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PARAMETRIZATION IN NONSERIAL
DYNAMIC PROGRAMMING (i)

by Umberto BERTELÈ(2) and Francesco BRIOSCHI(2)

Abstract. — New developments in the theory of nonserial dynamic programming art
described in this paper, The new, more gênerai, décomposition technique which uses para-
metrization allows, in gênerai, solving the given optimization problem with less computationi
effort. Also interesting connections with graph theory are pointed out.

1. INTRODUCTION

Nonserial dynamic programming is a new branch of mathematical pro-
gramming. Essentially it exploits décomposition, as expressed by Bellman's
principle of optimality, for breaking the optimization problem into many
smaller subproblems and is concerned with finding a décomposition which
is optimal from the point of view of the computing time and the memory
requirements (secondary optimization problem). The solution of the secon-
dary optimization problem nécessitâtes graph theoretical considérations. The
works in this field up to now are [15 2, 3, 4].

This paper introduces parametrization in nonserial dynamic program-
ming. The basic idea is simple. It dérives from the concept of « eut state »
introduced in [5] and reported in [6] and [7]. Let X = { xu x2,..., xM } be
thç set of variables of the optimization problem. Parametrization consists
in selecting a proper subset X' C X9 considering the simpler optimization
problem for each assignment of the variables of X', and finally searching for
an optimal solution through the assignments of X'.

This is equivalent to renouncing the use of décomposition for the variables
of X'. Surprisingly enough it is shown that parametrization may be effective
for reducing the computational complexity of the problem.

(1) This work has been supported by C.N.R.
(2) The authors are with the Istituto di Elettrotecnica ed Elettronica, Laboratório di

Controlli Automatici, Politecnico di Milano, Milano, Italy.
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88 U. BERTELE ET F. BRIOSCHI

The organization of the paper is as follows. The basic concepts of nonserial
dynamic programming are recalled in section 2. Parametrization is introduced
first by means of an example (section 3) and, next, formally, in section 4. A
procedure for determining, in some cases, an optimal parametrization is given
in section 5. Here also some interesting connections with a well known pro-
perty of graph theory (Mason's index) are reported. Finally section 6 contains.
some examples.

2. NONSERIAL DYNAMIC PROGRAMMING

Consider the following optimization problem

X X i€I

where

X — { XU X2<> •••> XM

is a set of discrete variables,

ƒ = {1,2, .. . ,*}

and

X1 c x.

Each component fiiX1) of the cost function F(X) is specified by means of
a stored table with a\Xi\ rows. For simplicity it has been assumed that all
variables have the same range, namely that each variable can assume cr values.

Clearly the optimization problem stated above can be solved exhaustively
by a straight-forward approach which consists in trying all aM possible assign-
ment for X. Since this approach may require a very large Computing time, it is
convenient to consider solutions to this problem based on décomposition.
Let xt € X and Xj € X. The two variables x{ and Xj are said to interact if there
exists a component fk(X

k) such that both xt and Xj belong to Xk.

The set of all the variables interacting with a member x € X is denoted
with F(JC). Then consider a non empty subset 7 C I The set of all the variables,
other then those in F, which interact with at least one member of Y is denoted
by T(Y) and called the set of variables interacting with Y. Note the différence
of this définition T(Y) = U F(x)— F with the usual one (see, for instance,

[8]) : F(F) - U IXx).
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NONSERIAL DYNAMIC PROGRAMMING 89

One ordered partition, among all the possible ones, of the variables of the
set JSfis selected. Let Yl9 Y2,..., Ym (m ̂  M) be such ordered partition. For
this partition the optimization problem may be solved by dynamic program-
ming.

More specifically, the subset Y1 is considered first. For minimizing F(X)
w.r.t. (with respect to) Yx it is sufficient to compute

min
Yl

where

and to store the optimizing assignment of Yx as a function of F(YX), namely

The minimization of F(X) w.r.t. Yl9 for all possible assignments of T(Yt),
is called the élimination of the subset Yv

The problem remaining after the élimination of Yx

ming1(r(r1))+ X fit**)
X-Y\ i€I-Ii

is of the sameform of the original one since the function gx(T(Yx)) may be
regarded as a component of the new cost function.

Let T(Yj | Yu Y2,..., ï}-i) be the set of variables interacting with Yj in
the problem obtained after the élimination of Yu Y2,..., Yj_x in that order.
Clearly T(Ym \ Yu Y2,..., Ym.x) = 0 .

