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PROBABELITY DISTRIBUTION FUNGTION
FOR THE CAPAGITY

OF A MULTITERMINAL NETWORK (*)

by Pierre DOULLIEZ (2)

Summary. — This paper présents a method for finding the probability distribution f miction
for the capacity of a muititerminal network, The capacities of the arcs of the network are
independant discrete random variables and the demands at the different « demand » nodes
are given non-decreasing fonctions of time. The method has been applied to electrical power
networks for which the reliability leve! must be known with accuracy. A numerical example is
given and cotnputational expérience is discussed*

L INTRODUCTION

In a muititerminal network, e supply ' nodes are connectée to several
' demand ' nodes through some intermediate nodes. The nodes of the network
are joined by arcs and the capacity of an arc is an upper bound to the flow that
may pass over it. The amount of flow that can be provided at each supply
node has also an upper bound which is considered as the capacity of a fictitious
are joining each supply node to a common supply node. The demand required
at each demand node is a given non-decreasing function of time.

When the are capacities are known, the largest value of time up to which
all demands are satisfied can be determined by a parametric network flow
approach [1]. This time is called the € critical time ' and is denoted by 6 r* \ The
capacity of the network is the sum of demands at the critical time. At the critical
time, there exists in the network a set of critical arcs which séparâtes the set of
nodes N into two subsets Nx and N2 (Nx UN2 = N) with the common source
node in Nt and at least one demand node in N2 and such that no flow augmen-
ting path exists from Nx to N2 (3).

In this article, it is assumed that the capacities of the arcs of the network
are independant discrete random variables. Thus? the critical time f* is also a

(1) The work underlying this paper was performed while the author was at the Center
for Opérations Research and Econometrks (C.O.R.E.) University of Louvain, Belgium.

(2) Société de Traction et d'Électricité» 1040-Bruxelles.
(3) When there is only one demand node in the network, the critical set of are is a

minimal eut as defined in [3J.
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40 P. DOULLIEZ

discrete random variable. The problem is to détermine the probability distri-
bution function Ft*(t) of the critical time t*. Then, the largest value of time T
up to which the probability of satisfying all demands (or equivalently, up to
which the probability that no set of critical arcs appears in the network) is
above a given confidence le vel (à can be found from the équation (*) :

In référence [l]s the risk of non satisfying the demands due to unplanned
arc capacity réductions has been taken into account in an approximate way.
In that référence the critical time is defined as the largest value of time up to
which ail demands can be satisfied even if k arc capacity réductions occur on
any set of k arcs. Therefore, an excess of network capacity is available at the
critical time and this obviously reduces the risk of non satisfying the demands.
However, in many situations, the risk of non satisfying the demands must be
known with accuracy and the probability distribution function for the network
capacity must be computed.

In section 2, the probability associated with a set of network states having
an identical set of critical arcs is defined. In section 3 a method for finding the
probability distribution function of the critical time is presented (2). Section 4
deals with some probability computation problems. A numerical example is
given in section 5 and some conclusions are given in section 6.

2. NETWORK STATES WITH IDENTICAL SET OF CRITICAL ARCS

Let us assume that the capacities of the arcs of the network are independent
discrete random variables. The critical time £* is also a discrete random variable.

If Hj is a discrete random variable for arc/, and if the network has m arcs,
then a state X of the network can be represented by an m-tuple of arc capacity
values X— (Hlvi9 H2v2,..., fl^J where Hj assumes positive real values
Hji> Hj2,...» Hjk with probabilities pJt,psl9 ...,/?# . The network state proba-
bility, denoted as Pr [X], equals the product plvi *p2ü2 ***Pmvm-

m

The total number of network states is 0 ks. The enumeration of the

network states would involve formidable calculations, even if the number of
arcs is moderate. However, a great deal of network states will never be consi-
dered when the probability distribution of the network capacity is computed,
if the property which follows is taken into account.

(1) An appropriate network confidence level 3 is chosen by considering the expenses
needed for a given diminution of the risk of unsupplied demands. The economical aspects
of this problem can be found in référence [5] and will not be discussed hère.

(2) It is worth quoting the work donc by Frank and Hakimi [4] for expressing mathe-
matically the distribution function of the capacity of a network between two of its nodes.
This functioe was obtained from the joint probability density function of the capacities
assumed by the elementary cuts of the network. Aceording to their statements, Computing
this function would represent, to say the least, a formidable task even for a digital computer.
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MULTITERMINAL NETWORK 4 1

For notational convenience, we suppose that HjX ^ Hj2 ... ^ Hjkj for all ƒ
Let us dénote the critical time and the set of critical arcs of a given network
state Zrespectively by t(X) and A(X). These are easily found by using a method
presented in référence [1].

