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TRANSPORTATION NETWORKS
WITH RANDOM ARC GAPAGITIES

by P. DOULLIEZ (0 and E. JAMOULLE (2)

Summary. — The arc capacities of a transportation network are assumed to be inde-
pendent discrete random variables and the flow requirements at the sink nodes are known
values* This paper présents an efficient method for finding the probability that all flow requi-
rements be satisfied and the probability that a given are be found in a minimal eut, The
method is based upon a décomposition principle which allows the transformation of the
network capacity state space into non-overlapping subsets. The expected amount of unsupplied
flow is also found. The computational efficiency and domain of application of the method
are discussed.

1. INTRODUCTION

The nodes of a transportation network are joined by arcs and the capacity
of an arc is an upper bound to the flow that may pass over it. The flow must
be sent through the network from « supply » nodes to «demand» nodes. The
largest amount of flow that can be sent from a supply node is considered as
the capacity of a fictitious are joining the supply node and a common fictitious
supply node, denoted as S.

In this paper, the amounts of flow required at the different demand nodes
i are known values dt.

It is assumed that the are capacities are independent discrete random
variables.

Hence, the probability that all the flow requirements be satisfied is well
defined and will be computed by an efficient method. The probability that a
given are be found in a minimal eut will also be computed (3).

(1) Société de traction et d'électricité, 1040 Bruxelles, chargé de Cours à l'Université
de Louvain et aux Facultés Universitaires de Namur.

(2) Société de traction et d'électricité, 1040 Bruxelles.
(3) Since the network has seyeral sink nodes the définition of a minimal eut is hère

slightly different from the définition that can be found in [3]. We define a minimal eut as à
set of arcs separating the common supply node S from one or several demand nodes
i such that no supplementary flow can go from S to one of these demand nodes i.
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46 P. DOULLIEZ ET J. JÀMOULLE

The method is based upon a décomposition principle which allows the
transformation of the network capacity state space into non-overlapping
subsets.

In section 2, the décomposition principle is presented and is applied to
our spécifie problem. It is shown in section 3 how the expected amount of
unsupplied flow and the probability that a given arc be found in a minimal eut
can be computed. Computational efficiency and domain of application are
discussed in section 4 and 5. In section 5, a numerical example is given.

2. THE DECOMPOSITION PRINCIPLE

2.1. Notations and Définitions

Let Hj be a discrete random variable (j = 1 ... m). The m random variables
Hj are assumed to be independent. A random variable Hj assumes positive
values hjU hj2>... hjkj with probabilités pjUpj29 .../>#, respectively. A point x
of the state space can be defined as an m-tuple of values x = (hÏVl, h2V2... hmVm)
where vs is a numerical index for j going from 1 to kj. For notational conve-
nience, the index Vj will also be used to designate the value hjv. itself so that a
state point ;c will be denoted a s x = (vi9 v2 ». vm). The entire state space is
denoted by X. The state points x = (1,1,... 1) and x = (ku fc2, ... km) are
called « limiting state points » for X.

In our spécifie problem, Hj is a capacity variable for àxcj and hJU hj2 ... hJJci

are capacity values for arc j .

For simplicity, we assume that the values hJv. are such that

hn < A/2 < »• < hjkj (j = 1 ... m).

A state point x = (vu v2 ... vm) is called a network state.

Let PrfJSf = x] be the probability associated with a point x € X.

We have :

£ Pjvi =
!

1 0' = 1 - m)
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TRANSPORTATION NETWORKS WITH RANDOM ARC CAPACITIES 4 7

2.2. Statement of the problem

Suppose that any state point x = (vt... t?m) of the state space X can be
recognized as either acceptable or not acceptable. Let A° be the set of acceptable
points and B° the set of non-acceptable points. The problem is to compute in
an efficient way the probabilities Pr [A°] and Pr [5°]. We have :

X = A° U B°

Pr [X] = Pr [A°] + Pr [B°] = 1

In our spécifie problem, a network state x = (ui... vm) is acceptable if the
capacities Vj are such that all demands di can be satisfied. The probability
Pr [A°] is the probability that all demands be satisfied and Pr [B°] is the proba-
bility that at least one demand be not entirely satisfied.

m

The state space .Yhas J | fc. éléments, so it is hopeless to solve the problem

by considering each point of the state space one after the other. Dealing with
subsets in which all state points are acceptable or subsets in which all state
points are not acceptable, it can be seen in [1] p. 44 that the problem is still
quite complex when some subsets may overlap each other. Therefore, we now
present a method for constructing séquences of non-overlapping subsets in
which all state points are acceptable and non-overlapping subsets in which
all state points are not acceptable.

