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A CONVERGENCE PROOF OF A SPECIAL VERSION
OF THE GENERALIZED REDUCED

GRADIENT METHOD (GRGS) (*)

by Yves SMEERS (2)

Résumé. — Bien que la méthode du gradient réduit généralisé ait fait Vobjet de nom-
breuses expériences numériques, il ne semble pas exister jusqu'à présent de preuve de conver-
gence. L* article considère une version particulière de la méthode et présente des modifications
permettant d'obtenir une telle preuve. Il est montré en particulier qu9une reconstruction
particulière de la base, toutes les « M » itérations, permet de prouver la convergence»

1. INTRODUCTION

Among nonlinear programming codes, the « Generalized Reduced Gra-
dient Method » (GRG) [1] stands in a privileged position because of favorable
computational expérience reported in the literature for différent types of
problems ([2] [5] [6]). However, to the best of the author's knowledge, no
convergence proof for the case of nonlinear constraints has been published so
far. The purpose of this paper is to provide such a proof for a special version
of GRG, namely the GRGS method. The paper originated from some com-
ments by Abadie [3], who pointed out the relation between the Generalized
Reduced Gradient Method, and some previous work by the author [7].

2. THE GENERALIZED REDUCED GRADIENT METHOD

The présentation of the GRGS method given in this section relies heavily
on [1], to which the reader is referred for further details.

(1) Core Discussion Paper No. 7341.
(2) Center for Opérations Research & Econometrics. Université Catholique de

Louvain, Belgium.
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106 Y. SMEERS

We consider the nonlinear program P

(1) Max/(Z)

(2) s.t. gt(X) = 0 for f = 1, ..., m

(3) A^X^B

where X is an iV-vector, A and B are bounded, and the functions ƒ and gt are
continuously differentiable.

With every feasible point X we associate a partitioning of the vectors A,
B and X, defined as follows.

(4) X=(x9y)

(5) A = (a, a')

(6) B = (p, p')

with

(7) a' < y < p'

(8) a ^ * ^ P

(9)

Finally, in order to define Kuhn-Tucker points, we introducé the linear
System in u and v

(11) 0 = ^ - 3 ,

/g \
which has a unique solution if and only if the matrix I -~ 1 is nonsingular.

A feasible point X will be called a Kuhn-Tucker point if and only if the solu-
tion (M, V) of the System (10)-(ll) satisfies the conditions

Vj ^ 0 if Xj = ccj

(12) Vj^O if i , = py

^ = 0 if OLJ < Xj < p;.

When the relations in (12) are not ail satisfied, new feasible points leading
to a larger objective function value can be found in the neighborhood of X
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GENERALIZED REDUCED GRADIENT METHOD 1 0 7

The GRGS method selects such a point according to the foUowing rules. Define

vsi = max { [ max vj\ ; 0 }
Cj|**=«f)

(13) — vS2 = — min{[ min vj\ ; 0 }

\vSi\ = max{[ max | t$ | J ;O}

A5 = max [ 4 , — vS29 \vS3\l
where-j t, s2 and ^3 are the indices of the maximizing and minimizing Vj (with
a proper convention if the max or the min is zero), and s equals su s2 or s3

depending on whether vsi, — vS2 or |ÜS8| is larger. One can then define the vector

(14) h = es sign v89

where es is the sth unit vector and sign vs equals + 1 or — 1 depending on the
sign of vs. The new point is then found by solving the problem

(15) Max/(x,7)

s.t. gt(x, y) = 0 ï— l,...,m

x = x + Qh

The reader is referred to [1] for more details about this problem.

The GRGS method can then be stated as follows.
(0) Find a feasible point.
(1) Partition X as indicated in (4), (5), (6), (7), (8) and (9).
(ii) Solve the system (10-11). If the current point satisfies the Kuhn-

Tucker conditions, stop. Otherwise go to (iii).
(iii) Select h as in (13) and (14).
(iv) Solve (15), take the solution as the new current point. Return to (i).

Practically there is considérable freedom for partitioning X in step (i), the
only constraints being that all components of X, which are equal to one of

their bounds, belong to x and that the matrix ~ j is invertible in step (ii).

