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THE SET COVERING PROBLEM :
A GROUP THEORETIC APPROAGH

Hervé THIRIEZ (l)

Résumé. — A solution technique for the gênerai set covering problem is offered ; the
approach is based on the group theoretic ideas developed by Gomory [7] and Shapiro [19, 20].
Important simplifications are allowed by the 0-1 nature of the problem ; they are such that,
in many cases, a continuons linear programming package is the only tooi required, even for
the solution of problems with several hundred rows and several thousand columns.

This paper contains three sections : in the first one, different solution techniques for the
set covering problem are described ; this section may be skipped, as it is relatively independent
of the other two, The second one présents an adaptation of the group theoretic approach to
the solution of set covering problems. In the last section, the author descibes several programs
adapting his technique to different configurations of set covering problems {size, type of cost
vector, ...) and comments his computational expérience.

The author wishes to express his gratitude to B. Roy, who made this paper possible by his
helpful comments and his contribution to the rédaction of the first section.

INTRODUCTION

The gênerai set covering problem has the form :

Min c • x

such t h a t :A'X^borA*x = b

x Boolean (0-1)

where : A is an rnxn Boolean matrix

b is an m-dimensional vector filled with l's

c and x are n-dimensional vectors

Set covering formulations appear with problems of delivery, circuit design,
scheduling, ... When A • x — b, the problem is also called a « partitioning »
problem [4]. The author of the current paper worked with particular emphasis
on the aircrew scheduling problem [1,21, 22], where :

(1) Professeur d'Analyse Opérationnelle au C.E.S.A.
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84 H. THIRIEZ

— each row of A represents a flight from one city to another at a given date,
day and hour;

— each column of A is a séquence of flights, a « rotation », that a crew flies
before returning to its base airport : there is a « 1 » in each row corresponding
to a flight covered by the rotation;

—• the airline sélects a set of rotations covering all the flights at a minimal
cost.

The contraints may be inequalities : it is cheaper in some cases to send a
second crew as passengers on one flight. When inequalities are used, it is
advisable to modify the cost vector to prevent the situation from happening
too often; e.g., add to each column cost a deadheading (sending a crew as
passengers) cost multiplied by the number of l's in the column.

1. SOLUTION TECHNIQUES

There is a limited number of basically different solution techniques; howe-
ver, each of them offers a wide range of possible variations. This section
describes the basic techniques, and tries to evaluate them.

1.1. Cutting plane methods

Cutting plane methods [6, 8, 10] use the following approach :

(1) Drop the « x Boolean » constraint, to obtain a continuous linear pro-
gram.

(2) Solve the program. If the solution is integer, it is the optimal integer
solution, terminate. Otherwise, go to (3).

(3) Add a constraint which will reduce the polyhedron defined by (A • x ^ b
or A • x = b; x ^ 0) without cutting off optimal integer solutions. Go to (2).

The constraint obtained in (3) is deduced from the linear constraints and
the integrality constraints. Constraining x to be integer or Boolean is equivalent,
since the cost vector is always nonnegative in set covering problems. Many
good cutting plane algorithms have been created in the last few years; the
drawback of the method is that, for most of the cutting plane methods, no
integer solution is found until the optimal solution.

1.2. Branch and bound methods

Branch and bound methods [2, 11] are best illustrated by figure 1. A tree
is created, where the origin node corresponds to the solution of the continuous
LP (linear program) obtained by dropping the « x Boolean » constraint.
Assume that, in that solution, variable Xj is not integer. Two new LPs are solved;
Xj is fixed to « 0 » in the first one, and to « 1 » in the second. Two new nodes of
the tree are thus defined. Clearly, at any moment, each node of the tree either is
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a terminal node, or branches off to two other nodes. The branch and bound
algorithm is explained after the figure.

No integer
constraint

LP
solution

L P
solution

= ° Xi = 1

LP
solution

One fixed
variable

- O

LP
solution

LP

solution
Two fixed
variables

Figure 1.
Branch and Bound tree

Basic algorithm for branch and bound :
(1) Solve the continuous LP. If the solution is integer, terminate. Otherwise,

create the origin node of the tree and go to (2).
(2) Select the cheapest terminal node : if its LP solution S is integer, it is an

optimal integer solution, terminate. Otherwise, go to (3).
(3) Select a variable xs not integer in S. Solve the two LPs corresponding

to the continuous LP, plus the constraints S was subjected to, plus Xj = 0 (for
the first one) and Xj = 1 (for the second one). Two new nodes have been
defined. Go to (2).

