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IMPROVED LOWER BOUNDS
TO THE TRAVELLING SALESMAN PROBLEM (*)

by Gianfranco D'ATRI (1)

Abstract. — In this paper we study the dual of the Travelling Salesman Problem as a source oflower
boundsfor the primai problem. We consider an extended set ofconstraints and design a gênerai itérative
procedure in the space of the multipliers, i.e. dual variables, which also provides new simple bounds.

0. INTRODUCTION

The Travelling Salesman Problem (TSP) has been widely studied in* order to
fmd optimal as well as approximate solutions, but no satisfactory algorithm yet
exists despite its quite elegant integer programming formulation.

In recent years emphasis has been put on its dual program which prövides
good bounds to sub-problems generated during a Branch and Bound procedure;
moreover techniques have been introduced for optimizing, or sub-optimizing,
the dual by means other than the Simplex Method, unpractical for the size
of (TSP) and of its dual (2). The first use of such lower bounds has to be ascribed
to Little et al [18] indeed they used an approximate solution to the related
Assignment Problem Dual.

A more sophisticated and computationally simple bound wâs introduced by
Held and Karp [12, 13] and, in a slightly different way, by Christofides [3]: this
method solves related Spanning Tree Problem during an itérative procedure and
has been shown to approach the optimal value of the dual, i. e. the best possible
bound in this context, in a short amount of computer time.

In [3] another technique was also presented solving a séquence of Assignment
Problems: for it good computational results are reported.

In this paper we study the dual of (TSP) in the symmetrie case and give a
genera! "bound generator" framework in which preceding procedures are
imbedded or extended to the symmetrie (TSP).

(*) Received June 1977.
C1)' Institut de Programmation, Équipe "Graphes et Optimisation Combinatoire".
(2) We must cite Miliotis [19] who resumed the Symplex for (TSP).
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370 G. D'ATRI

We use an extended set of constraints and a very large dual with multipliers
associated with each constraint; but they are handled implicitly, exploiting
results due to Edmonds and Johnson [6, 7],

This work is not a computational report or the description of a particular
algorithm, but an effort to understand the structure of a special combinatorial
problem, providing, as by-product, tools to be used in the design of algorithms.

For a gênerai présentation of (TSP) see [2]; while for concepts and results
about Lagrangean relaxation [9] can be consulted.

The paper is so organized: in section 1 the structure of (TSP) and related
problems is studied; in section 2 a first lower bound procedure is presented; in
section 3 the gênerai one is discussed.

SECTION 1

1.1. Let G = (N, E) be a graph with vertex set N = { 1, 2, . . ., n} and let the
non-negative (3) vector c = (ce)eeE specify the costs assigned to the edges. Each
partial graph of G is assigned a cost equal to the sum of the costs of its edges.
A tour is a cycle passing through each vertex exactly once.

The Symmetrie Travelling Salesman Problem is that of finding a tour in G of
minimum cost.

The following notation is used: for any set of vertices S in a graph, œ(5) is the
set of edges linking S to N — S; for a problem (. ), v (. ) is its optimal value; for a
matrix A and an index i, A1 is the column i of A and At is the row i of A; X |
dénotes the cardinality of set X or the absolute value of number X\ R+ is the set
of all non-negative real numbers.

If we associate to each edge e the binary variable xc, the vector x = (xe)eEE

represents the partial graph Gx with edge set {ee£/x e= 1}; then the problem
can be formulated as the integer linear program

MIN ex,

£ xe^2 for S^N, (1)
(TSP)

Z^«. (2)
eeE

xe^0 or 1 for eeE,
indeed any tour has n edges and enters and leaves each subset of vertices at least
once.

(3) But this is not a restriction.
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TRAVELLING SALESMAN PROBLEM 371

In this paper we are concerned with relaxations of (TSP), that is, problems
with optimal value less than that of (TSP) and, possibly, solvable by efficient
algorithms: two families of them can be constructed by relaxing some
cons traint s.

For a given partition P— {S1, . . ., Sr} of N, let us define the P-contraction
of G to be the graph G' = (V, E) with the same edge set as G and
verticesi^, v2, . . ., ^suchtha t theedgeel inks^ to^^Uj i feeco^noc)^) , or
it is a loop of vt if it links two vertices of St.

An example is given in figure 1 where Sx = {1, 2, 3}, S2 = {4, 5 }, S3 = { 3 }.

Figure 1.

