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NON-PLANAR NETWORK
WITH EDGES SUBJECT TO FAILURE

AND ENUMERATION OF PROPER GUTS

by P. J. DOULLIEZO) et M. R. RAO( 2)

Summary. — An undirected non planar network consisting of several demand vertices
each wiih an associated demand is considered. The fequirement at each demand vertex is an
increasing function of time. It is required to find the maximum time up to which all demands
can be satisfied when k (> 1) edges are subject tofùilure, The number k is pre-specified but
not the edges themselves. For source — sink planar networks an efficient algorithm is available
to solve this problem. However, no such algorithm is available for non-planar networks. A
method is given herefor small non-planar networks. This method is based on enumerating all
proper cuts o f a network, A procedure is suggested for enumerating all proper cuts under the
hypothesis that each vertex is on at least one elementary chainfrom source to sink. A method
for locating vertices, if any, which are not on any elementary chain from source to sink is
also given.

1. INTRODUCTION

An undirected non-planar network (3) G with several demand vertices is
considered. Each demand vertex is connected to one or more supply vertices
through intermediate vertices. The requirement at each demand vertex is an
increasing function of time. Some or all edges of the network have two capa-
cities — the normal and the reduced capacity. An edge is said to fail if its
capacity is equal to the lower value which is strictly less than the normal
capacity. It is required to find the maximum time up to which all demands
can be satisfied when k (> 1) edges fail; only the number of arcs is pre-specified
and not the arcs themselves.

All the supply vertices can be joined to a common source vertex by adding
edges of appropriate capacity. Similarly the demand vertices can be connected
to a common sink vertex by introducing demand edges whose capacities are
increasing functions of time. Let the netwörk obtained after the addition of

(1) Société de Traction et d'Electricité, Brussels.
(2) University of Rochester.
(3) Section 2 contains a définition of a network and other related ideas.
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86 P. J. DOULLIEZ ET M, R. RAO

these edges be G*. The problem under considération is equivalent to finding
the maximum time such that the capacity of a eut (in G*) eonsisting of only the
demand edges is equal to the capacity of a minimal eut separating the common
source and the common sink vertex when k edges fail.

An efficient algorithm is given in [1] for solving the problem when the net-
work (G*) is souree-sink planar. A network is planar if it can be represented
on a plane or a sphère with no two edges intersecting except at a vertex and it is
source-sink planar if it remains planar after an edge Connecting the source and
sink has been added [2, 3], For a source-sink planar network (primai) there
exists a dual network such that there is a one-to-one correspondent between
the proper cuts of the primai network and the elementary chains between
two specified vertices in the dual network [4, 7], The problem then reduces to
one of finding a shortest chain between two specified vertices of the dual
network when k of its edges may have reduced distances.

For non-planar networks no good algorithm is available (l). One approach
would be to consider ail possible combinations of k edges that may faiL Then
associated with each set oîk edges that fail, the problem of finding the maximum
time up to which ail demands can be satisfied may be solved by any one of the
methods given in [5], The minimum of these values represents the solution.
The main difficulty with such an approach is that the number of combinations
of k edges that may fail would be prohibitively large.

In this paper (section 6) a method is given for undirected non-planar
networks in which the number of vertices is small. This method is based on
enumerating all proper cuts of a network. Needless to say the number of
proper cuts in a network increases very rapidly with the number of vertices.
Hence the method is useful only if the number of vertices in the network is
small. The main advantage of this method over the previous one is that its
applicability is limited by the number of vertices in the network and not by the
number of edges that are potential candidates for failure. Furthermore when
the number of vertices is small enumeration of all elementary cuts isconsiderably
easier than solving a separate problem associated with each set of k edges that
may faiL Consequently this method is usually préférable if the number of
vertices in the network is less than the number of edges that are candidates for
failure.

A procedure is given in section 5 for enumerating all proper cuts when each
vertex of the network is on at least one elementary chain from source to sink.
This procedure is based on two theorems which are stated and proved in
section 3. A method for locating vertices, if any, which are not on any elemen-
tary chain from source to sink is given in section 4.