Evidently, the optimal integer solution is eventually obtained, after a finite
number of LP solutions. The drawbach of branch and bound is the necessity
of keeping in memory all the relevant information on the tree and the solutions
at each terminal node.

The author of the current paper obtained very good results with branch
and bound, using Healy's réduction technique [9] : with the reduced costs
and dual values in the LP results at a node, one may project lower bounds on
the value of the objective function if a variable not integer in the solution were
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pushed to 0 or to 1. In the same manner, one may project a lower bound on the
value of the objective function if a variable at a level of 0 (resp. 1) in the solu-
tion were fixed to 1 (resp. 0) instead. The solution technique may then be :

(1) Use a heuristic method to find a good integer solution rapidly.
(2) Keeping this solution as a bound (until a better one is found), use the

branch and bound approach as defined above, with the following modification :
at each node, for the variables not yet fixed, project the bounds on the objective
function corresponding to their 0 and 1 values; then :

a) for one variable, both lower bounds are more expensive than the best
integer solution yet. No better solution may be obtained from this node of the
tree. Select the next cheapest terminal node. "

or b) for some variables, the lower bound on the objective function corres-
ponding to their activity of 0 (resp. 1) is more expensive than the best integer
solution yet. Fix them to 1 (resp. 0).

or c) all the lower bounds are cheaper than the best integer solution yet;
take no spécifie action.

A problem of 104 rows and 236 columns was reduced right after its conti-
nuous LP solution to 26 rows and 63 columns with this technique (if only
f ree variables and nonredundant constraints are considered). In that case,
there was even no need for a branch and bound technique, since the LP solution
obtained with the reduced problem was directly integer !

1.3. Implicit enumeration

The main contributions to the development of implicit enumeration must be
acknowledged to Balas [3] and Geoffrion [5]. The idea is that, with n columns,
there are 2" possible integer solutions, usually too many for an exhaustive
search, but not if many of them may be rejected in large blocks. The goal of
implicit enumeration is to avoid the backtracking and memory management
problems of branch and bound.

The method is described with the présentation used by Geoffrion [5],
First, a number of définitions must be made :
— A partial solution S is an assignment of binary values to a subset of the

n variables.
— A free variable is a variable not assigned any value by 5.
— A completion of a partial solution is a solution determined by S together

with a binary spécification of the values of the free variables.
— A partial solution is «fathomed» if ail its complétions have been

considered implicitely or explicitly. (S, z) represents a partial solution S and
its cost z.

— Notational convention : in S, j dénotes Xj = 1 and —j dénotes Xj = 0.

Revue Française d'Informatique et de Recherche opérationnelle



THE SET COVERING PROBLEM 8 7

Example : if n = 4 (4 variables), S = (3, — 4, 1) is a partial solution for
which xx = 1, x3 = 1, x4 = 0 and %i is free. There are two possible complé-
tions :S1 =(3,— 4,1, 2) and S2 = (3, — 4,1, — 2).

A séquence of partial solutions is generated and all their possible complé-
tions are considered. The best current feasible solution is stored together with
its cost. Partial solutions are progressively completed. At each step, one of
three situations arises :

a) a better feasible solution is found; it then replaces the current optimal
solution S*. The next partial solution, defined in the folïowing, is then consi-
dered;

b) or it is clear that ail complétions of a partial solution will be infeasible or
more expensive than S*; go to the next partial solution;

c) or nothing can be said about S; assign a binary value to one of the free
variables which therefore augments S. Test to find out whether. (a), (è), or (c)
is now valid.

At some point, there will be no partial solution left to be considered. Ail
solutions will have been implicitly or explicitly covered. The optimal solution
is the final S*.

The représentation of S must be such that it is possible to recognize whether
its other binary value has already been assigned to a given variable, the other
variables being equal. For example, a variable will be underlined if the partial
solution formed by the variables preceding it in S with their current value and
the variable at its other binary value has already been fathomed. Example :
S = (3, — 4, D indicates that (3, — 4, — 1) has already been fathomed.

The next partial solution is obtained by complementing the rightmost not
underlined variable of S and dropping all éléments to its right. To complement,
Tinderline the variable and assign to it its other binary value. The next partial
solution of (3, — 4, 1) is (3, 4). It is clear that, through this procedure, the
whole set of solutions has been fathomed when a partial solution has been
evaluated for which ail variables are underlined.

This procedure allows a complete search with a minimum of backtracking
effort and table management. Computational speed is sacrificed for this advan-
tage, since the progression in the three is determined by the choice of the ini-
tial solution.