Then, according to the philosophy of dynamic programming, an optimal
assignment for X can be obtained in two steps :

a) eliminating the subsets Yj in the order Yl9 Y2,..., Ym and storing the
optimizing assignment 7*^(70) , Y*{Y(Y2 \ Yx), ...,F*

b) operating «backwards» determining successively Y*9 Y*^x, ..., Ff i.e.
the optimizing assignment for X from the stored tables.

It is clear now that another optimization problem, the secondary optimi-
zation problem, émerges. An optimal assignment for X can be equally obtained
by all the ordered partitions of the variables of the set X. Which, then, among
those ordered partitions is the best from the point of view of minimizing the
number of opérations required (i.e. the computing time) with the constraint
that the storage space does not exceed a prescribed level?

The élimination of the subset Yj implies the construction and storage of
a table which, in correspondent to each of its a' r ( r f ' Ylt Y%*" y/~l}' rows,
gives the values of the optimizing assignment YJ* and of the new component gj.

n°V-2,1971.



9 0 U. BERTELE ET F. BRIOSCHI

The number of table look-ups required is a'r(r> ' Yl'n ^ " 1 ) | . a | r ' ! times
the number of components which contain at least one member of Yj.

Since the exponential factor is, usually, the most décisive, the integer
\V(Yj | Yl9 Y2,..., Yj„t)\ + \Yj\ may be assumed as a reasonable index of
the computational effort for eliminating Yi while |F(Fj | Yl9 Y2,..., *7-i)| *s

an index of the memory space needed.

Solving the secondary optimization problem consists in finding one
ordered partition Yu Y2,..., Ym for which the largest integer

\J\Yj\ YuYZ9...9Yj-d\ + \Yj\

is minimal, subject to the constraint that \?(YS | Yu Y29.„, ?}-i)| does not
exceed a prescribed integer h.

Formally, letting K be the set of ordered partitions of X and letting k € K»
it is possible to assign to each optimization procedure k the two integers :

and

y(*) -maxflïJI + \F(Yf\ F* y* .... 7?-i)
j

= max \T(Yf \
j

where the indexing w.r.t. k refers to partition k.

Then the secondary optimization problem can be stated as

min y(k) = Ch
k€K

subject to
h.

The integers |7*| + | r ( l ^ | Yk
u Y

k
2,.... ^„^ (and l rcy) | y», Yk

2,..., Y*-x)\
are called respectively cost of eliminating the subset Yk and dimension of the
stored table in the élimination of Yj in the ordered partition k.

Finally Ch is called the h-cost of the optimization problem. It must be
noted that, in the définition of the cost of eliminating the subset Yj9 the implicit
assumption that Yj is eliminated exhaustively has been made.

A special case of great importance is the one when variables are eliminated
one by one. It can be shown [1], in fact, that whenever there are no storage
limitations, there exists an ordered partition, whose blocks consist of a single
variable, which is a solution of

min Y(AT).
k€K
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NONSERIAL DYNAMIC PROGRAMMING 91

Letting K1 C K be the set of the M\ ordered partitions, whose blocks
consist of a single variable, it is clear that, for k € K\ y(k) = 8(fc) + 15

Then, obviously, the order of élimination which minimizes 8(fc) also mini-
mizes y(k).

The integer
min 8(k) = D
h€K'

is called the dimension of the optimization problem and the integer

min y(k) = C

k€K'

is called the cost of the problem. Then C = D + 1.

It is now shown that this problem becomes a problem in graph theory.
The interaction graph of the original (primary) optimization problem

G(X, F) is an undirected graph defined by ;
1) The vertex set of the graph is the set X of the variables of the primary

problem.

2) Two vertices are connected with an edge if and only if the corresponding
variables interact.

The élimination of a subset Yx from the original problem implies a new
one in which all the tables containing at least a member of Yt are replaced by
a new table containing all the variables interacting with Yt.

Hence the interaction graph of the new problem is obtained from the
original one deleting the vertices of the set Yx and all the edges emanating
from them and Connecting all the previously unconnected vertices in T(Yt).
An example is given in figure 1.

When variables are eliminated one by one it is clear that he secondary
optimization problem is finding an order of élimination of the vertices of
G(X9 T) such that the largest degree of the eliminated vertices is minimal.

3. AN INTRODUCTORY EXAMPLE

This section introduces the idea of parametrization by means of an
example which, for simplicity, considers only éliminations of one variable at
a time.

Let F{X) - £ ft(X*) w h e r e x = i xx> *2, *3. x4, x5 } and X1 = { x» x2 },

X2 = { x2,x3 } , X3 = { x3, x4 } , X* = { x4) x5 } and X5 = { x5, x, } .

n»V-2,1971.