Throughout this paper we consider only undirected networks. Some of the
définitions given in the next section are from [6].

(1) An efficient algorithm is given in [5] for non-planar networks with k = 1.
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NON PLANAR NETWORK 87

2. DEFINITIONS

An undirected network G = (JV, A) consists of a collection JVof éléments x,
j 3 . . . , together with a subset of unordered pairs [x, y] of éléments taken from JV.
The éléments of JV are the vertices and the members of A are the edges of the
network.

A chain is a séquence xt9 x2, ..., xn of distinct vertices such that [xi9 x I+ ±]
i = 1, 2,..., n — 1, is an edge of the network,

A cycle is a chain with xn — xx.
An elementary chain is a chain with no cycles.
Given Xt which is a subset of JV, a subnetwork Gt = (Xu AJ is defined

such that edge [x, y] € At if [x, y] € A and x € Xl9 y € Yx.
A network (or a subnetwork) G = (iV, A) is connected if for any two

vertices i,j € JV, i ^ j» there is a chain between i and ƒ.
If X t and X2 are subsets ôf JV» let [Xu X2] represent the set pf ail edges

[xu x2] such that x t € Xt and x2 € X2.
Vertex s represents the source vertex and vertex d the sink vertex.
A eut in G separating a vertex s and a vertex d is a set of edges [Xl3 X2]

where s € JT^ ef€ X2, Xt fl Z2 = 0 and JŜ  U JT2 = JV.
A proper eut is one that does not contain another eut as one of its proper

subsets.
The capacity of a eut is the sum of the capacities of the edges that belong

to that eut.
A eut separating s and d is minimal if its capacity is not larger than the

capacity of any other eut separating s and d.

3. BASIC THEOREMS

The procedure for enumerating all proper cuts is based on the following
two theorems. The first one gives a necessary and sufficient condition for a
proper eut. The second theorem shows that a proper eut [Xu X2] exists for each
possible number of vertices in Xx (or in X2) when each vertex of the network is
on at least one elementary chain from source to sink.

Theorem 1

A eut [X1$ X2] of a connected network is a proper eut if and only if the
subnetworks Gt = (Xt$ Ax) and G2 = (Z2, A2) are connected.
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88 P. J. DOULLIEZ ET M. R. RAO

Proof, Let vertex s be in Xx and vertex din X2.

(0 If the eut [Xu X2] is a proper eut, then Gx = {Xu Ax) and G2 = (X2> ^2)
are connected :

Suppose that one of the subnetworks (Gx) is disconnected. Then,
Xx = A7 U X'{ where JTf 0 ^ 7 = 0 and [X'u X

f(] = 0 . Let ^ be in JTf. The
eut [Xu X2] contains a eut [X'u X'{ U X2] and hence cannot be a proper eut.

(iï) If the two subnetworks defined by a eut [Xu X2] are connected, then
[Xu X2] is a proper eut (!).

Suppose [J5fl5 X2] is not a proper eut. Then there exists a eut

Consider an edge [x9 y] € [Xx, X2] and $ [^3, X^. Since the subnetworks
defined by Xx and X2 are connected there exists a chain s, 1, ..., JC? 7,7,... rf where
the vertices s9 i, ..., x belong to Xx and the vertices y, j \ ... rf belong to X2.
But the eut [Z3, Z4] does not block this chain form sto d since by assumption
[x, y] i [X3, XJ and ail other edges of this chain are not in [Xl9 X2] and hence
not in [A ,̂ X4]. Since a eut separating s and d has the property that it blocks
ail chains from s to d, [X3, X4] cannot be a eut. This leads to a contradiction.
Hence [Xl9 X2] is a proper eut.

Theorem 2

If each vertex of the network is on at least one elementary chain from the
source s € Xx to the sink de X29 then there exists for each value of r(r = 1, ...,
n — 1) a proper eut [Xu X2] with r éléments in Xt.