For a given partition P and a non-negative cost vector ƒ we call:

P-JBzcouermôfproblem,theproblemoffindinga(2, 2, . . ., 2)~coveringin G'of

minimum cost, that is

MIN fx,

Y x >2 for veV, (3)
(Bp)

xe = 0 or 1 for eeE,

J*-Spanning problem, the problem of finding a \~tree in G' of minimum cost,
that is

(TP)

MIN fx,

for
eew'(S)

- { v x } t . (4)

(5)

xe = 0 or 1 for eeE,

where oo' (S) — co (S) — co (i;1).

Some comment is in order:

(a) in (TSP) there are obvious redundant constraints, e. g. œ (5) = co (N — S);
but their réduction is not in the scope of the paper.

vol. 12, n° 4, novembre 1978



372 G. D ' ATRI

(b) in (BP) and (TP), the variables associated to loops in G' appear only in the
objective function: in an optimal solution they take value 0 whenever the cost is
non-zero, so they doesn't affect the optimal value;

(c) for the special partition N = {{i }/i G N } , (TN) is a 1-tree problem in G and
(BN) plus the constraint (2), denoted (B^), is a 2-Matching problem in G.

1.2. We have the obvious:

PROPOSITION 1: Let P-Bicovering, P-Spanning and 2-Matching problems have
cost vector f = c, then

z;(TSP)^max(max u(BP); max v(TP); u(B^)),
p p

It says that any of the cited problems are relaxations of (TSP) and so an
improved lower bound can be obtained by solving as many as possible of them.
Among them there is no best one, as showed in the following examples.

10

A Figure 2.

In all the figures the numbers written near the edges are the costs.

Let us consider the graphs of figure 2, with

P = {Slt S2 } and S, - { 1, 2, 3}, S2 = {4, 5, 6}.

For graph A :

v (TSP) = 24; v (TN) =15; v (B^) = 6; u (BP) = Ü (TP) = 20.

For graph B:

v (TSP) = 24; v (TN) = 4; i? (B^) = 22; v (BP) = w (TP) = 2.

There are better ways of using P-contractions than that suggested by
proposition 1, but this is the scope of section 2.

The introduction of these relaxations is justified by the fâct that we know
efficient algorithms solving them and giving, as by-product, a dual associated
solution. Indeed, if we dénote by Bvx^bp and Tpx = tp the linear Systems
defming the convex hulls of the integer solutions to (BP) and (TP), respectively,
we have:

R.A.I.R.O. Recherche opérationnelle/Opérations Research



TRAVELLING SALESMAN PROBLEM 373

THEOREM 1: For any problem (Q) = (BP) —resp. (TP)— there exists a multiplier
vector À- = r|p —resp. |xp — such that an optimal solution to the Lagrangean
relaxation of (Q), MIN/x + A, (q-Qx), xe = 0 or 1, is optimal to (Q); where
Qx^q is the convex huil of integer points in (Q).

Furthermore, the multipliers are computable in polynomial time,
The first assertion dérives from the duality theory for linear program-

ming, while the multipliers can be obtained by solving (BP) with Blossom algo-
rithm [6, 7] and (TP) with some modified version of Kruskal's one [15, 20].

The full characterization of the convex hulls of integer solutions for (BP)
and (TP) has been given by Edmonds [7] and Held-Karp [12], respectively.

Three remarks:

(d) theorem 1 is valid also for (Q) = (B^);

(e) the reduced costs ƒ ' = ƒ — X Q, which appear in the Lagrangean
relaxation, are non-negative and zero for variables with value 1;

[j j despite the large number of constraints in (Q) of theorem 1, the multi-
pliers with non-zero value are less than the cardinality of the edge set, | £ | .

The next theorem gives the tools for exploiting the results of theorem 1, as will
be shoxn in the next section. Let be

(P)

MIN dy,

Hy^h,

yj = O or 1, je J,

a linear integer problem and, for a conformable non-negative multipliers
vector X,

MIN

y . = 0 or 1, jtJ,

its Lagrangean relaxation then:

THEOREM 2, [4] : ƒƒy h a solution to (P) and y' to (RPJ, set ƒ = {; e J/y,- #= yj} and

lj = \dj-XHj\, then:

Î ; ( P ) : > ^ ( R P X ) + Z ^ (6)
je!