Let J be the set of arcs in A(X).

If A{X) is a set of critical arcs for a network state X = (HÏV1, H2v% • HmvJ,
then A(X) is also a set of critical arcs for a network state X' = (Hlv'u H2v2y ...,
where vfj ̂  Vj for each j $ J and Vj = i>y for each j 6 / .

The number of network states for which A(X) is a set of critical arcs is at least

I I (kj — Vj + 1). These network states constitute a set denoted by S(X) (l).

The probability that A(X) is a set of critical arcs is at least :

Pr [S(X)] = II Pr [Hj > HJVj]. I l Pr [Hj = ^ M ]

- n ( £ l n
For any network state X' defined above, we necessarily have S(X') ç S(X)

and the set S(X') need not to be retained for probability computations.
The probability Pr [$(X)]t computed in (1), is not larger than the proba-

bility for the critical time t* to equal t(X). Indeed, the time t(X) may be also the
critical time for some network states which are not in S(X).

3. THE ALGORITHM (see flow chart)

The algorithm consists of finding successively each value of time t* which
is the critical time for at least one network state, so that the associated proba-
bility for t* to be a critical time exists on the time interval (0, oo). For each
such value t*9 the algorithm sélects some network states ^ffor which the critical
time t(X) = /* and such that the probability Pr [t* = t(X)] can be computed.

Step 1

Start with the network state X for which the capacity of each arc is the
smallest that could be assumed. Then, X = (H1 u H2U.... Hml). Find the set of

(1) The set S(X) may be enlarged when a maximal flow throughXis available. Then,
the flows in arcs j(J $ / ) are not necessarily at their upper bounds HiVj. Let HfVj be the
capacity of an arcj $ /immediately greater than the flow in arcy. We have v< < vi and the
number of network states for which A(X) is a set of critical arcs is at least n(ki — Vj + 1).

n° V-l, 1971.



42 P. DOULLBEZ

critical arcs A(X) and the critical time t(X). Let t* = t(X) and let JT be a vector
in which some network states with critical time ** will be stored. The network
state X is a first component for K,

Step 2

In vector K, take a network state X which has not yet been considered. The
set of critical arcs A(X) and the critical time t(X) are known. Increase succes-
sively the capacity of each arc in A(X). A set of network states X' is created.

Step 3

For a network state X' not yet examined, compute i(X') and A(Xf). If the
time value t(Xf) is met for the first time, a new vector K' is associated with the
value HX*) and let X' be the first component of K\ Go to step 5.

If the value t{X*) has been already met, there exists a vector K' in which
each component Xn has a critical time i{X") = t{Xf) C1). If in K\ there are
no network states X" for which A{X") = A(X% store X' in vector K' and
go to step 5. Otherwise, consider the set V of network states Xn for which
A{X") s A(Xf).

Step 4

If there exists at least one Xn in V, such that for each arc j not in the set of
critical arcs, the capacity of arc j in Xf is not less than the capacity of arc j
in X", then the network state X' must not be retained for probability compu-
tations. Go to step 5. If not, store X' in vector K\ If in K\ there exist some
network states X" in F such that for each arcj not in the set of critical arcs, the
capacity of arcj in X" is not less than the capacity of arc ƒ in X', these network
states are cancelled from K'.

Step 5

If ail X' have been examined, go to step 6. Otherwise, go to step 3.

Step 6

If all components in K have not been examined, go to step 2. Otherwise,
compute the probability Pr [t * = i{X)] by using ail components Xconstructed
in vector JT, as explained in section 4. Discard vector K, If ail network state
vectors have been exhausted, go to step 7. Otherwise, some network states
with critical times greater than /* have been constructed by the algorithm. Let
the vector K be the vector in which the network states X have the smallest
critical time t(X). Let t* = t(X) and go to step 2.

(1) J T = Kif t{Xf) =

Mevue Française d^Informatique ei de Recherche opérationnelle



MULTITERMINAL NETWORK 43

Step 7

For any value t* greater than t{X), the probability for t* to be a critical
time does not exist. All values of time for which such a probability exists have
been found and the probability distribution of the critical time is obtained
END.

Step t For initial network state X,
compute t{X) and A(X}-

Let t * = t(X)
X is a first component for vector K

Take an X not yet examined in K
t{X) and A{X) are known

Create a set of network states X'

For an X' not yet examined in K
compute t(X')and A(X !)

A set of X" in a vector K' exists

V is the set of network states
X"with A ( X ' ) H A ( X " )

Compute Pr[t*=t(X)]
by using network states X

constructed in K.Discard K.