Proof (by induction). For r ~ 1, the source s is the only vertex in Xx.
Consequently the subnetwork Gt = (Xu At = 0 ) is connected. Each vertex
in Xj is connected to the sink d for otherwise each vertex of the network
would not be on at least one elementary chain from the source to the sink. Thus
the subnetwork G2 = (X2, A2) is also connected and hence the theorem
holds for r = 1.

Now suppose that the theorem is true for r = k (k < n — 1), we will prove
that it is true for r — k + 1.

A proper eut [Xl9 X2] with k éléments in Xx and n — k éléments in X2

defines two connected subnetworks Gx = (Xx, Ax) and G2 = (X29 A2). There
must be an edge (belonging to the set A) from a vertex in Xx to a vertex j =£ d
in X2 since each vertex of the network is on at least one elementary chain
from the source to the sink (fig. 1 a). Form the two mutually exclusive and
exhaustive sets X[ = I j U; and X2 = X2 —j with k + 1 and n — k — 1 élé-
ments respectively. The subnetwork G[ = (X'u A[) is connected since

(1) Our original proof of this part of the theorem is somewhat longer. We are indebted
to B. Gordon for this simple proof.
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NON PLANAR NETWORK 89

Gx = (Xl9 A y) is connected and vertex j has an edge to a vertex in Xx. If
G*2 — (X2, A2) is also connected, the theorem follows. Now suppose G'2 is nbt
connected. Let X'2 = X2— j = X21 U X22 U ... U X2t where the sets X2i9

i = 1, 2, ..., f are mutually exclusive and each set X2i defines a connected
subnetwork G2Î = (A^i, ^2i) with the property that there exists no edge
(belonging to the set A) from a vertex in X2i to a vertex in A^j, i

X',

•s j

d

I

k éléments (n-k) éléments

i j

•s •!;

éléments

/ x2,

\

d

X23

*~

Figure 1 a Figure 1 b

Let the sink ( f€ l 2 i - Since G2 = (X29 A2) was .connected, there exists at
least one edge from vertex j to vertices in each of the sets X2h i = 1, 2, ..., t.
In addition, since each vertex of the network is on at least one elementary chain
from s to d, there exists at least one edge from a vertex in X± to vertices in X2i9

i = 2, 3,..., t. Let q be a vertex in Z2 t that has an edge to a vertex in Xx (fig. 1 b).
Now, if JSfî is taken to be Xt U q and XJ = X2 -.— q, the subnetwork
G[ = is still connected. Again, if G'2 == is connected the
theorem follows. But suppose G2 is not connected. Then, we have

x'2 = j u z21 u... u x2tt^1 u z|r u xl u... u jrj t
where Z2f — ̂  == X\t U A^, U ... U Xv

2t and the sets X*2t9 i = 1, 2,..,. î? are
mutually exclusive. In addition each set X2t defines a connected subnetwork
G2t = (Xi» A2t) with the property that there exists no edge (belonging to the
set A) from a vertex in X2t to a vertex in XJ

2t, i y^j. We may assume (without
any loss in generality) that a vertex in each of the sets X2t, i = 1, 2 ..., p < v
has an edge to vertex j .

Let X'i = j U X2i U ... UX2tt.t U X\t U ... U Xv
2v The subnetwork

G| = (X2, A2) is connected since vertexy' has an edge to each X2i9 i = 1, 2, ...,
t— 1 and to X2u w == 1, 2, ...,^. By a similar argument as bef ore there exists
at least one edge from vertex q to vertices in each of the sets X2t, b = p + 1,..., 1;.
Also there exists at least one edge from a vertex in Xi to vertices in

n° mars 1973, V-l.



9 0 P. J. DOULLIEZ ET M. R. RAO

Furthermore there must be at least one edge from vertex q to vertices in X2.
We note that the subset X2t has fewer éléments than X2t which in turn has less
than n — k — 1 éléments. Now, choose an element u from X2t that has an
edge to a vertex in Xx. By following the same arguments as bef ore, we should
either form a subnetwork G2 that is connected or be able to form subsets
of X2t that have fewer éléments than X2t. Since the successive subsets chosen
have fewer éléments, we will reach a stage when G'2 is connected. Thus the
theorem is proved and we can also conclude that a proper eut [Xu X2] with
r vertices in Xt (r = 2, 3, ..., n — 1) can always be constructed from a proper
eut with r — 1 vertices in Xt.