2.3. Classification rule

Suppose that a state point x ~ (vu ... vm) is acceptable whenever each Vj
is within the range [vp kj] where v] is a known critical value for the random
event Hj. Thus, x — (v1... vm) is an acceptable state point if

v°j ̂  vj < kj U = 1 ... m).

Suppose also that a state point x = {v± ... Vj ... vm) is not acceptable whenever
at least one Vj is within the range [1, vj [where vj is a known critical value.
Therefore, x = {vt... vs... vm) is a non-acceptable state point if 1 < Vj < vj
for at least one ƒ

If the classification rule holds, we can say that a state point
x = (vx... Vj ... vm) is « unspecified » whenever vs ^ vj for all j and at least
one Vj is within the range [vj, vj [, i.e, vj < Vj < vf.

It is explained in section 3 how the critical capacity values Vj and vj
are obtained in our spécifie problem.

n° novembre 1972, V-3.



48 P. DOULLIEZ ET J. JAMOULLE

2.4. Non overlapping subsets of X

A state point is obtained by assigning numerical values to the indices v,.
In figure 1, a state point x = (vx ... vm) can be represented by a broken line

through the vi table 0* = 1... m\ m = 5) and régions VA, VB, Vc are defined
by the critical values vf and vj as follows :

vj € VA if vj < vj < *j

Vj eVB if 1 < »y < vf

evc
if

région

-aLJ

région

V5

«—j o
; u

région !

Figure 1

The Vf index table (m = S)

Classifying the state points x = (vu v2 ...Vj ... vm) with respect to the critical
values Vj and vf 9 it can be seen easily that any state point necessarily belongs
to one of the following classes :

— x has its values Vj entirely in VA, Then we say that x e A where A is a
set of acceptable state points (A S A0);
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TRANSPORTATION NETWORKS WITH RANDOM ARC CAPACITIES 49

— x has at least one vj in VB. Then we say that x £ B where B is a set of
non-acceptable state points (B ç B°) ;

— x has at least one Vj in Vc and no value in VB. Then we say that xeC
where C is a set of unspecified state points.

We have :
AUBUC=X

AH B = 0 Af\C= 0

Figure 2
The state space (overlapping subsets)

The sets B and C can be defined as follows :

J=l

n° novembre 1972, V-3.



5 0 P. DOULLIEZ ET J. JAMOULLE

where x = (vx... vm) €Bt if vt < vf

and x = {v1 ... vm) € Cl if vl < v°t and if vk ^ v% {k = 1 ... m).

The subsets Uj and Cy are represented in figure 2. Any two sets Bj (or C,) may
overlap each other. There is a one-to-one correspondance between a state x
(represented as a line through the table in figure 1) and a point of the set in
figure 2 {m = 5).

Figure 3

The state space (non-overlapping subsets)

Since adding probabilities associated with overlapping subsets Bj
and overlapping subsets Ci is meaningless, let us transform the subsets Bj
and Cj into Bj and Cj as represented in figure 3 such that for any j and k
(j ¥" k) we have :

Bj ViB'k = 0 a n d Cj , n Q = 0
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The transformation of subsets B} (C,) into subsets BJ(CJ) can be performed
sequentially as follows :

B'2 =B2 —Bi

C t /̂ >
1 — C l

O2 —~1 Ĉ 2 ^ 1 ' '

j = *i -1W n Bj) q = Cj-Y (c; n c,)

This can be easily translated in terms of vr, vt and cardinal value of index /

for subsets B[ and C[ (/ = 1 ... m) :

x = (vt ... vm) € J5/ if vx < v? (or ve ^ v*— 1) and vr ^ vf for any r < /

x = (t?! ... ï?m) e e / if »,* < »i < vf9 vr ^ iï? for any r < l and

vr ^ z?* for any r > l

Thus, overlapping subsets Bj and C,- are transformed into non-overlapping
subsets Bj and Cj by taking the increasing order of index j into account.
It is easily seen that B} H ^ = 0 and C,. 'fi Cfc'= 0 for 7 # fc. Also,

B'j = 0 if Ü / = 1 and C/ = 0 if »ƒ = «?ƒ.