92 U. BERTELE ET F. BRIOSCHI

a)

c)

Figure 1

An interaction graph (a) and the graphs resulting after the élimination
of the sets { xlt xB } (b) and successively { x3, x% } (c)

Revue Française d'Informatique et de Recherche opérationnelle



NONSERIÀL DYNÂMIC PROGRAMMING

The interaction graph is shown in figure 2 a.

93

a) b)
Figure 2

An interaction graph (a) and the graph resulting
after the parametrization of x6 (b)

The order of élimination xl9 x2, x3, x4, x5 (which is clearly an optimal
one) nécessitâtes a number of table look ups (see section 2 and the example
given in [1] and [3]) équal to

+ 2 • a3 + 2 • a3 + 2 • + 1

For this order of élimination it results C = 3 and it is clear that it is a
reasonable index of the computational complexity of the problem. Note the
différence between the exhaustive approach to optimization which nécessitâtes
5 • a5 table looks-ups and the décomposition procedure just employed.

Next a procedure, in which x5 is parametrized, is considered. This means
that the simple optimization problem, in which x5 assumes one among its
possible a values, is solved G times. The interaction graph of the derived
simpler problem is given in figure 2 Z>. In this problem consider the order of
élimination xu x2, x3, x4. The number of table looks-ups needed are :

2 • a2 + 2 . a2 + 2 • a2 + 2 • G.

Hence the original optimization problem nécessitâtes a number of table
look-ups equal to

cr(2 . G2 + 2 . G2 + 2 . G2 + 2 . G).

Again the integer 3 may be taken as a reasonable index of the computa-
tional complexity for this décomposition procedure. Also note that, for the

n«V-2,1971.



9 4 U. BERTELE ET F. BRIOSCHI

décomposition which does not employ parametrization, there are at most
two variables, in the new components formed by the élimination procedure
while, in the décomposition which employs parametrization, there is at most
one variable in the new components.

This suggests the possibility of using parametrization for meeting the
memory limitations imposed.

4. PARAMETRIZATION

In section 2 a technique for the solution of the primary optimizationproblem
by décomposition and a criterion for ranking all the possible décomposition
procedures have been recalled.

A new, more gênerai, technique for the décomposition solution of the
primary optimization problem and, correspondingly, a new criterion for
ranking all the possible décomposition procedures are here developed.

Following the ideas introduced in section 3 by means of an example con-
sider a subset P C X For each assignment P of the variables in P the primary
optimization problem (1) becomes

min F(X — P, P) - min £ /.(JT D (X— P), X1 f) P) (2)
X~P x-p iei

with obvious meaning of the symbol X1 D P.

Then the solution to the primary optimization problem (1) is obtained
considering a'p' assignments of the variables of P, solving problem (2) by
means of the procedures of section 2 for each assignment and, finally, selecting
an assignment for P and consequently for X-P9 which minimizes the cost
function F(X).

Thus the parametrization of the set of variables P has been used as a step
of the new optimization procedure by décomposition.

The problem of ranking the new décomposition procedures now émerges.
Let r(Yj | P; Yu Y2,..., Yj-X) be the set of variables interacting with ï} in
the problem obtained by the parametrization of P, after the élimination of
Yl9 Y29..., ï}- i in that order.

Since in the search through the cr'PI assignment for P only a best assign-
ment at each time is recorded the storage space required is practically the one
needed for problem (2).

AJso it is reasonable to assume the integer

\P\ + max(\Yj\ + \T(Yj \ P ; Yu Y2, ..., Yj^)\)

Revue Française d'Informatique et de Recherche opérationnelle



NONSERIAL DYNAMIC PROGRAMMING 95

as an index of the compting time since a'p' problems must be solved where
the élimination of each subset Yj requires a number of table look-ups equal to
a\r{Yi\PiYitY2,...,Yi-i)\^ a\Yj\ t j m e s faç number of components which contain at
least one member of Y3 at the time of its élimination.

Formally, letting k be an ordered partition of X defined by

and letting K be the set of all possible décompositions of this kind, it is pos-
sible to assign to each décomposition procedure k the two integers :

and

= \Pk\ + max(|ï*| + r<y*| Pk; Yk
u 7*,...,

§(*) = max |r(ï* | Pk ; Yk
u Y

k,..., Yf.t
j

Then the secondary optimization problem in this case is

min y(k) = Ch
k€K

subject to

h.

The integers y(k) and 8(k) are called respectively cost and dimension of
ordered partition k when parametrization is allowed. And, similarly, Ch is the
h-cost of the problem in such case.

By définition

Ch < Ch.

In section 6 an example, for which the strict inequality holds, will be shown.
This demonstrates that parametrization is an efficient tooi of décomposition.