The convergence proof, though, will impose some additional conditions on
step (i).

n° novembre 1974, V-3.



108 Y. SMEERS

3. A NONDEGENERACY ASSUMPTTON AND SOME
MODIFICATIONS FOR GRGS

As in [1], we make the following nondegeneracy assumption.

Assumption : At every feasible point X there exists a partitioning of X

that satisfies (7), (8), (9) and such that I ~ I is nonsingular.

This assumption, which is closely related to the properties of nondegenerate
extreme points in linear programming, guarantees that steps (i) and (ii) in the
algorithm can always be performed.

As with linear programming, the y variables will be called basic and the
x variables nonbasic. A basis at point X will be defined by the set Lx of non-
basic variables. We now specify that at every itération Lx belongs to a set Sx,
such that the point to set mapping X-^ Sx is closed (see for example Zang-
will [10], p. 88), rnoreover we assume that all the éléments of Sx satisfy (7),

(8), (9) and are such that ( -—-1 is nonsingular. General construction rules of

a set Sx satisfying these two requirements can be given for nondegenerate
problems (see section 5) but more efficient procedures can often be devised
using the special structure of the problem at hand. (See, for instance [10],
p. 167 for the convex-simplex method and [8] for a modular design algorithm.)
A basis defined by a set Lx belonging to Sx will be called updated at X. From
now on we shall assume that step (i) has been modified so that an updated
basis is constructed at every itération. The relaxation of this assumption and
its practical conséquences will be discussed in section 6.

In order to give some more insight into this last notion we consider the
following example. Let

gx{X) = X1 + X2 + X3 — 1

_ 1

M >, Xi ^ 0 i = 1, ..., 4

be a constraint set. Consider the séquence { Xk }̂ ° where

1 k — 2 1

Clearly lim Xk = j 0, 0, 1, -1 • One can then easily see that the set

Lk = (3, 4)
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GENERALIZED REDUCED GRADIENT METHOD 109

defines a basis at every point Xk but that the only admissible basis at Xe0 is
V° = (1, 2). Although Lk is a basis of X\ it is not an updated basis at that
point.

Finally, the équations in (13) will be modified to take into account the
closeness of the x components to their bounds. Define

VsXK — *si) = max { [max VJ($J — Xj)] ; 0 }
j

(13') K(<*>sz — xsz) = max { [max VJ(KJ — Xj)] ; 0 }
j

A's = max { 4 ( p s i — x51) ; v5£<x.SJi — xsz) },

where su s2 and s have the same meaning as in section 2.

The GRGS method can now be restated as follows.

(0) Find a feasible point.

(1) Construct an updated basis at the current point.

(ii) Solve the system (10)-(l 1). If the current point satisfies the Kuhn-Tucker
conditions, stop. Otherwise go to (iii).

(iii) Select h by (13') and (14).

(iv) Solve (15), take the solution as the new current point. Return to (i).

4, CONVERGENCE PROOF

To simplify notation, an itération in the algorithm will be indicated by
superscript k.

The following lemma summarizes all the continuity properties required in
the proof of the main theorem.

Lemma : Suppose that Xk ~> Xe0, where Xe0 is not a Kuhn-Tucker point.
Let Lk = L for all ky and H°° be the set of h which can be selected at Xe0.
Then, there exist a vector h"° € H*° and a subsequence K' C K such that
x* _ * * » / _+y"9 # _ ^ * ? w* _>„«, hk = A00 for all k e K'.

K' K' K' K'

Proof: 1) xk -^x™ andj f c -^>y™. This follows immediately from the
convergence of { Xk }k€K and from Lk = L00 for all k.

^ 1 is non-
dyjy*

singular, which proves the convergence of { uK }k€K and { vK }k€K*

3) hk = A00. Since Z00 is not a Kuhn-Tucker point, A's™ is positive and
there exists a subsequence K' C- K such that Afc is constant for all k e K\

n° novembre 1974, V-3.
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Bécause of the continuity of the opérations leading to the sélection of h, hk also?
satisfies (13') and (14) at T°. Hencé hk = A00 € /T° for ail k£K'.

