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A QUEUEING SYSTEM
WITH RANDOM ADDITIONAL SERVICE FACILITY (*)

by K. Bipur SincH (%)

Abstract. — This paper studies the transient and steady state behaviour of a limited waiting space
queueing system wherein: (i) there is one regular service facility (r. s.f.) serving the units one by one; (ii) a
search for an additional service facility (a.s.f.) for the service of a group of units is started when the
queue length reaches the maximum size and is dropped when the queue length reduces to some tolerable
fixed size; (iii) the availability time of an a.s.f. is a random variable; (iv) there are costs associated for
providing an a.s.f. and the loss of the customers who go elsewhere because of the limited waiting space.
Finally a relationship among the costs, traffic intensities and the queue size is obtained.

INTRODUCTION

A large number of queueing problems with additional service channels have
been solved by various authors. Romani (1955) and Phillips (1960) obtain the
steady state probabilities of queueing problems with variable number of service
channels assuming that when the waiting line size increases to some preassigned
fixed number N, then with each arriving unit a new channel is made available
and is cancelled at the termination of service if there is no unit waiting, with the
exception of one channel which remains open at all times. Murari (1971) in his
studies modifies the results due to Remani and Phillips as follows. When the
queue length increases to some undesirable number m,, then another channel is
called for its help. If in spite of two service channels operating the queue length
increases to some undesirable number m, > m,, then third channel is called for
their help and so on. In all these cases when there is a demand of an additional
service facility (a.s.f.), it is made available instantaneously. The present study
relates to the situation when the queue length (the number of units including one
being served) reaches M (the maximum waiting space), then a search foran a.s.f.
is started and the availability time of an a.s.f. is a random variable.

Because of the limited waiting space an arriving unit is considered lost for the
system when there is no waiting space. To avoid the loss of these units.and to win
the good-will of the customers the manager of the firm would like to get the

(*) Received October 1977, revised February 1978.
(*) Department of Mathematics, B. N. Chakravarty-University, Kurukshetra Haryana, Inde.
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312 K. BIDHI SINGH

service of a group of units from another service facility in the market. When there
is no waiting space he starts searching for an a.s. f. for the service of N units and
the search continues till the queue length reduces to M — N. Whenever an a.s.{.
is available, N of the units are sent to this service facility.

Thus, this paper studies the transient and.the steady state behaviour of a
queueing system, under. the following assumptions:

1° customers are arriving at a service facility in a Poisson stream with mean
rate A and form a queue. There is a limited waiting space for M customers, i.e. if
at anytime the queue length is M, then an arriving unit is considered lost for the
system;

2° the queue discipline is first-come-first served;

3° there is one regular service facility and the service time of a customer is
exponentially distributed with parameter p;

4° when the queue length reaches M “a search is started for the service.of
N (< M/2) units from a.s.f. The availability time (time for arriving an a.s.f.) is
exponentially distributed with parameter V. The search continues till the queue
length reduces to M — N. If during the small interval [¢, ¢+ At) the search is
fulfilled that is an a.s.f. is available, N of the units leave the system to get the
service from ‘the a.s.f.

Define:

P, ,(t)=probabilitv that at time t the queue length is n and a search for the
service of N units from an a.s.f. is in progress;

P, z(t)=probability that at time ¢ the queue length is.n and no search for the
service of N units from an a.s.f. is in progress.

Rn (t) = Pn,A (t) + Pn,B(_t)'
Thus.by the assumptions imposed on the system

P, (=0, 0sn<M-N,
P, 5(0)=0.

The state (M —1,B) will change to (M, A) through an arrival. The state
(M — N +1,A) will change to (M — N, B) through a service. The state (n+ N, A4),
M~—N <n+N = M, will change to (n, B) when an a.s.f. for N units becomes
available.

The Lapiace Lranstorm of probability generating functions for various queue
lengins are obtained and steady state results are explicitly derived therefrom. In
particular, we obtain the explicit expressions for the probabilities, P, z(t),
Py _wi1,4(), Py p(t) and P,, ,(¢) in the limiting case when ¢ tends to infinity.
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Kolmogorov’s forward equations governing the system are

d
a—tPM—N+1,A(t)= —A R+ Py ye1aO)+ R Py yi4(D), } 1)
n=M-N+1,
d
zpn,A(t)= —()"+p'+V)Pn,.A(t)+”Pn+1,A(t)+7\'Pn—l,A(t)» } (2)
M—-N+1l<n<M,
d
a_tPM,A(t)= —(R+P) Py 4 (O+ APy 4 () + APy 5(2), n=M, (3)
d N
;i_tPO.B(t)= —A Py p(t)+u Py (1), n=0, 4)
d , .
—P,g(O)=—A+WP, () +AP,_1 5() + L P,y 5(0),
dt (5)
O0<n<M-2N,
d
EPn,B(l)= —(A+W P, g()+AP, | g()+ PP,y p(8)+ VP,in 4(0), } ©)
M—-2N<n<M-—N,
d
EPM—N.B(t)': —A+W)Py_np(O)+APy_y 1 5()+ R Pry_ni1,5(0)
+VPy_nina(OF+UPy_y14(D), n=M-—N, (7
d v
ZPn,B(t)= '—()\'4—p’)Pn,B(t)+)“Pn—l.B(t)+p'Pn+I,B(t)r } (8)
M-N<n<M-1,
d .
EEPM—I,B(t)z A+ Py _y 5 () +A Py 5(1), n=M-—1. ®