1.4. Graph theory (B. Roy)

B. Roy offers in [17, vol. 2, section VLB] a solution technique based on a
graph theoretic représentation of the problem. A tripartite graph is drawn,
with an origin node z, a set of « column » nodes representing the columns of
the A matrix, and a set of « row » nodes standing for its rows. There is an arc
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88 H. THIRIEZ

linking z to each column node, and an arc links a column node j to a row node i
whenever atJ = 1 (where ai} is the element in the ith row and jth column of
matrix A).

Column
nodes

Row
nodes

Figure 2.

Graphie représentation

An « externally stable set » to a graph is a set of nodes such that each node
in the graph belongs to it, or is the destination node of an arc for which the
origin belongs to the e.s.s. (externally stable set).

There is an équivalence between an e.s.s. (formed by z and a subset of
column nodes) of the graph and a covering set, i.e. a subset of columns of
A covering all the rows.

Roy's technique is similar to an implicit enumeration process : a partial
e.s.s. is first formed by z and all the column nodes which are the only ones to
cover some of the row nodes ; then, a column node which covers at least one
new row node is added, ... At each step, the situations called a), b), c) in the
implicit enumeration section appear. The différence between the two methods
is mainly that :

— at each step, i.e. each time a new node enters the partial e.s.s., a réduction
procedure takes place :

a) for each row node covered by only one remaining column node, enter the
column node in the partial e.s.s.

b) the corresponding column nodes and the row nodes they cover are deleted
from the graph;

— at each step, there is a non-inclusion test which finds out whether the
addition of the column node to the partial e.s.s. makes it possible to reject one
or more of its column nodes (the new column node may cover all the row nodes
covered by another column node in the partial e.s.s., in the most simple case).

Revue Française d''Informatique et de Recherche opérationnelle



THE SET COVERING PROBLEM 89

It must be emphasized that the réduction procedure and the non-inclusion
test take place each time the partial e.s.s. is augmented by one element.

The procedure, as it is described by B. Roy, also has the property that it
finds all covers costing less than a given value. This is useful when there are
alternate objective functions, which may or may not be quantified.

The last property, and the most important, is that this approach can deal
with additional constraints, the coefficients of which are not necessarily Boolean.
A paper [18] will be published on that subject.

In conclusion, it can be said that, as with implicit enumeration, this approach
is probably too slow for the large-sized gênerai set covering problems. However,
it must be considered as an important contribution to the solution of constrained
set covering problems.

1.5. Heuristic methods

For a long time, heuristic methods [1, 4] have been used : they pro vide
good solutions faster than most methods, but do not necessarily guarantee
optimality. They are still used when people have problems too complicated
to solve otherwise, or when they are ignorant of the existence of better methods.

These methods obtain feasible integer solutions based on a limited search
of the feasible space; to find these solutions, sélection criteria are applied which
should bring one close to the optimal integer answer.

One typical heuristic method is to solve the continuous LP problem and
manually round up the noninteger values in the solution vector so as to obtain
a feasible integer answer.

Another heuristic, used by Air France, is to fix to.« 1 » all the variables
having an activity of « 1 » at the continuous optimum; thé problem is reduced
correspondingly, and an integer optimization code solves the remainder. Of
course, this approach may resuit in non-optimal answers.

The author tested the group theoretic approach against heuristic methods
used by several airlines : group theory was always faster (for the problems it
could solve), usually at least twice as fast.

1.6. Other methods

There are methods which do not enter any of the preceding catégories.
Pierce [14] created a purely enumerative procedure to solve the partitioning
problem; according to comparative testing made at MJ.T., it seemed to per-
form better than group theory for problems with few (less than 50) rows and
several hundred columns; in these cases. Pierce's method was faster than the
LP solution itself ! Other enumerative schemes were developed by the airlines [1].
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The drawback with most of these methods is their limitation, usually,

to handling only the A • x > b or the A • x = ô case-

An exception is the group theoretic approach, which is described in the
following section.

2. THE GROUP THEORETIC APPROACH

Subsections 2.1 through 2.3 describe the group theoretic approach in its
generality, i.e. where A, b and x are only constrained to be integer. Subsec-
tions 2.4 and on present the simplifications due to the Boolean nature of A,
b and x.

2*1. General présentation

The group theoretic approach is based [7, 19, 20] on the transformation
of the set covering problem from its canonical form into the « group theoretic »
form.

Let us dénote by N the set of nonriegative integer values : an element, a
vector, or a matrix belonging to TV is exclusively made up of nonnegative
integer values.

The canonical form is the following :

(1) such that : A • x = b

xeN

where : A is an m • (m + #)-dimensional integer matrix;

c is an (m + «)-dimensional nonnegative integer cost vector :

c € N;

x is an {m + »)-dimensional vector;

b is an m-dimensional integer vector.