Before proceeding toward the main proposition of this paper, it is useful
to recàll the use of the implicit function theorem. Let I b e a feasible point
and (x, y) the partitioning obtained by constructing an updated basis. Because

(g \
x- J o is nonsingular, the implicit function theorem can be applied. Hence

there exists a neighborhood of X such that ail points satisfying g{(X) ^ 0'
(/ = 1,..., m) can be represented as (JC, y(x)), where y(x) is continuously diffe-
rentiable and y(x) = y. In this neighborhood of X, the objective function of
problem (15) can be written as a function

(16)

where x(6) = x + Qh.

Moreover, it can easily be seen that

(17) ^ y

where s is the index selected in calculating h. We can now state the following
theorem.

Theorem 1 : Every cluster point of { Xk }k€K satisfies the Kuhn-Tucker
conditions.

Proof : Let Xe0 be a cluster point which does not satisfy the Kuhn-Tucker
conditions. Since the set of possible bases is finite, there exists a subsequence
ATi C K such that Lk = L for all kç.Kx. Applying lemma 1, there exists a
subsequence K2 C Kt such that hk — A00 for all k€K2. Defining the func-
tion xm(Q) = Xe0 + 6A°° and y[xœ(Q)] as discussed before, there exists a neigh-
borhood N'(xœ) of x00 such that

(T.l) j ~ ƒ { x(0), y[jc(e)l } % i kr* I > 0 if

(T.2)

From now on, we shall assume in order to simplify the présentation that
v™«> is positive. It is then possible to find a neighborhood JV'X*00) of x00 con-
tained in JV^x00) and a positive number S such that

(T.3) x + Qh^tN'ix™) if xeN'Xx™) and 0 < 6 < 8.

Revue Française cPAutomatique, Informatique et Recherche Opérationnelle
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Selecting a subsequence K3 of K2 such that x* € iV ;̂*:00) for k €K3, it is
clear by (T.l), (T.2) and (T.3) that the solution of problem (15) will lie outside
of N'ix™) for ail k € K3. Hence

f(Xk+ ') £ ƒ { * * + *A" Jtx* + SA00] },

or using Taylor's expansion

f(Xk+1) >> ƒ (AT*) + S £ ƒ { xk + ë/*00, y[xk + 8/*°°] }

!»? • for ail fc€*.

But this implies ƒ (X*) -> oo, and hence contradicts Xk -> Xe

5. UPDATED BASIS

In this section we show that it is always possible to construct an updated
basis at every feasible point of a nondegenerate program. The procedure pre-
sented is rather cumbersome. However, as will be discussed in section 6,
updated bases do not have to be computed very often in practice.

Consider the mxN matrix ?
\ oX

Because of the nondegeneracy assumption, this matrix has rank m. Let L

be a subset of { 1,..., N }. By DL we shall mean the largest determinant (in

-x^r I by

oX j

3* , /

Defining the vector Ç by

(18) lj = min[\XJ-AJIIBJ-X^] j=l,...9N9

we can construct an updated basis as foliows.

(0) Set L = {j\ Xj - Aj or Xj = Bj }.

(1) Select /* € { 1,..., N } — L such that

= mm

(Any tie can be broken arbitrarily.)
(ii) Include /* in L. If L contains N—m éléments, stop. Otherwise return

to (i).

û° novembre 1974, V-3.
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The partitioning obtained by following those steps defines a valid basis;
indeed, all the variables equal to one of their bounds are included in L (step 0).

Moreover, for nondegenerate programs, step (i) will guarantee that \— is

nonsingular at the current point. We can now state the following theorem.

Theorem 2 : Let Sx be the set of bases that can be constructed at X by fol-
lowing steps (0)-(i)-(ii). The point to set mapping (X->SX) is closed, or, in
other words, bases constructed by following steps (0)-(i)-(ii) are updated.