SECTION 2

2.1. Let us rewrite problem (TSP) by introducing all the constraints needed for
the continuous characterization of P-contraction problems, but maintaining the
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374 G. D'ATRI

integrality condition on the variables, that is
MIN ex,

(TSP)

B x^b for any partition P of N

Tpx^tp for any partition P of JV (7ii)

eeE

\ xe = 0 or 1, for eeE,

then a Lagrangean relaxation of (TSP) is

MIN cx + X(a-Ax),
(TSP,)

xe = 0 or 1, for eeE,

where Ax^a is a synthetic représentation of constraints (7) and X a non-
negative vector of multipliers associated to all the constraints (4).

The optimal value of a particular P-contraction problem is the optimal value
of a relaxation with all zero multipliers except those associated to the constraints
of this problem which are determined as specified in theorem 1.

Now, let us suppose to have solved (B^), i.e. selected a multipliers vector X
according to theorem 1; the primai solution x solves (TSPJ and (B )̂ but not
necessarly all the other P-contraction problems. If this is the case an optimal,
and then feasible, solution 5c to (TSP) must have some components different
from x. We can try to evaluate the summation of (6), or a lower bound to it, for
improving the simple bound v (TSPX).

If the partial graph G* is a not tour, then it is constituted by k> 1 connected
components whose vertex sets are §x, . . ., Sk; in the iatter case, îhe optimal
tour G* must enter and leave any of them at least once, so the edges o f f ' c F ,
with

F' = {eE£/jce = Oand:xe = i} and F = {eeE/xe=£xe},

are a (2, 2, . . ., 2)-covering of the contracted graph with P = {Sl3 . . ., Sk}.

If vx is the optimal value of (BP) with costs le = ce — XAe (^0, see remark e),
using theorem 2, we have

u(TSP)^t?(TSPx)+ £ / . ^ ( T S P J + iv (8)
eeF

Let us remark, now, that the solution x' of(BP) produces a partial
graph Ĝ  u Gx. which is connected or constituted by new connected components

(4) For equality constraints in (TSP), written as two inequalities, we could take multipliers
unrestricted in sign.

R.A.I.R.O. Recherche opérationnelle/Opérations Research



TRAVELLING SALESMAN PROBLEM 375

whose vertex sets are S[, . . ., S'k.,so the same considérations induce us to
improve the bound of (8) via the solution of problem (BP) with objective fonction
coefficients l'e= le-X'Ae, where P'= {S'lt . . ., S'k,} and X' is the multipliers
vector associated to the primai solution x' of (BP).

More generally, the following is a bounding procedure:

BOUND 1:
Step 0: let P be a starting partition; bound = 0; I = c; G = (iV, Ç>);
Step 1; solve (BP), using cost vector 1 : let be t?.̂ u(BP),.x the primai solution

and X the associated multipliers vector;
Step 2: bound = bound + v; \ = \-XA; G = G u G x ;
Step 3; If G is connected STOP, otherwise P={S 1 , . . ., Sk}, where

Su . . ., Sk are the vertex-sets of the connected components in G,
and GO TO step 1.

PROPOSITION 2: At any itération bound is a valid lower bound to (TSP).
Moreover, the procedure can be stopped before a connected partial graph is

obtained, and then the current bound improved as follows:
after step 2: Solve (TP) with cost vector 1; bound = bound + u(TP), where P is

the partition of connected components in G; STOP.
Indeed, a tour contains a 1-tree for the contracted graph, so a lower bound to

the reduced'cost of edges in F"={eeE/xej=xe} is the optimal value of (TP),
(here x is such that GX = G). Four comments:

(a) BOUND 1 is the generalization and extension to the symmetrie case of the
procedure due to Christofides [3];

(b) it is easily realized that the enormous number of constraints (7) is only
implicitly considered, for the reduced costs are computed by the mentioned
algorithms;

(c) the number of variables decreases at each itération of Bound 1 if multiple
edges in contracted graphs are reduced to two for each pair of vertices;
, (d) in the first itération, if the initial partition is N, (B Ĵ can be used as well

as (BN); but, trivially, I;(BN)^U(BN).

An example: Let us consider graph A of figure 2, the solution of (B )̂ gives
w = v(B^) = 6 and the two connected components Sx = {1, 2, 3}
and S2= {4, 5, 6} linked by two edges (1, 6) and (3, 4), of reduced
cost 1 = 9 (5). Now, for this example, problems (BP) and (TP) are equivalent and

(5) The convex huil of integer points of (B^) satisfies the following constraints
x\2 +X23 + X3i + x i 6 = 3 and x45 + x5fS + x f l 4 + x 3 4 ^ 3 . and the optimal solution is obtained
assigning them multipliers À,x = 1 and A.2= 1, so / i6 = /34 = 10— 1 =9.
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376 G. D'ATRI

their solution givesi;1 = 18 and the improved bound for (TSP) becomes
= 6+l$ = 24, indeed the optimal value.