2.5. Probability Computations

If all sets A9 B] and Cj are exhaustive and non-overlapping subsets of
X, we have :

Pr [X] = Pr [A] + £ Pr [5;] + J Pr [Cj] (1)

It is easy to compute each term of the right-hand side in (1) since limiting
state points are known for each subset, as indicated in figure 4.

If we define for each j (J ~ * ••• w )

V
Pj — Lu Pjt>i

vj=vj

J= Z Pjv*

n° novembre 1972, V-3.



52 P. DOULLIEZ ET J. JAMOULLE

Figure 4

The subsets of X and their limiting state points

we have

(2)

(3)
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Pr[Cj] = ft-'flA. ft iPr + qr) J = l . . . m (4)
r=l r=j+l

Pr[5j] = Jy. n O » , + ?,)- ft fc», + *, + ^ ) ; = l . . . m (5)

Notice that ^ = 0 if vj = t£ and j , = 0 if vf = 1.

In the last two équations, ignore the product f j whenever b < a. From

équations (2) to (5), it can be shown algebraically that (1) holds.

2.6. The décomposition principle (*)

If values v] and vf can be known for the initial state space X, non-over-
lapping subsets A, Bj and Cj can be constructed.

Any x e A is an acceptable state point and any x € Bj (j = 1 ... ni) is a
non-acceptable state point. Any x e Cj (j = 1 ... m) is an unspecified state point.

Therefore, the associated probability Pr [A] is a part of the sought value
m

Pr [A°] and £ Pr [5;] is a part of the sought value Pr [B0].
i-i

Now, each non-empty subset Cj may be considered as a new initial state
space with modified but known limiting state points. In each Cj, new critical
values vf and vf may be determined, as they have been determined in the
initial state space X. Thus, each Cj may be again decomposed into new non-
overlapping subsets Bj, that contain only non-acceptable points, a set A of
acceptable points and new subsets of unspecified points. The probabilities
associated with new sets A and Bj can be computed as in (3) and (5) and are
added to the former values and so on... until no subset with unspecified points
can be generated and all such subsets have been considered. When this occurs,
the probabilities Pr [4°] andPr [B°] are obtained. The set A° and B° are respec-
tively the union of all sets A and sets Bj that have been constructed.

The procedure is finite. For an initial non-empty state space X, we suppose
that A° is non-empty otherwise the problem is solved with Pr [A°] — 0. After
decomposing JSTinto A9 Bj and Cj, we have A ç X but if A = X, Pr [A0] = 1
and the problem is solved. Thus, A C X and also each Bj C X and Cj CZ X,

Similarly, at any stage of the procedure, each subset of unspecified state
points is strictly contained within the set from which it has been generated.

(1) What is here called the « Décomposition Principle » is by no means related to
lhe décomposition principle introduced by Dantzig and Wolfe for solving large-scale
tinear programs.

n° novembre 1972, V-3.



54 P. DOULLIEZ ET J. JAMOULLE

Consequently, the procedure is finite.
The procedure could be summarized as follows :
— Step 1 : Start with initial set X. Let Pr [A°] = Pr [B°] = 0.
— Step 2 : Given the limiting state points of X9 compute the critical

values Vj and vf. The sets A, Bj, Cj can then be defined with
their own limiting state points. Compute Pr [A] and Pr [B'j\ for
each j .

m

Let Pr [A°] = Pr [A°] + Pr [A] and Pr [B°] = Pr [B°] + £ Pr [B$

— Step 3 : Choose a set Cj that has not yet been considered. If no such
set exists, go to step 4. Otherwise, let X = Cj and go to step 2.

— Step 4 : Pr [A°] and Pr [B°] are the sought values. We necessarly have
Pr [A°] + Pr [B°] = 1. END

3. TRANSPORTATION NETWORK
WTTH RANDOM ARC CAPACIITES

3.1. Critical capacity values

In this section, a method for finding critical values vf and vf is presented
for our spécifie network problem.

They will be found with respect to initial network state set X with limiting
state points x — (1, 1 ... 1) and x = (kt ... km) but the procedure would be the
same for any set of network states with known limiting state points. The proba-
bility Pr [A] and probabilities Pr [Bj] can be computed once the critical capacity
values Vj and vf have been determined for each random capacity Hj.