Corolïary

If there is a proper eut [Xu X2] with r vertices in Xt (r < n — 1), then there
is a proper eut [X3, XA] with r + 1 vertices in X3 such that Xx C Xz and,
XA C X2.

The proof of this corolïary is very similar to that given for theorem 2 where
a eut with r + l éléments was constructed from a eut with r éléments.

The converse of this corolïary is also true. That is, if there is a proper
eut [JSf3, X4] with r + 1 éléments in X3, then there is a proper eut [Xu X2]
with r éléments in Xt such that Xt C Z3 and X4C X2.

4. FINBING VERTIGES NOT
ON ANY ELEMENTÂRY CHAIN

FROM SOURCE TO SINK

The procedure given in the next section for enumerating all proper cuts of
a network is valid only if each vertex of the network is on at least one elementary
chain from source to sink. In this section, an algorithm is presented for finding
the vertices, if any, that are not on any elementary chain from source to sink.
If we drop such vertices and the associated edges, the value for a minimum eut
separating the source and the sink is not altered. Thus we can obtain a network
that satisfies the condition for which the procedure in section 5 is valid.

In the algorithm below, the vertices which are on at least one elementary
chain from s to d are identified by a labeling procedure.

Three labels are associated with each vertex i ;

the label h{ï) indicates whether an elementary chain has already been found
through vertex i(h(i) = 0 or not (h(i) = 0);

the label X 0 — j refers to the vertex j from which vertex i has been labeled;

Revue Française d*Automatique, Informatique et Recherche Opérationnelle



NON PLANAR NETWORK 91

the label q(i) refers to a vertex u which is a predecessor of i (that is u can be
reached by making use of the labels j — p(i)9 k = p(j) ... w •= />(f). Vertex u is
known to be on at least one elementary chain from s to d (h(u) = w).

The algorithm

Let m be the number of edges and n the number of vertices. Let the vertices
of the network be numbered 1 to n with vertex s numbered as one and vertex d
as n. Let the edges of the network be numbered 1 to m.

Step 1. Find an elementary chain from s to d. This is easily doue by any
labeling procedure. The vertices of that chain are of course on an elementary
chain from s to d. For each vertex i of that chain, let h(i) = p(i) = q(i) = L
For other vertices, let h{i) ~ p(i) = q(i) = 0.

Step 2. Letr = 1.
Step 3. If r > m, go to step 5. Otherwise, let edge r be between vertices i

and ƒ
Step 4. One of the following cases occurs :

An elementary chain has already been found through both vertices i and j .
Let r = r + 1 and go to step 3;

2° h(i) - 0; h(j) = 0; p(î) # 0; p(j) - 0.
Vertex j has not yet been labeled. Since vertex i is an immédiate predecessor

of j , let p(j) — i. A vertex u with h(u) == u is a predecessor of Ï and q(i) = «•
Since w is also a predecessor of/, let q(j) = g(î). Let r = r + 1 and go to step 3;

3° Ht) = 0; AÜ) - 0; p(î) ^ 0; p(j) # 0.
a) g(ï) =jÉ ̂ (j) (breakthrough case).
The predecessors u of Ï and v of j are different. We have q(i) = u and

QÜ) ~ v- Since w and v are known to be on at least one elementary chain (not
necessarily the same elementary chain) from s to d9 vertices i and j and also
their predecessors are on an elementary chain from y to d. The predecessors of i
can be traced by making use of the labels d = p(i)9 c =p(d) ... u =p(è). Let
h{i) = p(i) = q(i) = h Kd) - p{d) - q(d) = d, ... h(é) - />(e) = g(e) = e.

Similarly, if ƒ g,... w, v are the predecessors of j , let A(;) = /?( j) = q(j) — j ,
*(ƒ) = Pif) = «(/) = ƒ> Afe) = /<«) - flfe) = ft ». *(w) = Mw) = ?(w). If
hi ^ 0, i = 1, 2, ..., K then terminate since each vertex of the network is on at
least one elementary chain from s to d. Otherwise for any vertex i of the net-
work if h(i) = 0, let X 0 = q(}) = 0. Go to step 3.