2.2. A procedure, analogous to Bound 1, can be conceived starting with the
solution of a 1-tree problem: hère it is sketched.

Let us suppose that x' solves (TN) and then a certain Lagrangean
relaxation (TSPJ, but not necessarly the other P-contraction problems. The
graph Gx, or is a tour or it contains k^ 1 vertices, say ilf . . ., ik, of degree 1; in
the latter case, the optimal tour G-must meet each of them with at least one edge
other than that of the tree, so the edges of F u F, with

F = {eeE/x'e^xe} and F = {esE/xt
e = l}

are a (2,2, . . ., 2)-covering of G; if v2 is the optimal value of (BN) with reduced
costs /e = ce-XAe,

then v2ï £ le.
eeFuF

Furthermore, 7e = 0, for any eeF, and so

eeFuF e€p

then
u(TSP)^u(TSPO + t>2. (10)

Now or the solution x" of (BN) produces a partial graph Gx»u Gx. without
cut-edges, or there are /c '^1 sub-sets of vertices 'Slt . . ., Sk, linked" to
i — ±\' — si — . . . — Sk. by only one edge and not linked among them; the optimal
tour meets each of them at least with another edge, so these edges and those of
GX,\JGX, are a (2, 2, . . ., 2)-covering in the P-contracted graph with
P={/,S1 S k . } .

As before, an improved bound can be found by solving (BP) with reduced costs
l'e = Je — X' Ae, where X' are the multipliers associated to the optimal solution
of(BN).

Obviously, the procedure can be iterated until a partial graph is found with no
cut-edge.

An example: Let us consider figure 3, a minimum cost 1-tree in graph C is
the partial graph Cfl, with associated multipliers Xe = 0 for ail eeE, and giving
the bound u(TSPJ = 0; then a minimum reduced cost (2, . . ., 2)-covering
(or N-Bicovering) is Cb, giving the bound v(TSPx) + v2=0.

In Cb there are two cut-edges, (2, 7) and (7, 5), so we take S1={1, 2, 3},
S2 = { 4, 5, 6} and I = { 7•} : Cc is the contracted graph in which the minimum

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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Figure 3.

reduced cost (2, . . ., 2)-covering has value vf
2 — l, and so the final lower bound

is v(TSP1) + v2 + v2 = l.

Two remarks:
(e) it is easily realized that the solution of a (TP)-problem can be inserted as an

intermediate step (only once) in Bound 1, as well as first or terminating one;

( ƒ ) there are problems for which whatever version of Bound 1 doesn't provide
a good bound: for graph in figure 4 the output of Bound 1 is 0, while v (TSP) = 1
and p(B^)=l.

Figure 4.

SECTION 3

3.1. In this section we describe a method for obtaining lower bounds without
graph structure considérations, and we show how it is related to those of
section 2,

Let be v(k) = v{TSP}), p = the number of constraints (7) in (TSP),
SUPP() = the index-set of non-zero components of vector (); we call dual
problem of (TSP):

(D)
M A X Ü ( X ) ,

vol. 12, n° 4, novembre 1978



378 G. D'ATRI

The main properties of function v(X) are summarized in the following:

THEOREM 3 [9]: v(X) is continuons, concave and piece-wise linear;

A method, called sub-gradient relaxation, has been introduced by Held-
Karp [13] and Held et al. [10] for problems similar to (D): the idea behind is to
generate a séquence {Xr} of non-negative multipliers vectors by the rule
Xr

t
 + 1 = max (0, ^ + 6r gl), i = 1, . . ., p; with gr a sub-gradient of v (•) at Xr and 0r

a step-length, chosen according to a rule guaranteeing convergence. In pratice
the method is used only for finding approximate solution to (D) which are,
obviously, lower bounds to (TSP).

However it is difficult to construct such a séquence for the Travelling Salesman
Dual considered by us, due to the enormous number of dual variables, i.e.
multipliers, which we hope to treat only implicitly.

The technique described below construçts a séquence of sub-spaces of R^.,
say {Zr},suchthatZrr\Zr+1j=(J) and v(')isoptimizedovereach Zr>obtaining
a séquence Xr for which v(Xr+1)^v(kr).

Let be G a matrix and p a vector of conformable dimensions, for a fixed 1^0
the problem:

MAXu(^),

% (11)

can be considered the dual of

MYN(c-XA)x+la, (12)

(UG) (13)

indeed the Lagrangean relaxation of (L^ G) with multipliers p is the same as that
of (TSP) with multipliers X = X + p G.