The interaction graph of problem (2) is obtained from the original inter-
action graph by deleting all the vertices corresponding to the variables of P
and all the edges emanating from them. For graphical convenience, in the
sequel, the vertices of P will not be canceled from the interaction graph G but
they will be coloured in black.

n°V-2,1971.



9 6 U. BERTELE ET F. BRIOSCHI

5. OPTIMAL PARAMETRIZATTON
FOR A SPECIAL CLASS OF DECOMPOSITIONS

Section 4 describes a very gênerai décomposition procedure for the solution
of the primary optimization problem and a corresponding statement of the
criterion of the secondary optimization problem which ranks such décompo-
sitions. Unfortunately it is not possible, for the time being, to give rules for
finding an optimal choice of the set P in the gênerai case nor, on the other
hand, an algorith for finding a best décomposition, when variables are not
eliminated one by one.

In this section a special class of décompositions, defined by subsets Yj
consisting of a single variable, is dealt with. For this class it is possible to
détermine the optimal parametrization sets P corresponding to the memory
limitation h. Also since the variables of X~P are, by définition, eliminated one
by one an optimal décomposition is then obtained by the methods given in
[1, 2, 3, 4].

It is worth noting that using décompositions of this kind may be regarded
as an expédient for satisfying the memory limitations employing methods
which, per se, do not have the capability of handling such limitation. Thus, in
this case, the task of meeting the memory requirements falls entirely upon
parametrization.

Let K' C K be the set of ordered partitions defined above, namely

Then, for k € K\

y(k) = \Pk\ + 1

and the secondary optimization problem is

min Y(k) = Q*
k€K'

subject to

B(k) ^ h.

The integer CA* is the h-cost of the problem when variables in the set X~P
must be eliminated one by one, Clearly Cft* ^ Ch.

Lemma 1. Let G(X, E) be an interaction graph with dimension D. Let
G'(X\ E*) be another graph with Xf = XU { x } and E' = E U Ex where x is
a new vertex and Ex is the set ofedges emanating from it. Then ïetting D' be the
dimension of G* it results D ^ D' ^ D + 1.

Revue Française d9 Informa tique et de Recherche opérationnelle
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Proof The first inequality is trivial. In order to prove the second one, let
yu yi> •••> yM be an optimal order for G(X, E) whose dimension is, hence, D.
Then it is easy to see that, for the graph G\X\ E'), the order yl9 y2, ..., yM>
x has dimension less or equal to D + 1.

Q.E.D.

Lemma 2. Let G(X, E) be an interaction graph with dimension D. Consider
a new graph obtained from G(X, E) deleting a vertex x€X and all the edges
emanating from it. Letting D" be the dimension of this new graph it results

Proof The second inequality is trivial. In order to prove the first one it is
sufficient to note that the possibility D" < D — 1 contradicts lemma 1.

Q.E.D.

Définition L Let G(X, F) be an interaction graph with dimension D. Let
h = 1,2,..., D — 1. The minimal number of vertices which must be canceled
so that the dimension of the resulting graph is equal to h is called h-index of
G(X, F) and denoted by qh. Correspondingly a set of qh vertices whose can-
cellation makes the dimension equal to h is called h-index set and denoted
byfi*.

Theorem 1. Let G(X, F) be an interaction graph with dimension Z). The
h-cost Cjf is obtained with a set P given by ;

a) for h^ D

P = 0 and Ct = C = D + 1

b) for 1 ^ h ^ D — 1

P = Qh and C* = 1 + h + qh.

Proof a) Consider a partition k0 € K' definedby {P, {yx }, { y2 }^^{yM }}
where P = 0 and yu y2> »., JM is o n e optimal order for the problem in which
no parametrization is allowed and variables are eliminated one by one. This
partition yields y(k0) = 1 + D = C.

Consider all partitions ArAi Ç.K' with |P| = 1. By lemma 2 it follows that
ïO^ij) ^ ï(^o)- ^y repeated use of lemma 2 it is clear that all partitions
ktj € K' with |P| = i have y{ktj) > y(Jfe0).

Hence C* = y(A:0) = C.

é) Consider a partition keK' defined by { Qh, {y1 }, { y2 },...? { ̂ / }}
where j 1 ? j2» —s yi is one optimal order for the graph obtained from G(X, F)

n°V-2,1971.



98 U. BERTELE ET F. BRIOSCHI

by the cancellation of the vertices of the set Qh. By définition 1 the dimension
of this order is h and y(k) = 1 + h + qh.

The proof follows by repeated use of lemma 2 in a way similar to the one
employed above.