Both i and j have the same predecessor u. Hence no conclusions can be
drawn. Let r = r.+ 1 and go to step 3.

n° mars 1973, V-l.



9 2 P. J. DOULLIEZ ET M. R. RAO

4« A(î) - 0; A(;) = 0; p(i) « 0; p(j) = 0.
Vertices i and j are both unlabeled. Nothing can be said about the existence

of an elementary chain through i orj. Let r — r + 1 and go to step 3.

5o h(i) - 0; h(j) = 0; p(i) = 0; p(j) # 0.
This case is equivalent to case 2°, except that j plays the rôle of i and vice-

versa.

If h(i) zjéz 0, we necessarily have h(i) = p(i) = #(*) = L This case is equivalent
to case 2° with g(0 = /. Vertex i has no predecessors.

This case is equivalent to case 6° except that j plays the rôle of i and vice-
versa.

Since h(i) ^ 0, we have h(i) = j?(0 = tf(0 ^ '• This case is equivalent to
case 3° with q(i) = i. Vertex i has no predecessors.

This case is equivalent to case 3° with q(j) = ƒ Vertex j has no predecessors»
Step 5. If during the last scanning of the list of edges there was a break-

through or at least one new label p(i) was assigned to a vertex i, then go to
step 2. Otherwise, go to step 6.

Step 6. All vertices i such that h(i) = 0 are not on any elementary chain
from s to d. END.

A justification of the algorithm together with a proof of its finiteness could
be easily established,

5. PROCEDURE FOR ENUMERATING
ALL THE PROPER CUTS

The procedure enumerates all proper cuts with r + 1 vertices in Xx utilizing
the previously found proper cuts [Xu X2] with r vertices in Xx. The fact that
all proper cuts are enumerated follows from theorem 2 and the converse of its
coroUary.

The following notation is used in the algorithm.
Yri refers to a subset of vertices with r éléments. The subscript i" dénotes

the ï th such subset [Yri9 Zri] with ZH == N— Yri is a proper eut.
p{r) is the number of proper cuts such that Xx has r éléments. Thus the

index i in Yri goes from 1 to p(r);

the vertices are numbered from 1 to n with vertex s as 1 and vertex d as n.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



NON PLANAR NETWORK 9 3

Step L Let Ylt = 1; Ztl = { 2, 3, ..., n}-> p(l) = l; p(r) = 0,
r = 2, 3,... n — 1. Let r = 1.

Step2. Let/ = 1;J = 2;^ = L
Step 3. If ƒ € Zri and j has an edge to a vertex in Y9 go to step 4. Otherwise,

go to step 8.
Step 4. If the subnetwork defined by (ZH —j) is connectée (!), go to step 5.

Otherwise, go to step 8.
Step 5. If q = 1, go to step 7. Otherwise, go to step 6.
Step 6. If (Yri U j) ^ Fr+ ! tt for t = 1, 2,,.., ^ — 1, go to step 7. Otherwise»

go to step 8.
Step7.Let Yr+t$q = (F

Step 8. Lztj~j + L If j = w, go to step 9. Otherwise, go to step 3.
Step 9. Let i =» i + 1. If / > p(r)9 go to step 10. Otherwise, let j = 2 and

go to step 3.
Step 10. Let r = r + 1, If r < « — 1? go to step 2. If r = -n — .1, then the

lastproper eut is obtained, Le», Yn_ t t == {19 2, ..., «—1 } and Zn_ t t = ,{ n }•
END.

EXAMPLE

It is required to find all the proper cut$ of the following network (fig. 2).

Figure t

The vertices are numbered as shown. JV" == {1,2,..., 7 }. If vertex 1 (vertex 7)
is the source (the sink), then it must be in every subset Xt(X2). Subsets Xt

with 1, 2, ... n — 1 vertices are successively generated as in figure 3. The
corresponding subset X2 is given by N— Xt and the proper eut by [Xu X2\

It should be noted that the subsets Xt = (1, 6, 2, 3); Xx = (1, 5, 2, 3, 4);
Xt = (1, 6, 2, 4, 3) are not retained because the corresponding subsets X2

define sub-nétworks which are not connected. In thisexample there are 20proper
cuts whereas the total number of cuts is 32.