There are m + n unknowns, since a unit matrix (with a high cost coefficient)
is'added to guarantee a feasible solution to (1), when the partitioning problem
is^solved. Otherwise, the additional variables are the slacks. The continuous LP
problem, obtained by dropping the x € N constraint, is :

Min c • x

(2) s.t. Aix = b

x^ 0

Revue Française d'Informatique et de Recherche opérationnelle
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The technique of the group theoretic method consists in first solving (2);
starting from the continuous optimum, a new problem is derived. The optimal
solution to that problem defines the optimal solution to (1) in relation to the
continuous optimum.

2.2. Group theoretic formulation

Let B be the basis of the optimal solution to (2). A set of conditions there-
fore holds true :

B is a nonsingular m • m matrix : B~ x is defined;
B~xb ^ 0 since it is the solution vector to (2);
ëj = Cj — CBB'1^ ^ OVj, where ctj is the ƒ* column of A and cB

the part of the cost vector corresponding to the basic variables : the redu-
ced cost vector is nonnegative at the optimum.

Let us partition Ay x and c with respect to the columns in and out of B,
in (1); the following formulation, equivalent to (1), is obtained :

Min (cBxB + cRxR)

(la) s.t. BxB + RxR = b

xB> *R € N
where A = (B, R)

X = (XB> XR)

c = (cBi cR) allows us to retrieve formulation (1).
Solving for xB> a new formulation is :

Min cB(B~ *b — B' xRxR^ + cRxR

s.t. xR € N

The reduced cost vector cR = cR — cBB XR is introduced in the formulation :

Min (cBB~ xb + cRxR)

s.t. B-'b — B-'RxztN

xR£N

It is clear that (1 b) is still equivalent to (1). As we can see, the cost of the
optimal solution to (1) is equal to the optimal cost for (2) plus the sum of the
reduced costs of some nonbasic variables.

The two constraints in (1 b) mean :

— the différence vector between B~xb and B~xRxR must be nonnegative
integer;
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92 H. THIRIEZ

— xR must be nonnegative integer.

The first of the two constraints may be expressed as the sum of two condi-
tions, Cl and C2 : the différence vector must be integer and must be nonnega-
tive :

(Cl) B~xRxR =B ~x b (mod 1), i.e. modulo an integer vector

(C2) B~xRxR < B-Xb

Let [a] be the largest integer vector such that [a] < a,

Since xR €iV5 (Cl) is equivalent to :

(B~ XR — [B' lR]) • xR = (B~ %b — [B"xb]) (mod 1)

All the fractions disappear if both sides of the équation are multiplied
by A the determinant of B9 since R, b and xR are integer :

D • (B~ *R — [B~ lK\) •xR=D^{B~1b — [B" xb]) (mod D)

Let us define : OLS = D{B~ 1aJ — [B~ 1aJ])

a0 =D(B"1b — [B"'1b])

The group theoretic form is the following :

Min cR • xR

(3) s.t Y, a i • XJ = ao (m<>d D)

where / is the set of indices of the nonbasic variables. All the columns of R
have indices belonging to X

There are two différences between (16) and (3) :

— the objective fonction of (3) does not include cBB~1b : it is a constant
and therefore does not influence the optimization process;

— the nonnegativity constraints for the basic variables do not appear in (3),

The group theoretic method may now be deduced easily.

Algorithm

An optimal solution to (1) is obtained as follows :

d) Solve problem (2), obtain base B and cost cBB~~ lb;

b) Let xR be a best solution to (3) for which :

B~xIGcR < B"xb

Revue Française d'Informatique et de Recherche opérationnelle
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Then, the solution defined by: x =(B~1b — B~1B5cR;xR) is an optimal
solution to (1) and costs : cBB~ 1b + CRXR-

2.3. Optimization process

Clearly, finding the best solution to (3) for which B~1RxR < B~xb may be
a rather difficult problem. However, there are theorems in Algebra which
greatly simplify the problem. It is not the purpose of this paper to go into their
detail, especially since good introductory papers to group theory have been
written [7,19, 20]. These theorems may be found in [13], pages 261 through 282;
it is more important here to state clearly their implications.

Proposition 1 : the a,, vectors generate an abelian group which has D élé-
ments.

This means that there are at most D different possible o,- columns. Moreover,
the group is closed with respect to scalar multiplication, modulo D.