Let us join each demand node i to a common fictitious demand node T by

way of an arc with capacity dt. A flow D = 2-f »̂ is sent from the common
over i

source node S to T and the flow/} in any are j cannot be higher than kj.
The values vj are obtained as follows :
Let vj be the smallest capacity value that can be assumed by the discrete ran-

dom variable Hs and which is notless than/). The network state x = (v\... v]... u°)
is obviously acceptable. The set A is a set of network states x = (^ ... Vj ...#m)
with Vj < Vj ̂  kj for any ƒ Therefore, any x e A is acceptable since it has been
assumed in the previous section that capacity values are increasing with their
indices.

The/* value vf is obtained as follows :
The set Bj is a set of non-acceptable network states x — (vx ...Vj... v„)

with 1 < vj < vf for arc j .

Revue Française d'Automatique, Informatique et Recherche Opérationnelle
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Given the limiting capacity values kr (r ^j) and the existing flow D in the
network, find the maximal flow Fj that can still go from the origin to the end
of are j without using arcj. The value Fj can be obtained by Ford-Fulkerson's
method [3] and corresponds to the largest feasible decrease in flow for arc j .
If Fj < fp arc j is in a minimal eut separating node S from node T and vj is
the smallest capacity value which is not less than (ƒ} — Fj). Obviously, any x € Bj
is not able to satisfy ail demands and is non-acceptable. If Fj ^ fj9 then vf = 1
and Bj = 0 since the entire range of capacity values for arc j is feasible for
values d(,

3.2, Présence of an arc in a minimal eut

We are now interested in finding the probability Pr [B°\r] that arc r be
found in a minimal eut (r — 1 ... m). Since any non-acceptable network state
has a minimal eut associated with it, only those with a minimal eut that contains
arc r must be retained and their associated probabilities must be summed up.

For any set of non-acceptable network states Bj that has been generated
by the procedure explained in section 2, let us make the following décomposi-
tion :

The limiting state points of a set Bj are known and let us designate them as
x = {gx ... gm) and x = (kx ... km) with gs ^ kj for ail j . Let M be a minimal
eut associated with a network state x that is defined by the highest capacity
values, Le., x = {kx ... A;m). The value of the eut Mis necessarily lower than the
flow D which must go from S to T but eut M is not necessarily a minimal eut
for network states with capacity values Vj with gs < Vj < kj. The décomposition
principle must now be applied to the set Bj with a different criterion, i.e.
Bj must be divided into (non-overlapping) subsets of network states with
identical minimal eut.

Let X = Bj, The set X can be decomposed into a subset A and new subsets
Bj ( j= 1 ... m) when critical capacity values (vt... vf ... v%) are determined,
we have :

x = (vx ... vm) € A if Vj > vf for ail j

x = (vx... vm) € Bj if Vj < vf for at least one j .

The critical values vf are obtained as follows :

For any arc j$M, let vf be the smallest capacity value which is not less
than the flow value in arc j . For any arc j € M, let vf = g..

Obviously, any network state x € A has the minimal eut M associated with
it. If arc r is in eut M, the value Pr [A] is a part of the sought value Pr [B° \ r]
and is to be added to the part already computed.

n° novembre 1972, V-3.
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The network states x in a new set B< do not necessarily have an identical
minimal eut. Therefore, each new set Bj is to be decomposed in the same
manner as the initial ones. The value Pr [B° \ r] is obtained when no subset
remains for décomposition.

3.3. Existence of a minimal eut

It is interesting to notice that probability Pr [B° j L] that a eut L be minimal
can be found similarly by summing up ail probabilities associated with sets
in which the network states have L as minimal eut. Thus the problem that has
been formulated in [4] by Frank and HaMmi can be solved by our approach.

3.4. Expected value of unsuppiied flow

Let i b e a set of non-acceptable network states with identical minimal eut
and with known limiting state points. It has been shown above how an exhaus-
tive séquence of sets A can be generated.

Let the limiting state points of A be x = {gx ... gj ... gm) and
x = (kt ... kj ... fcm) with kj ^ gj for ail j .

Let D be the total demand and G(x) be the value of the minimal eut for
state x€A.

Each network state x € A gives rise to an unsuppiied flow (D — G(x)) with
a probability Pr [A = x] = px.

The expected value \i [A] of the unsuppiied flow associated with A is :

VIA] = £ px(D - G(x)) = Pr [A]. D - £ PxG(x)
x€A x€A

The term 2*> Px^(x) is the expected value of minimal eut M within set A.
x€A V

Let
V

M be the minimal eut for any x € A.