If we get a multipliers vector p' optimal for the dual of (L^ c) and satisfying
' G ^ 0 , then X' optimizes v(*) over the sub-space

Zf={XeW+/X=X+pG, p^O}. (14)

Otherwise, set

9" -max { 0/0^0^ 1,1 + 6(V - 1 ) ^ 0 } (15)

R.A.I.R.O. Recherche opérationnelle/Opérations Research



TRAVELLING SALESMAN PROBLEM 379

then X"=X+Q"(X'-X) maximizes u(-) over the segment

Z" = {XeRp
+/X=X+Q(Xf-X), 0 ^ 0 ^ 1}. (16)

For a given séquence { Gr} of matrices, whose sélection will be discussed later,
the procedure can be described as follows:

BOUND 2:

Step 0: Let A,°^0 be a starting multipliers vector; bound = v (X°); r = 0;

Step 1; Solve (L r G) and set Xr + 1=X' or X", as discussed above;

Step 2: bound = v(X
r + 1); r = r+1 and GO TO step 1.

PROPOSITION 3: At any itération bound is a valid lower bound to (TSP) and v (Xr)
is a non decreasing séquence ofbounds.

The computational complexity of Bound 2 dépends on the dimensions of À,0

and Gr as well as the complexity of (Lx G) problems, but special classes of
matrices Gr exist providing an overall polynomial behaviour for Bound 2.

As first, let us point out that multipliers are only implicity handled at the same
time; indeed at any itération the coefficients of (12) — apparently requiring the
tremendous product XA — are simply updated by the following recursion

{c-Xr+1 A) = (c-Xr A)~pr Gr A,

Xr+1a = Xra + prGra, (17Ü)

where pr is the multipliers vector associated to the optimal solution of (L r G,).

Moreover, the détermination of 0" in (15) — apparently requiring the solution
of a System of p linear inequalities— reduces tó the search for the minimum
among | SUPP(À,r)n SUPP(À,r+1)| numbers.

3.2. Let us now study special matrices producing easily solvable sub-problems
ofthe(L^G)-type.

Case 1: If G is an m x p matrix — remember that A is p x | E | — the resulting
problem is a n m x | E | linear program; the computation of its constraints,
defmed in (13), requires m x |£J scalar products, each of them obtained with
max |SUPP(G i)| multiplications at most.

So, for moderate values of m and | SUPP(G t) |, (Lx G) is easily solvable.
A remarkable case is m= 1, then the linear program reduces to a continuous

knapsack problem, which is solved by very1 simple algorithms.
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An example: Let be G an 1 x p matrix such that SUPP (G) is the index-set of
constraints (3) in (BP), with P = { S 1 ( . . . , S k } , then (LXG) is

MINc 'x + a'

eeE

and it is optimal value, a lower bound to (TSP), is the summation of the k
smallest reduced costs c'e = ce — XAe plus a'^Xa.

For constructing a séquence of 1 xp matrices to be used in Bound 2, the
following gênerai strategy is useful.

At itération r, let be x the solution so defined

xe=l if < = 0, xe = 0 if c'e>0,

where c'e = ce — 'kr Ae; select a constraint, say the i-th one, which is not satisfied
by x and set GJ=1 and GJ = O ïorj + U

If the selected constraint is one of (1), say £ x e ^ 2 , let be c1 and c2 the two
eeœ(S)

smallest reduced costs in {c'eJee(ù(S)}, then

^.+ 1 = ^ r ïîj^i and ^ + 1 - ^ + c2.

Remark:

(a) The previous strategy, in its version for the directed (TSP), was implicitly
used in [18], exploiting the constraints (3) of (BN).

Case 2: If G is an ail 0-1 matrix such that:

(i) | SUPP(G-) | = 1;

(ii) SUPP (G;) =É SUPP (G-) for all i +j\

(iii) (J SUPP (Gj) = the index set of all the constraints defining the convex huil
of integer points of a P-contraction problem;

then G A x ^ G f l defmes this convex huil.

So, the linear program (LXG) can be considered implicitly and solved by the

algorithms cited in section 1.

Now it is evident the following:

THEOREM 4: Bound i is a special case of Bound 2.
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TRAVELLING SALESMAN PROBLEM 381

Indeed, at each itération of Bound 1 the objective function coefficients are the
reduced costs of the preceding itération and the constraints can be obtained
from A by an appropriate choice of matrix Gr.
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