(1) This can be verified for instance by considering a vertex u s {Zf t — j) such thât eëge
(u, j) e A* The subnetwork defined by (Zrtj) is connected if and only if vertex u has a chain
to every vertexue (ZH —j) such that edge ftv/1 s A.

nômars 1973, V-l.
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(1)

(1,5,2) (1,5,3) (1,5,6) (1,6,2) (1,6,3) (1,6,4)

\ \ \ \
( 1 , 5 , 2 , 3 ) ( 1 , 5 , 2 , 4 ) ( 1 , 5 , 2 t 6 ) ( 1 , 5 , 3 , 6 ) ( 1 , 5 , 6 , 4 ) ( 1 , 6 , 2 , 4 ) ( 1 , 6 , 3 , 4 )

( 1 , 5 , 2 , 3 , 6 ) ( 1 , 5 , 2 , 4 , 6 ) (1,5,3,6,4)

(1,5,2,3,6,4)

Figure 3

If a network with n vertices is complete, i.e., there exists an edge between
every pair of vertices, all the T ~ 2 cuts are proper cuts and they can be enumerated
directly. In many applications, the network is not complete and there may be a
substantial différence between the number of cuts and the number of proper
cuts. However, the number of proper cuts increases rapidly with the number of
vertices and hehce, the procedure given is applicable only if the network is not
large.

6. CAPACITY OF A NETWORK
WITH EDGES SUBJECT TO FAILURE

An undirected network (G) is given with several demand vertices connected
to one or more supply vertices through intermediate vertices. The demand at
each sink vertex is an increasing function of time. It is required to find the
maximum time time up to which ail demands can be satisfied even if k edges of
the network fail. The given network G is augmented by adding a source (s)
and a sink (d) vertex. All the supply vertices are joined to the source vertex by
iiittoducing edges of appropriate càpacity. Similarly, ail demand vertices are
jöined to the sink vertex by the addition of demand edges. Let the demand
vertices be denoted as du d2i ... dr The càpacity of the edge between demand
vertex dt and the sink d is a given function gt(t) where t is the time parameter.
gt(t) represents the demand at demand vertex dt and it is an increasing function
of time. Let the augmented network be denoted as G* = (X*, ^4*). The above
problein is now equivalent to finding the maximum value of t such that [X* — d*
d] represents a minimum eut separating s and d in G* when k edges fail.

Revue Française d9Automatique, Informatique et Recherche Opérationnelle



NON PLANAR NETWORK 9 5

If [Xu X2] is a proper eut separating s and d in G* let C'[XU X2] be its
capacity with k largest capacity réductions (!) taken into account. Correspon-
ding to each proper eut [Xu X2] we have an upper bound for t given by the
relation

C'IXu X2] = £ g,(t)

where/> is the number of demand vertices.
The least of these upper bounds gives the maximum time (/*) up to which

all demands can be satisfied even when k edges faiL The proper eut [Xu X2]
corresponding to this least upper bound gives a set of edges with the property
that the capacity of at least one member of this set should be increased if the
value of t* is to be increased. Thus if all proper cuts are known it is easy to find
the value of /* and the corresponding proper eut [Xu X2] separating s and d
in G*.

7. CONCLUSIONS

The problem of finding the capacity of a network with edges subject to
failure arises as a sub-problem in finding an optimum séquence of investments
to be made on the edges of a network over a given time horizon [8]. An invest-
ment on an edge increases the capacity of that edge by a specified amount.
Since investment costs are time discounted, an investment on an edge should
be delayed as much as possible.

Enumeration of all proper cuts is done only once and the capacity of each
eut is calculated easily when some or all of the initial edge capacities are
changed. However, since all proper cuts have to be stored in memory, only
small non-planar networks can be handled.
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