Q.xi.D.

Since an interaction graph has dimension one if and only if it is a tree [2]
the 1-index qx is the analogous of Mason's index [9] for undirected graphs
The indexes qh (h ^ 2) may be regarded as generalizations.

Clearly the détermination of the A-index set Qh is crucial for determining a
partition k€K' for which y(k) = Cft*. The détermination of an 1-index set Qx

may be regarded, for instance, as a covering problem [10] : namely a minimal
set of nodes, whose cancellation cuts ail circuits of the graph, is searched for.

It is worth while noting that the circuit is regarded as the elementary
« structure » which does not allow the graph having dimension equal to one
and which, hence, must be « eut ».

For h ^ 2 no method for determining Qh is now available. However it is
conceivable that it is possible to specify ail elementary « structures » which do
not allow the graph having dimension equal to h and to détermine Qh by
means of a covering algorithm.

An interesting property of the interaction graph G is now easily demons-
trated.

Theorem 2. Consider an interaction graph G(X, F) with dimension D. Let
h ^ D—\ andqhbe the h-index of G(X, F). Then D ^ qh + h.

Proof. The proof follows directly from theorem 1. In fact, clearly, for
h! > h" it results Cfi ^ Cf.*. Hence, by theorem 1, for h ^ D — 1, CA* > C
or qh + h > Z>.

It is also possible to give a direct proof of this theorem. The case h = 1 is,
for simplicity, considered. Consider a 1-index set Qx. The section graph G'
of G{X, V) w.r.t. X— ô i (namely the graph obtained from G(X, T) deleting
the vertices of ô i and all the edges emanating from them), is, by définition,
a tree (or a forest). Letting yuy2, —>,yi be an optimal order of élimination
(2) == 1) in G' consider an order for G given by yi,y2, —SJ/SJZ+IJ —SJVM
where yî+u yl+2> •••> 7M ̂  any order in the set Qx.

Since a vertex ys (1 < j <, l) at the time of its élimination is connected to
at most one vertex in the set {yj+i,yj+z> •••> yi } and to at most qx vertices
ingi i t i sc lear tha t D * 9l + 1.

The same line of reasoning applies for showing that

D^qh + h, h^D—l. Q E D

Revue Française d'Informatique et de Recherche opérationnelle



NONSERIAL DYNAMIC PROGRAMMING 99

Theorem 2 establishes an interesting relation between the dimension of a
graph which plays a central role in nonserial dynamic programming and
Mason's index. Also it sets an upper bound to the dimension D which might
be used in branch and bound type algorithms for finding optimal orders of
élimination.

6. EXAMPLES

EXAMPLE 1 (fig. 3). It results D = 2 (C = 3) and one optimizing order is
xu x4, x2, x3i x5, x6. Clearly it is C t = 6 (cost when no parametrization is
allowed) obtained, for instance, with a partition

k = {{ xu x2i xZ9 xS9 x6 }, { x4 }}.

Figure 3
Exemple 1 of section 6

n°V-2,1971.
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The 1-index qx is equal to 2 and 1-index set is, for instance, 61 = }
(fig. 3 b). Then Cf = 4. Also Cx — 4. This cost is also obtained, for instance,
with the partition

h ixs where = Pk (fig. 3 c).

This example shows that parametrization may be crucial for reducing the
computing time for the solution of the optimization problem.

EXAMPLE 2 (fig. 4). It results D = 2 (C = 3) and one optimizing order is
xu x$, x2, x3, x6, JC4. Ci = 3 is obtained, for instance, with a partition
k = {{ xu xs}, {x2 }, {x3, x49 x6 }}. It results ci = 2 and, for instance,
Ôi = {*2>*3} (fig- 4 *) - Then Cf = 4. The cost Q is obtained without
parametrization (Ci = Cx = 3 ) .

b)

Figure 4
Exemple 2 of section 6

This example shows that parametrization may not help in this case. More
than that it is easy to see that parametrization is harmful i.e. it increase the cost.
Thus? in order to employ a procedure in which variables are eliminated one by
one and the storage limitation h = 1 is met, a penalty must be paid.

EXAMPLE 3 (fig. 5). It results D = 3, qx = 3 and a Qx = { x2, x3t x7 }
(fig. 5 b). q2 = 1 andaÔ2 = {x7}(fig. 5 c).

This example illustrâtes the relations of theorem 2. The relation D ^ qh + h
is a strict inequality for h = 1 and an equality for h — 2.

Revue Française d'Informatique et de Recherche opérationnelle
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a)

b)

Figure 5
Exemple 3 of section 6
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