Let the time be reckoned from the instant when the queue length is zero, so that
the initial condition becomes

P, (0)=1. (10)

Define the probability generating functions

M

Pytay= ) o"P,,(0), (11)

n=M-N+1
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Palto)= 3 P, 4(0), (12)
n=0

R(t,0)= § o' R, (). (13)
n=0

Let F (S) denote the Laplace transform (L.T.) of F (¢) defined by
F(S)= j e S F (t)dt.
0

Multiplying (1)-(9) by appropriate powers of o, using (11)-(12) and taking L.T's,
we have

AM* (L =) Py ((S)—po™ NP o () MM P, 5 (S)

P,(S,0)= (14
4(8,9) a(h+pt V+S)—p—ha? (14)
{ a—p(l—a) Py 5(S)—Aa™* P, 4(S) }
_ -N+1p M-N+1p
P, (S, 0)= + Vo P (S, o)+ po PM_NH'A(S) (15)

a(S+A+p)—p—2Ara?

Substituting for P 4(S, ) from (14) in (15):

[ +p+V+58)~p—2ro?] [o—p(l—a) Py 5(S)]
+loA+pu+V+8)—p—ra?—Va VT x

{ [N Py 1,4 (S) =AM Py 5 (S)) } (16)

+VA1=m) o™ NP, ,(S)
e+ p+ V+S) —p—ra2][a(A+p+S)—p—Ara?]’

Py(S, )=

R(S,0)=P ,(S,0)+Py(S, ).
The denominator in (16) has four roots in a. Since —I;B (S, o) is a polynomial, these
roots must vanish the numerator in (16), giving rise to four equations involving
four unknowns namely FO,B(S), FM_NH,A(S), FM_LE(S), and FM,A(S). Solving
these four equations, we can det_efmine all the unknowns. Thus FB (S, ), P 4(S,0)
and §(S ,a) are completely determined.

STEADY STATE SOLUTION

The steady state solution can be obtained by the well known property of L.T.
viz.

lim SF ()= lim F(f)=F, (17)

S0 t—
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if the limit on the right hand side exists, thus if

M

P,(0)= Z a" P, 4

n=M-N+1

M-1
I)B(a)= Z O{'nPn,B’
n=0
M
R()= ) o'R,.
n=0

Applying the property (17) to equations (14), (16), we have

M+1(1—°‘)PM,A_92 u‘M_N+1PM—N+I,A+p1 P2 Py g (18)
alp; +py+p;y Pa)— Py —py Py &

o
P,(0)="rP2

—(I—=a)[a(py +p,+p, P2) =P =Py P o?] P0,3+Pf(1_°‘)aM_N+2PM,A

M-N+1 M+1
+[o Prnera=p @ Py gl

—N+l]

[Py + P2+ Py P2)—P2— Py P2O° — Py &

P.(o)= , (19)
B )= o (=) (e — D) (@ —ot,) (@, — o)
where
A A
P = E , p= v
u b= PHPITRP:
PPy
o, o, = 1 (20)
1Y2 pl ’

R(o)=P () + Py(e),

Pg(a) is a polynomial, the roots of the denominator in Py (o) must vanish its
numerator, giving rise to the set of three equations. Solving these equations,
we have

-1

. _ aN—a ¥
X[(l—m”*‘)(———; — )
| — 0y

. o N-1_goN-1
—(1—P1N)<91N+1+I—'—TZ—):'PM—NH,A: 21

Po,3=
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((X._N'-—(X._N) .
PM,A= - [ﬁ PM—N+1,A' (22)
18y =&y
u—N—l_u—N-l)_p (cx—N_a-N)
Py_ip=-— [( ! zpz(ot _al) ! 2 Py_niva- (23)
10y — &,
Now the normalising condition

R(1)=Pz()+P,(1)—-1, 24)

gives

(1 —p1)=P0,B_p1 Py 4—N(p, Py 13— Py_ni14)
or

(l_l)l)[PM—NH,A]_1
_ al—N_az—N 3 l pI;J(l_p;N+1) al—N_az—N
oy —d, 'P;WH 1-p, oy —a,
+(1—p’¥><p;v+1+a;”“—a;”“>}
1—p, ! o %0y

+N[(Q;N_l_a;N_l)—pll(a;N”a;N) +1]- 25)
Py (0"1 —sz)

Thus all the four unknowns P, ,, Py 5, Pyy_, pand Py _y . 4in P (o) and Py(a)
are determined from (21)-(25).

