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PROGRAMMING WITH PARAMETRIC ELEMENTS
OF THE MATRIX COEFFICIENTS

by Ramon M. ARANA

Abstract — Many studies have been carned out concermng parametnc programming of the
objective function coefficients and also the parametnc programming of the constant terms of the
constraints has been extensively studied

However, many authors state that parametnc programming of éléments of the matrix coef-
ficients is simple and useful only when the coefficients that vary correspond to nonbasic vee tors,
and that when, on the other hand, they correspond to baste vectors the complexiiy of the topic
does not make this type of parametnc programming very useful

In this article one obtains a formula which détermines the cntical values o f a parameter which
ajfects the coefficients of a baste vector While the parameter does not reach these hmits, the new
vector continues forming a feasible basis with the remaimng vectors of the optimal basis

Five useful examples of parametnc programming of éléments of the matrix coefficients have been
given in 1963 by Henri Maunn [1] with détermination of the cntical values of the parameter

INTRODUCTION

Many studies have been carned out concerning parametric programming
of the objective function coefficients and also the parametnc programming
of the constant terms of the constraints has been extensively studied.

However, many authors state that parametric programming of éléments
of the matrix coefficients is simple and useful only when the coefficients that
vary correspond to nonbasic vectors, and that when, on the other hand, they
correspond to basic vectors the complexity of the topic does not make this
type of parametric programming very useful.

In this article one obtains a formula which détermines the critical values
of a parameter which affects the coefficients of a basic vector. While the
parameter does not reach these limits, the new vector continues forming
a feasible basis with the remaimng vectors of the optimal basis.

Five useful examples of parametric programming of éléments of the matrix
coefficients have been given in 1963 by Henri Maurin [1] with détermination
of the critical values of the parameter.
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234 R. M. ARANA

NOTATIONS

Let us consider a problem of lineal programming presented in the following
manner :

Minimize z = ex, subject to :

Ax = b
x ^ 0

Let us designate by atj the element of the matrix A located in row i and in
column ƒ The matrix A is composed of m rows and n columns.

Let B be the matrix whose columns are the m vectors of the optimal basis.
Let us suppose that the m vectors of the optimal basis correspond to the m first
columns of the matrix A (l ).

Let B~ * be the inverse matrix of B.
The solution of the problem of linear programming is defined by the

following formula :

xB = B~1b.

The vector ÜJ can be expressed, as a linear combination of the vectors that
form the basis B, in the following way :

aj ~~ yj y} ~~ aj'

Let us designate by $t the row vector composed of the éléments of row i
of the matrix B~l.

PARAMETRIC PROGRAMMING OF A BASIC VECTOR

Let us suppose that ah is the vector that will be affected by the parameter 0.
Since this vector belongs to the optimal basis (calculated for 0 = 0), it

results that :

0

0

(column vector of m éléments. The unit (1)
element is located in row h)

.0.

yh is a column vector of m éléments, all of which are zero, except one element,
located in row h, whose value is 1.

R.A.I.R.O. Recherche Opérationnelle/Opérations Research



PROGRAMMING g l T H PARAMETRIC MATRIX COEFFICIENTS 235

Let us suppose that vectors yt corresponding to the calculated optimal basis
are organized in such a way so that the unit element of the column vector yt

would be located in row i (2).
In order to perform the parametric analysis one substitutes ah for a'h. Let us

suppose that between ah and a'h there exists the linear function defined by the
following expression :

Qe e =

Then :

ï +eph<? (2)

GEOMETRIC INTERPRETATION

In linear programming problems reasonings must be developed in a space
of m dimensions, where m can be larger than 3.

The graphie représentations can only be made in a space of, as a maximum,
3 dimensions.

The principal difficulty in obtaining, by geometrie means, déductions
applicable to the problems of linear programming, consists in that only those
déductions obtained in a space of 3 dimensions which are also valid in an
w-dimensional space are useful.

Ho wever, on passing from the space of 3 dimensions to that of m dimensions,
certain concepts that were perfectly clear and understandable, and that were
also amenable to an easy mental représentation, become abstract ideas,
much more complex.

In spite of everything, geometrie reasoning is at times an efficient method
of investigation, or at least a means which permits one to deduce subjects
which are to be the object of investigation.