EXAMPLE : consider a problem with five rows where D = 3 ; piek up a nonzero
av-, e.g. aj = (2 1 0 2 1) where OLJ is the transpose of the ocy column. Then,
proposition 1 implies that (2 1 0 2 1) or (1 2 0 1 2) or (0 0 0 0 0), i.e. a^ or 2 -aj
(mod 3) or 3 • a£ (mod 3) are the only possible types of a,. columns.

Proposition 1 is a conséquence of the integer nature of the A matrix.
If D is not prime, there are two possibilities :
— all the vLj columns are obtained by the products modulo D of a « basic »

column by integers from 1 to D. This situation is discussed in subsection 2.5,
— or, D may be « decomposed » : assume for example D = 12. If D

décomposes into 2 x 6 , there will be a basic vector for D1 = 2 formed with
O's and 6's, and a basic vector for D2 = 6 formed with the numbers 0, 2, 4, 6,
8, 10. Each o,- cay then be expressed two-dimensionally in terms of the basic
vectors oc1 and a2 : ay = (k9p); i.e. a,- = k • a1 +p • a2 (mod 12) where
k 4: 2 and p < 6.

Proposition 2 : D always décomposes into the product D = qxq2 •» 3V such
that : qt divides g i + 1 V / < r — 1.

So, if D = 12, it may only either react as though it were prime (only one
basic vector) or décompose into D = 2 x 6. It will never décompose into
Z) = 3 x 4 .

The following procedure may be used to find the optimal solution to (3) :
à) Find how D décomposes itself : this may be done by visual inspection

of the LP results and of some B~ xa} columns. Since the continuous LP problem
must be solved anyway, it is cheaper to do that first, in order to avoid starting
the group theoretic program if the solution is integer. The process may of
course be automated.
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b) Find r basic a' vectors. Express each a,- in function of these vectors as
an r-dimensional vector with values ranging respectively from 1 to qu 1 to
q2, ...

c) Find the cheapest combination of a^s producing a0, modulo D.

Example : if a0 = (1, 3) and D = 1 2 = 2 x 6 , any combination of OLJS
such that the sum of their expressions (in ternis of the basic a*'s) equals (1,3)
modulo (2, 6) is a potential solution.

In the traditional approach to group theory, a graph is drawn where each
node represents one of the D different oc,* vectors. A shortest-path technique
is used to solve the third part of the optimization procedure (c). When solving
set covering problems, especially those arising in aircrew scheduling, the pro-
cedure is much simpler, since D is often prime, and nearly always a small
number anyway. The following subsections describe the simplifications allowed
by that property.

Up to this point, A was onîy required to be integer. în the remainder,
only the solution of set covering problems is considered. Therefore, A will be
exclusively made up of O's, + I's and — I's. Consequently, «prime détermi-
nants », « cyclic » or « pseudo-cyclic » groups will appear in most problem
solutions. Subsections 2.4 through 2.6 show the simplifications of the group
theoretic approach allowed by these déterminants and/or groups.

2.4. Prime determinant

ïf the determinant is prime, all the OLJ columns are expressed as the product
of the a0 column, chosen as basic vector, by integers from 1 to D; the pro-
duct is taken modulo D. Let k be the first row in which the basic vector has
a nonzero value. Problem (3) becomes :

Min 2_j CjXj

(4) s.t. X *ƒ*ƒ = *o (mod D)

where â̂ - = 0Lkj : the element in the kth row of o,- and where :

k = Mm { i/oiiO ^ 0 } : the index of the first row where a0 is nonzero.
The constraint set involving the o,- vectors has been reduced to a single

constraint involving the o,- values. All the nonbasic variables are now comple-
tely identified by their reduced cost and a,-. The solution to (4), and therefore
to (3), is found with a simple inspection of the cost and the âj value for each
nonbasic variable.

The solution to (1) being the best solution to (3) for which B~ 1RxR ^ B~ %b,
it is easily found.
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THE SET COVERING PROBLEM 95

2.5. Cyclic groups

The abelian group determined by the &j columns is said to be cyclic each
time D décomposes into only one element (r = 1); that is, when D is prime or
reacts as though it were, Then, even if D is not prime, the approach described in
2.4 may be used. It has been said that many groups for which D is not prime
are still cyclic. This statement is not corroborated by the author's computa-
tional expérience, as it is shown in figure 3. The computational expérience the
author will refer to in the following pages is derived exclusively from aircrew
scheduling problems.

2.6. Pseudo-cyclic groups

The oCj- columns are derived from the B'xas vectors, by définition. The
éléments of the B~xas vectors have a smallest common denominator D.
Cïearly, D = k • Â where kçN.