From the fact that the expected value of a sum of independant random
variables is the sum of the expected values of these variables, we have :

= nJsv n*
~ \ j€M r€M

j€M
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Therefore, we have :

j€M ]

Computing the right-hand side of (1) is straightforward. Summing up the
values in (1) for all generated sets A gives the expected value of the unsupplied
flow,

Similarly, summing up the values in (1) for generated sets A for which the
minimal eut contains are r gives the expected value of the flow which is unsup-
plied when are r is present in a minimal eut.

Finally, summing up the values in (1) for generated sets A for which eut M
is minimal for any x € A gives the expected value of the flow which is unsupplied
when eut M is minimal,

4, CONCLUDING REMARKS

The décomposition principle presented in this paper is gênerai in the sense
that it could be applied in any other System in which a point of the state spaee
is defined when several random events occur simultaneously and when a
point of the state space can be classified aecording to a given criterion.

The problem of finding the probability of meeting the demands at the nodes
of a network has been treated up to now by making a large number of succes-
sive random trials (Monte-Carlo approach), The method presented in this
paper is able to find an exact answer to the problem with a small computational
effort. Anyway, Monte-Carlo approach is not appropriate for estimating pro-
perties of a set of state points which is reached very rarely even after a great
number of random trials. For some networks that have been treated by our
approach, the probability associated with all non acceptable state points was
not higher than 0.001. A main reason for efficiency is that a séquence of non-
overlapping sets of network states are considered instead of a séquence of
single network states as in the Monte-Carlo approach.

When the demands at the demand nodes are increasing with time, the method
can be easily adapted for finding the largest value of time up to which all
demands can be satisfied with a given probability level.

Also, a best location for an investment on a network can be found since
the responsibility of each arc for non satisfying the demands is evaluated with
respect to the entire network,

The present paper can be considered as a probabilistic extension of référence
[2], In [2]s the required probability level with which ail demands must be satis-
fied has been taken into account only in an empirical way — Le. — ail demands
must be satisfied even if any one arc assumes a given lower capacity.

n° novembre 1972. V-3,



58 P. DOULLIEZ ET J. JAMOULLE

Several numerical examples have been treated on an IBM 370-155 by a
program written in FORTRAN IV. An example with about 20 random arcs
usually needs less than one second of Computing time.

5. NUMERICAL EXAMPLE

Consider the network in figure 5. In the same figure, the flow requirements
at the demand nodes are indicated. Table 1 gives the capacity values that can
be assumed by the arcs of the network and their associated probabilities.

Figure 5

In figure 5, two data are associated with earch arc. The first one is the pro-
bability that the arc be found in any minimal eut and the second is the expected
value of the flow which is unsupplied when the arc is present in a minimal eut.

In this example, the probability that at least one demand be not entirely
satisfied is found to be 0.1418 and the expected value of the unsupplied flow
is 18.93.

Looking at figure 5, it can be concluded that arc S-5 must be reinforced in
priority since it is present in a minimal eut for almost each non-acceptable
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network state (0.134 c± 0.1418). Also, the expeeted value of the flow which
is unsupplied when the are S-5 is present in a minimal eut is almost equal to
the uneonditional expeeted value of unsupplied flow (18.20 ~ 18.93).

TABLE 1

ARC

S-l

S-2

S-3

S-4

S-5

1-6

1-8

1-9

2-3

3-6

3-7

3-10

4-7

4-10

5-10

5-12

6-10

8-6

8-11

9-6

9-11

10-12

<

800 (1.0)

0 (0.0035)

0 (0.04)

0 (0.05)

0 (0.05)

0 (0.0053)

0 (0.0047)

0 (0.0047)

24 (1.0)

0 (0.0225)

0 (0.0040)

0 (0.0001)

0 (0.0026)

0 (0.0001)

0 (0.0031)

0 (0.00001)

0 (0.0004)

oo (1.0)

oo (1.0)

oo (1.0)
oo (1.0)

0 (0.00001)

ZAPACITY VALUES

5.6 (0.0899)

29 (0.32)

20 (0.95)

20 (0.95)

220 (0.9947)

145 (0.9953)

145 (0.9953)

65 (0.9975)

12 (0.9960)

18 (0.0068)

12 (0.9974)

18 (0.00638)

14 (0.9969)

10 (0.00379)

65 (0.0392)

24 (0.00479)

AND ASSOCIATED PROBABILITIES

11.1 (0.0709)

58 (0.64)

36 (0.9931)

36 (0.99361)

28 (0.00309)

130 (0.9604)

48 (0.99520)

14.5 (0.2288)

38 (0.99311)

17.0 (0.6067)
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