(*) and (2) : These suppositions simplify the notations, and do not diminish the gênerai
character of neither reasomngs nor déductions.
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236 R. M. ARANA

The non-negatiyity restrictions of the variables requires that the solution
vector xB be contained in the polyhedral convex cone determined by vectors yt

which form the basis.
Therefore, if in a feasible basis one of the vectors varies, the modified

basis will continue to be feasible basis as long as vector xB be contained
in the polyhedral convex cone determined by the vectors that form the new
basis.

Let us consider a space of 3 dimensions, and let us take as the axis the
right lines that contain the vectors yt = B~1al that form the basis.

Let us represent vector xB = B'^b, vector y'h = B~la!h and the variable
vector B~1Qe (and remember that yr

h — B~1ah + B'^e).

In order that the vectors yl9 y2 and y'h form a feasible basis it is necessary
that vector xB be contained in the polyhedral convex cone determined
by these three vectors.

On considering the plane that contains vectors yh and yt and the plane
which contains y'h and yl9 the end of vector xB must be on the same side
with respect to both planes.
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Likewise, on considering the plane that contains vectors yh and y2 and the
plane which contains yf

h and y2, the end of vector xB must be on the same
side with respect to both planes.

DEDUCTIONS IN THE M-DIMENSIONAL SPACE

The previous reasoning can be extended to the space of m dimensions (m > 3)
if, instead of considering the planes which contain vector yh and another vector
of the basis (and the planes which contain vector y'h and this other vector of
the basis), one considers the hyperplanes which contain vector yh and the
remaining vectors of the basis except one (and the hyperplanes which
contain vector yf

h and those same remaining vectors of the basis).
The équation of the hyperplane that contains vector y'h and all of the

vectors of the previous basis except vector yh and another vector ( v.) is :

yh

The vector xB (in the case of a non-degenerate solution) has a posiiivc
component x(.

In order that the modified basis be a feasible basis, the end of xB must
be on the side of the positive values of yi9 with respect to the hyperplane
which contains all of the vectors of the previous basis except yi9 as well as
with respect to the hyperplane that contains vector y'h and all the vectors
of the previous basis except yh and yt.

Consequently, it must be satisfied that :

*,(i +eph<?)-x fcepce>o (3)

where x{ and xh are the components of vector xB corresponding to rows i
and h respectively.

The limit (or limits) of the parameter is obtained by setting the first term
of the above inequality to zero, and solving 0,

a - xj (4)

CRITICAL VALUES OF THE PARAMETER

The inequality (3) must be fulfilled for all values of i corresponding to
the vectors that form the calculated optimal basis (calculated for 0 = 0).

In the particular case i = ky the inequality (3) is satisfied for any finite
value of 0.

Therefore, from the formula (4), one obtains m — 1 values of 0.
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Some of these values may be positive and others négative.
In the case in which 9 = 0, the calculated optimal basis is, of course,

feasible basis. As we increase the value of the parameter, the modified basis
continues being feasible basis until 9 reaches the lowest value of the positive
values obtained in the formula (4). Starting from this value, for greater values
of the parameter, the previous optimal basis no longer is a feasible basis.

On decreasing the value of the parameter starting from 9 = 0, another
limiting value is reached in the maximum value of those négative obtained
in the formula (4).

The critical values of the parameter are, therefore, the lowest of the
positive values and the highest of the négative values obtained from the
formula (4).

If all of the values of 9 obtained from the formula (4) are of the same sign,
the modified optimal basis continues being a feasible basis for any finite value
of 9 of the opposite sign.

CASE IN WHICH THE MODIFIED BASIS NO LONGER IS A BASIS

It can occur also that, on varying one of the vectors of the optimal basis,
the transformed previous basis no longer is a basis.

This will occur when the vector affected by the parameter becomes a linear
combination of the remaining vectors of the previous optimal basis.

In order for this to occur one must nullify y'h. That is to say, it will occur
thàt :

1 + epfce = 0.

Therefore, in the case in which 9 = - -=—, the modified optimal basis ceases

being a basis.

FULFILLMENT OF THE OPTIMALITY CONDITION

The formula (4) détermines the limits of 9 between which the modified
optimal basis continues being a feasible basis.

Naturally, although one may know thàt a modified basis is a feasible basis,
one must check to see also if it fulfills the optimality condition, by previously
substituting in the basis the vector yh for the y'h. The components of these
vectors are determined by the formulas (1) and (2) respectively.
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