Proof : Consider the séquences {Xk}k€K and {Lk}k€K, where {Xk}k€K

converges to Xe0. Let Sk be the set of bases consistent with (0)-(i)-(ii) at Xk.
We shall prove that if Lk € Sk for all k then there exists K'CK such that
Lk —>LCO and L00 € &00. By proper extraction of subsequences, one can define

the sets K' C Ky J and J such that

(T. 1) Xk -+ Z00

k€K'

(T.2) Lh=Lœ for all k€K'

(T. 3) X) - • AjOtXf - * Bj for jeJ
k€K' k€K'

(T. 4) Aj < lim Xf < Bj for j € 7.
K'

(T.5) The order in which the indices are seleçted into U° is the same for
all k. Let Q = {j\> ...,jN-m } be the set of indices of U° taken in
that order.

Because of the nondegeneracy assumption, Df computed at Xe0 is posi-
tive, and hence

Dk
L, > 0 for L' C ƒ and k large enough.

One can then write

- ^ >0 for 7 € / a n d L ' C /

and

lim inf —-^— > 0 for j € J and V C / ,

which implies that an element of / will always be seleçted into L00 before an
element of J. Moreover, because of nondegeneracy, the number of éléments
of / will not be larger than N — m, and hence all the éléments of J will-be
included in L°°. Let {jp, ...,jN..m } be the éléments of D that do not belong

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



GENERALIZED REDUCED GRADIENT METHOD 113

to / . Since Çj° is positive for those éléments, the ratio ^/Diü{J) is always well
determined (0/0 is excluded), and the equality

= min

will also hold at Z°°. Hence,^ can be chosen as the first element of / to enter Z,00.
Applying the same reasoning successively for all the éléments jpJ ...,jN-m, one
concludes that V° is consistent with the construction steps (0)-(i)-(ii) and
hence that these steps define an updated basis.

6. CONCLUDING REMARKS

Some modifications of the original version of the GRGS method have
been introduced to prove convergence. All of them are closely related to
Zangwill's convergence theory [10] and, hence, probably cannot be eliminated
completely in a convergence proof. Some of those modifications are, however,
cumbersome to implement computationally. So it may be useful to discuss
at what price they can be eliminated in practice.

From a theoretical point of view, updated bases need not be computed at
every itération; it is clear that the convergence proof presented in this paper
would carry through with some trivial modifications if updated bases were
only computed every "M" itération. A different approach to the convergence
of the GRGS method would be to eliminate the construction of updated bases
and to assume some « nice » behavior of the séquence { Lk }fceK. A précise
statement of this assumption can be found in [9] for the case of linear cons-
traints. It is clear that this anticycling assumption can be modified to include
the more gênerai case considered here, and the reader can verify that the
convergence proof of [9] can be readily adapted for GRGS. In practical pro-
blems, one can expect that cycling will not occur and that every cluster point
of { Xk }k€K will satisfy the Kuhn-Tucker conditions. One can then conclude
that updated bases need be introduced only when a « limiting point » has been
found. Constructing an updated basis can then help check the Kuhn-Tucker

conditions (because •— is then guaranteed to be nonsingular), and the algorithm
óy

is reinitiated if these are not satisfied.
The change of équations (13) into (13') is motivated by lemma 1, and

discussion of a similar construction can be found in [9]. One can imagine diffe-
rent sélection rules for h which would allow one to prove lemma 1 and which
might be more efficiënt in practice. In particular, if At and Bt are very far
apart, for some éléments s of { 1, ..., iV} A'- might be chosen by équation (13')
although {ui) is smalL One can then expect that problem (15) would not lead
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to a significant improvement in the objective function at sucfa a point. One
way to deal with this problem is to construct h according to the following:
procedure.

1) Let Û = L U L, where

2) Select s and A$ such that

A5 = max \vj\.

3) Select s and Af according to équations (13') and by restricting j to the
éléments of L.

4) Take the largest of Aj and A|.

This type of construction of A can easily be adapted if some of the compo-
nents At and Bt are unbounded. Consider, for instance, the case where some
of the Pj are + oo. Let L be the set of those j and let L = L U L. The first
relation of (13') can then be replaced by

As, = max { [max Vj] [max vfflj — x,)] ; 0 }.
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