The probability P, (1) of the availability of an a. s. f. is obtained by settinga =1
in (18) and using (23):

— 0,
P,()= 52
A=~

X [(O‘IN_I—%—N_I)“pl (O‘;N_“z_N)'*'Pl (a; —at))] Py_nita- (26)

COMPARISON WITH A LIMITED WAITING SPACE M/M/1 MODEL

Let T, be the fraction of the customers who go elsewhere for the M/M/1 model
with a limited waiting space for M units. It is given by

M
_pi(l—py) :
M a-piy” D
where p, is the traffic intensity.

P,, , of our model denotes the fraction of the customers who go elsewhere
when there is an a.s.f.

R.A.LLR.O. Recherche opérationnelle/Operations Research
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Assume that c, is the cost for providing an a. s. f. for the service of a group of N
units and c,, the loss per customer who goes elsewhere. It is obvious that
employing an a.s.f. is profitable if

¢, VP,(1) <c, MTy—Pyy ),

or T,—P
* M~ 4 MA
C<|\ —————— IPa
( P,() )
where
* Cy
c=—.
CZ

Using (22), (26) and (27), we have

*  — Py |:p]1u+1(1—pl)(al_QZ)[PM—N+I,A]~1+(l_pT+l)(a;N_u;N)]
c < ) .

(1_92“1 (a;N—l—a;N_l)_pl (“;N"O‘EN)’f'pl (o —ay)

The upper bound for ¢is given by

— P |:P11W+1(1‘*P1)(°‘1 — ) [PM—N+1,A]_1 +(1 —Pllwﬂ)(oh_N_O‘z—N

(l_phld+l) —-N-1

*
c= - —
(ot ‘az-N_l)_pl(alN—az N)+p1 (o —oty)

It may be noted that the above relation depends only ¢, M, N, p, and p,. Thus
given any four, the value of the 5th can be computed. Given M =40, p, = .7 the

upper bound for ¢ for various values of N and p, is given in the table.

N Py
0.1 0,2 0.3 0.4 045 0.6 0.7 0.8 0.9

1. 1,00688 1.37842 1.60797 2.03493 2.35608 2,77325 3+11900 3412513 357324
2. 1443334 1.69658 1491730 2,14197 2435454 2.61333 2483454 288732 3.16019
3e 1.75425 1.97732 2415643 2633266 2449636 2468910 2,85380 2490338 3410158
4, 1,98339 2,18969 2,34962 2450220 2,64076 2,79950 2,93376 2,97774 3,13582
Se 2014443 2,34274 2449362 2463453 2.75998 2,90039 3.01745 3.0572¢ 3.19211
64 2425716 245093 2459724 2,73230 2485097 2,98156 3,08895 3,12601 3424730
7 2433600 2452686 2457059 2480257 2491768 3,045 3,14507 3418046 3,29391
84 2639114 2,58003 2572214 2,85237 2,96554 3,08809 3,18715 3422156 3,33053
e 2442970 2461722 2475827 2,88741 2499947 3,12045 3,21787 3,25169 3,35813
10, 2445666 2464323 2,78355 2,91199 3,02336 3,14343 3,23992 3,270 3,37840
1. 2447552 266141 2,80123 2492920 3,04012 3,15984 3,25559 3,28887 3439303
12, 2448870 2,867413 2481360 2,94124 3,05187 3,17104 3,26665 3,29981 3,408
13. 2049793 2,68303 2,82225 2.,94967 3,06010 3417903 3.27443 3,30751 3,41089
4. 2050437 2468925 282830 2,95556 3.06585 3,18463 3,27889 3,31292 3,41612
15. 2450888 2,69360 2,83253 2,95968 3,06987 3,18854 3,.28372 3.31672 3,41980
16e 2451204 2469564 283549 2496256 3,07269 3,19129 3428640 3,31938 3442239
17. 2,51424 2,68876 2,83765 2496457 3,07465 3,19320 3,28828 3432124 3,42420
18, 2451578 2,70025 283900 2,96598 3,07603 3419454 3.28959 3,32254 3,42546
19. 2451686 2,70120 2,84001 2,96697 3.07699 3,19548 3420050 3432345 3,42636
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It may be remarked in passing that employing an a.s.f. is profitable if
¢,/c, < the upper bound-as given in the table. For example, if M =40, N=10,
p,=.7, p,=.5 then employing an a.s.f. is profitable only when
¢, /c, < 3.023,36.
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