P)o +ho aso P11 +ho b P+ agy PYg

1 1
+)\.0011 P(zl,)l +7\,0b1 P&O)'i‘)\.l*ipg,)o +}\.1§P$)l’)l

n=2,

1
+7\1§P2)0)+7\1 a1 P +hyay PV +4 by P(IO):'»

27)

(28)

(29)

(30)

€2y

(32)

(33)
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P50)=4[7‘v0 P36 +ho P)1 +ho PE” +ho aor PY)o+ho arg PY)y
Ao by PO+ 2 IP“’ A lP" A 1P‘°’ 34
+Ao0y P77+ 13 0,0+ 13 o)1 + 15 Fo” |, (34
P,=PWy+PM, + PO for n30. (35)

Proceeding as in model (4), we get:
p—h() p—oh(@)  p

Pao1 pa;; —ah(a) pby
qlao1 +aag) qlag; taagy) q(by+abg)—xh(a)_

R(a, 1,0) 0
I R, 1,1) = PK (o) , (36)
R, 0) q(1-0)K (@)
where :
O —
- )\.0 + 7&1 a
and
ar
K@= (o P+ P by ) — 5 (PR P+ 2 |
Solving (36):

(ho+2110) (Phodor +PAyary+gb))—A o

The normalising condition Lt R(x)=1 gives:
a—>1-0

1 1 1
<a01—5k1>P8’)0+(a11 "57»1) PGy +<b1 —57»1)1%0)
=pho Go1 +Ph1 @11 +gb; —Ay. (38)

Equation (29) gives:

(pho— 1) P§)o+ pho Py + pho PP =0. (39)
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196 U. K. GUPTA
Solving (31) and (34):
paro P§)o +(pgho+9) P31 +(pgho — p) PP’ =0. (40)

Writing (38), (39) and (40) in the Matrix form and making some elementary
row transformations, we obtain:

1 1 1.
¢101_3)\1 (I”—;Xl hl_;}\l

Pho—1 pho Pho
q q -
0o Phodgy +PpAydy +gby— Xy
< Po! | = 0 (41)
Py 0
Solving (41):
P(l) _ p}»oA
0, D s
A A
P, = s
D
PO __ﬁ
D
where

A=phkoao; +phia,+gb;—A

and
1
D =phyao, +pryag;+qgby —57\'1

so that

{[2(7\'0'*‘7»1 o) (Pho Aoy +PAhy ayy +gby) }
—Aya) [pho ags +phiay1 +gby — A4
(Ao+Ay @) [2(pho oy +PAyary +gby)—Ay]

K(0)= (42)

R.A.I.R.O. Recherche opérationnelle/Operations Research
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‘Therefore:

{[2(7&0‘*'7»1 QC) (PAo @01 +priars +gby) }
—A1 o] [pPho @o1 +PAyayy +gby — )]
{[(7»0'*'7\'1 o) (pho do1 +phy ayy +gby) } )
~A o] [2(pho @01 +Phyars +gby) — 2]

R(w)=

(43)

Proceeding as in model (4) we can find out the queue length probabilities
explicitly which are given by:

g ZKMI: - <;)ﬁ for n21 )
P,= (ZK+MXy) ) (44)
( 2K ﬂ

2K+,

for n=0

where K, X, Y are given by (15) and (18).
Again, we see that steady state exists if

)\‘1 < paOI + qbl .
1+p(aos —as)
Mean queue length

The mean queue length, L, is given by:
Ao A1 (pAoaos +phy ays +4gby)

L= . (45)
[2(proaos +pAiaii+gby)—A] [pAoagr+phyasy +gby —Ay]
Variance
The variance, V, is given by:
Ve Mori B[2(ho —A;)B2+3A2B—2A%] (46)

(2B—1)* (B—M\y)?
where
B=phoao; +pria;, +qb;.

Expected number in the waiting line
L, the expected number in the waiting line (excluding the one being served) is
given by:

I = A1 —(pho aos +P7\i ap; +gby))
* (pho o1 +pAyary+abi —Ay) [2(phoaoy +pAhy ary +gby) —Aq]

@47
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198 U. K. GUPTA

The probability that not less than a given number is in the system

The probability that the number in the system is greater than or equal
to j(=1) is given by:

@ Mo Y\t
S Bt SR (T D 48
n;jp" 2X —ho Ay (X (48)

The probability that an arrival must wait is given by (putting j=1):

A /[2(pho agy +phy agy +qby) — 2] (49)

PARTICULAR CASE

If we put p=1 and g=0in (43), we obtain the probability generating function
for the queue length for the queueing model in which the departures have only
one-step memory:

(Ko_a_m =Ay fllp) [2 (&gf M) (Ao aoy +7\1 ap)—h o

R(oy=— S — ~ - {30)
[2(oao1 +hyars) =2 ][(o+2; o) (Agagy +Ayai)—A al

For ago=a;, and a4, =a,, we have the result (33) of Chaudhry, except for
notations.
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