When k ^ 2, the determinant may be assumed to be only 3; if the group
associated with D is cyclic, the group asspciated with D may be called « pseudo-
cyclic ». In that case, the approach described in 2.4 may again be used.

Figure 3 shows the D and D values obtained on several problems so far.
Each problem with a large D can be expected to have a definitely smaller D ;
if D > D9 an alternate continuous LP optimum could probably be found for
which has a determinant less than Z>, and maybe even Z>. The smallest value
that can possibly be found for D by considering bases of alternate continuous
LP optima is the smallest common denominator of fractions appearing in

Airline

Air Canada * AC .. . . . .
Air France : AF
American Airlines : AA-I
American Airlines : AA-III
American Airlines : AA-II
United Airlines : UAL
British European Airways : BEA-II
British European Airways : BEA-I..

Size
(rows x columns)

74 X 739
67 X 536

104 x 132
104 X 236
104 X 236
117 x 4845
98 X 1652
84 x 854

D

1
2
2
4
7

12
21
60

D

2
2
2
4
7

24
126
120

Cyclic?

Yes
Yes
Yes
Yes
Yes

• No
No
No

Figure 3.

D and D values for some test problems
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2,7. Continents

In conclusion, one may remark that each time the group is cyclic or pseudo-
cyelic, the inspection technique represented by (4) may be used. This is quite
important : for most set covering problems, it will be the case; since the A
matrix is Boolean, there is a high probability that D, or at least 39 be a prime
number. If not, there remains the possibility that the group still be cyclic or
pseudo-cyclic. The next section will describe the different solution techniques
that may be used, as a function of the type of set covering problem (size, value
of 3, cost vector,...) being solved.

It must be remarked that, with the group theoretic method, it is very easy
to continue the process and find the best 10 or 20 solutions, or all the solutions
cheaper than a predetermined value. The marginal cost for doing it is neglec-
tible : to generate the ten best solutions of a 300 x 2 000 problem rather than
just the cheapest one is a matter of 20 more seconds on a 360/65.

3. SOLUTION TECHNIQUES. COMPUTATIONAL EXPERIENCE

AU the programs described below are in Fortran IV, linked to the linear
programming package of the IBM 360, i.e. MPS (Mathematical Programming
System). The computer times were obtained with the M J.T. 360/65 : the System
had a 512 ̂ core, with 256K directly available to the user.

3.1. Tree of solution techniques

Figure 4 shows the solution techniques proposed by the author for set
covering problems, as a function of their characteristics.

Yes[s the LP solution
integer ? *JTerminate|

No

No

\

Is the group cyclic
or pseudo-cyclic ?

f

Unit cost
vector ?

D = 2 x 2 x . . .
or 3 x 3 x . • • ?

Yes

|Use ABT|

No

f

Use
GTMP

y

Yes

Large
size ?

Yes

Use
BLIP

Use
DECOMP

Figure 4.
Solution Techniques

Revue Française d'Informatique et de Recherche opérationnelle



THE SET COVERING PROBLEM 97

GTMP, BLIP, DECOMP and ABT are the names of solution techniques
described in subsections 3.2 through 3.5. Only GTMP and BLIP are comple-
tely programmed at this date; this did however not prevent the obtainment of
computational expérience, as it is shown hereafter.

® is the only case in which no particular solution technique is offered by
the author : the group is not even pseudo-cyclic, the cost vector is not unity
and the determinant cannot be decomposed into 2x2x... or 3x3x... This
situation is not véry frequent in set covering probleps with sparse densities;
the densities of problems discussed in this section, which are real-life aircrew
scheduling problems, vary between 1 % and 5 %. There is one remedy, when®
happens : if the fractions in the LP solution vector have a small and/or prime
smallest common denominator (smaller than 3), an alternate continuous
optimum may be found for which the associated group is cyclic or pseudo-
cyclic.

A good heuristic for finding such an alternate optimum is to replace as
much as possible variables at a level of 0 in the basis by slack variables not yet
in the basis. The density of Ps in the basis therefore decreases, since columns
with several I's are replaced by columns with only one « 1 ». Consequently,
there is a reasonable chance that D becomes smaller.

If this is not sufficient to allow the solution by one of the four techniques
proposed in figure 4 :

— either use the gênerai group theoretic method as described by Shapiro
in [19, 20];

— or use branch and bound until one of the four methods may be used,
or an integer solution found, for the cheapest terminal node.

3.2. GTMP : Group Theoretic Method Program

GTMP solves the small and average size set covering problems for which
the group is cyclic or pseudo-cyclic. For sizes over 200 rows or 1 000 columns,
BLIP is préférable.

GTMP is called once the LP optimum has been obtained and starts by
reading in all the B~ 1aJ columns corresponding to nonbasic variables.

A first phase of the program obtains the cheapest solution xR to (4) such
that xB — B~lb — B~xRxR > 0 and ^ Xj = 1, i.e. for which a feasible solu-

j€J

tion to (1) is derived by setting only one nonbasic column xk to a level of
1 (öik — óc0). A second phase looks for the cheapest solution to the same pro-
blem with /] %j = 2 (instead of 1), The « optimal » integer solution is the

J€J v
better of the best solutions with zlxj — l or 2.

J€J
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Theoretically, combinations of three or more nonbasic columns should
also be considered. Practically, it does not seem necessary : in ail problems
solved by the author to date with GTMP (or BLIP, for that matter) but one,
the optimal integer solution was found in the first phase; in the last case, it
was found in the second phase. If it were deemed necessary, optimality could
easily be proved by adapting the program to consider all column combinations
cheaper than the best one found by setting to « 1 » one or two nonbasics. It
was not done, to save computer time during exécutions. This remark remains
valid for the other solution techniques.

Figure 5 describes computational expérience with GTMP. The problems
were obtained from American Airlines and Air France. AA-I had been solved
by the IBM SCA-I code on a similar 360/65 in 250 seconds. The Air France
problem was run on a 360/75 with the Air France LP-heuristic code; the best
solution was 6106 after 1.2 minutes.

Problem

Type
Size
Total Time
LP time
Time after LP
Integer Optimum
LP Cost

AA-I

Ax^ 1
104 X 132
25.2 sec.
15.6 sec.
9.6 sec.

z = 8 820
8 817.5

AA-II

Ax = 1
104 X 236
54.6 sec.
31.8 sec.
22.8 sec.

z = 14 145
14 000.78

AF

Ax = 1
67 x 536
69 sec.
28.2 sec.
40.8 sec.

z = 6 049
6 041.5

Figure 5.
GTMP

3.3. BLIP : Binary Linear Inspection Program

BLIP obtains the optimal solution of problems of moderate and large
size, for cyclic or pseudo-cyclic groups. In a first phase after the LP optimiza-
tion, BLIP finds the names of all the nonbasic variables for which the associa-
ted âj equals â0. A second phase retrieves from MPS the B~ xai columns
corresponding to these nonbasics and finds the cheapest solution xR to (4) such
that B'1b ^ B~iRxR and ]£ xs = 1.

A third phase receives from MPS the B~1aj columns of all the nonbasics
with a reduced cost smaller than the cost of the solution to (4) previously
selected. Using these columns, the best solution with ^ Xj = 2 is found. Again,

combinations of three or more columns are not considered. The process is
very similar to the approach used in GTMP.
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Figure 6 describes computational expérience obtained before BLIP was
programmed : the times correspond to the sum of the times of the B~1aJ

column générations and LP restarts for each phase; the rest of the solution
process was done by visual inspection of the listings. The computer time lost
by restoring the LP solution at each phase is quite likely greater than the
time saved by doing the inspection visually ; the computer times listed in figure 6
may therefore be considered to be realistic computer times for BLIP. As a
matter of fact, two large problems were solved by BLIP after it was program-
med : once the intermediate printouts used for testing the program were dele-
ted, the computer times turned out to be definitely faster than those obtained by
visual inspection (since in that case, there were long listings, and the listings
proved to be by far the most time-consuming part of the program).

3.4. DECOMP : Décomposition Technique

A frequent situation in large aircrew scheduling problems is when the deter-
minant, or D, décomposes into 2x2x2x... or into 3x3x3x... Assume for
example that all the fractions in the LP solution and in the B~ xaj columns are
halves and that each B~1aj has fractions in none or just one of three subsets
of rows; then, we may consider that D = 2 x 2 x 2 : the BLIP approach
may be used with the différence that at least one nonbasic covering each subset
of rows must be chosen to build a solution.

Problem

UAL
AA-SI
AA-S2
AA-S3
AA-S4

Type

Ax = 1

Size

118 x 4 845
527 x 2 800
497 x 2 909

1 138 x 3 533
124 x 7 134

LP Time

20 min.
191 min.
75 min.

150 min.
65 min.

Figure 6.

BLIP — DECOMP

Time after LP

1 min. 45 sec.
7.28 min.

14.62 min.
16.99 min.
14.89 min.

Method used

BLIP
BLIP

DECOMP
DECOMP

BLIP

3.5. ABT : Automatic Branching Technique

ABT was designed for the solution of problems with a unit cost and a
non-(pseudo)-cyclic group. Airlines paying a fixed salary to their crews (e.g.
Swissair) have a cost vector made of I's : their objective is the minimization
of the number of crews. If the group obtained after the LP solution is (pseudo)-
cyclic, GTMP or BLIP, depending on the size, may be used.
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Assume a non-(pseudo)-cyclic group : with a unit cost, it would
be impractical to use branch and bound to solve the problem; since ail
the columns have practically the same eligibility, and since there is

„ t number of columns . . . . . ~ ,
usually a large z - ratio, brachmg on ,̂- = 0 leaves the

number of rows J

problem almost unchanged. The author tried branch and bound on pro-
blem BEA-II : after seven branches in the direction x}- = 0, the cost of the
solution was still the same as that of the continuous LP optimum.

Since crew scheduling problems, and many other set covering problems,
have a very flat objective function, there is a definite likelihood that many
optimal integer solutions exist which cost [z° + .999] where z° is the cost of
the continuous LP optimum and [a] = Max { iji €N,i ^ a}.

The ABT approach is described in figure 6 :

No

Obtain the continuous
optimum , cost z°

Is the solution
integer' ?

Yes
Terminate

No

Is D prime or in the
form 2x2x...or 3x3x..

Yes Use GTMP,BLIP
or DECOMP

Cost > [z° + . 999] ? Yes

\f No
Fix a variable not
integer in the solu-
tion to a level of 1

Solve the LP.
Is the solution

integer ?

Yes

Figure 6.

Automatic Branching Technique

Al : an integer solution has been found :

— it costs [z° + .999] : accept it as the « optimal integer solution ». Most
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likely, it will be optimal ; this is not however certain, if z° is no more the cost
of the continuous optimum (see A2) ;

— otherwise, if the solution did cost less than that integer value before
the last LP solution, there is a good chance that a cheaper solution exists.
Select the first variable Xj used for branching in the tree for which only the
branch Xj = 1 was created : fix Xj = 0 and continue the process as before,
from that higher point in the tree.

A2 : the cost passes the bound, but no integer solution is found :

—7 all the D's obtained so far are relatively large : there may be no solution
cheaper than the integer bound; set z° = z° + 1 and continue the branching;

— at least one D is small : there may be cheaper integer solutions. As in
the second step of Al, return to the beginning of the tree and create the first
possible Xj = 0 branch; then, continue as before.

Again, a program guaranteeing optimality could easily be written. It
would only require that all the terminal nodes of the tree cost more than
[z° + .999] before the value of z° is changed : the branches of the type xs = 0
would also have to be generated exhaustively. This modification would of
course be quite expensive in terms of computer time.

Only two problems were provided to the author for which ABT could be
used. In both cases, the solution time was more than satisfactory compared
to what it was using BEA's program based on the House, Nelson and Rado [10]
technique. For example, the best solution found for BEA-II using it was 28,
after 12.24 minutes of Univac 494!

Problem

BEA-I
BEA-II

Type

Ax = 1
Ax = 1

Size

84 x 854
98 x 1 652

LP Time

1.57 min.
3.29 min.

Time (*)
After LP

2.06 min.
6.55 min.

Integer
Solution

23
26

Figure 7.
ABT Computational Expérience

As with the BLIP computer times, these figures were obtained with visual
inspection, the program beeing unwritten. However, it is certain that the time
needed by the computer to scan the solution vector, find a fraction and set
it to one will be much smaller than the time needed to regenerate the prece-
ding LP optimum each time a variable is fixed to 1.

(*) Includes the time needed to restart the preceding LP optimum before each bran-
ching and solve the LP after each branching.
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The two integer solutions found were optimal. The objective fuction for
set covering problems with a unit cost vector is so flat that, in most cases, seve-
ral integer solutions exist which cost no more than [z° + .999]. ABT is there-
fore a much better method than it would seem at first glance.

CONCLUSION

This paper has presented a set of solution techniques based on group
theory for the solution of set covering problems. The major drawbacks of the
proposed approach are the following :

— it does not have the capacity of handling constraints with non-Boolean
coefficients, since the determinant values would then become prohibitive;

— there is a percentage of problems (very small, however) which may not
be easily solved by the method : see A in figure 4;

—• unless specifically required, optimality is not proved; it is however very
likely : there is no counterexample to date, with real-life problems.

The advantages of the method are :
— it is very efficient in terms of speed : the bottleneck in terms of solution

time is the time needed to obtain the continuous optimum, when large problems
are solved. The ratio (total solution time/continuous LP solution time) decreases
with size;

— the marginal cost of generating alternate integer optima or solutions
close to the optimum is neglectible.
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