Take vector K with
smallest critical
time t(X)
Let t * = t(X)

Print the distribution function F t* (t)

Yes

Store X' in vector K'
Cancel from K' any K" £ V

for which v"j > v'j

for all j t A(X")

No

n° V-l, 1971.



4 4 P. DOULLIEZ

4. PROBABILITY COMPUTATTONS

The network states X stored by the algorithm in a vector K are the only
network states needed to compute the probability Pr [** = t{X)\

If there are no network statesin Kwith identical sets of critical arcs we have

Pr [/* = t(X)] = 2 , P r [SQOl
X€K

and the probability can be computed as in (1), section 2.
If, for only two network states Xq and Xr in K, we have A(Xq) s A(Xr),

let / be the set of arcs which are in A(Xq) or in A(Xr). Then, from the algo-
rithm, we have vj < Vj for at least one j$J and vj > Vj for at least one j $ J
and therefore S{Xq) $ S(Xr) and S(Xr) $ 5(Z€).

Therefore,
s(xqr) - s(xq) n ̂ (jsrr) ̂  0

where JQr = (max [H^ Hx/X]9 , max [Hmvl Hmv^

Consequently, the probability associated to network states Xq and Xr

is : \2\ pp. 89.

Pr [S(Xq) U S(Xr)] = Pr [5(^)1 + Pr [S(Xr)] - Pr [S(Xqr))
and

j ; Pr [5(10]+ Pr [5(1^) U5(j;)]

Each term of the right-hand side can be computed as in (1), section 2.
More generally, if several network states Xu X2 ... Xw in K have an iden-
tical set of critical arcs, let / be the set of critical arcs. Then, from the algo-
rithm, we have v) < vT

s for at least one j £ / and vj > Vj for at least one j $ J
(q = 1 ... w — 1 ; r = q + 1 ... vt>).

Therefore, ^(J^r) = S(Xq) H S(Xr) ^ 0 (q = 1 ... w — 1 ; r - q + 1 ... w),
but any set S(Xqrs...) may be empty.

Consequently, the probability associated to network states Xu X2 ... Xw is :

Pr [S(XX) U S(X2) ... U S(XJ] - J Pr [5(ATfl)]- J Pr [S(Xqr)]
1 1

Each term of the right-hand side, if non empty, is computed as in (1),
section 2.
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5. NUMERICAL EXAMPLE

The network with random are capacities is represented in figure 2. The
demands required at the demand nodes of the network are piecewise linear
functions of time and are drawn in figure 3.

The data for the problem are given in figure 1. The capacity of each arc j
is a discrete random variable which can assume only two values HjX and Hj2.
For each y, we have HjX < Hj2 and the associated probabilities are respec-

j

s-1
s-2
s-3
1-2
1-3
2-4
2-5
3-4
4-5

175
175
7.5

175
0
0
30
7.5
7.5

350
350
15
350
30
30
60
15
15

.03

.03

.03

.03

.03

.03

.03

.03

.03

Pj2

.97

.97

.97

.97

.97

.97

.97

.97

.97

Figure 1
The network data

Figure 2
The network with random are capacities
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d(t)

70

60

50

40

30

20

10
6
O

21,6

6 7 8 9 10 11
Figure 3

The de mand fu notions

12 13 14 t

The computed probability distribution function Ft*(t) is given in figure 4,
where the time parameter t is considered as a time interval (say, a year). Then,
the probability Pr [t* = t] is the probability for critical time ** to occur at
year / (or equivalently, the probability for the network to have a set of critical
arcs at year t).

t

1
2
3
4
5
6
7
8
9
10
11
12
13

Pr [/* - t]

.0

.0

.00000081

.0

.00005238

.0

.00089919

.00002540

.0

.00659816

.05237082

.02820158

.91185165

.0

.0

.00000081

.00000081

.00005319

.00005319

.00095238

.00097778

.00097778

.00757594

.05994676

.08814834
1.00000000

Figure 4
The probability distribution function

From figure 4, it can be concluded that no set of critical arcs could appear
in the network before t = 3. No set of critical arcs could occur at t — 4, t — 6

Revue Française d'Informatique et de Recherche opérationnelle
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and t = 9. Beyond / = 13, no time value could satisfy the définition of critical
time (unfeasibility région).

The largest value of time T up to which the probability of satisfying all
demands is above a given confidence level can be determined.

If p = .99, the value T lies at the beginning of year i = 11 since
1 — iv(10) - .993 and 1—^(11) = .941.

The function Ft*(t) gives the probability for the network to have a set of
critical arcs in the time interval (0, t). If we define Pr [A(t)] as the probability
for a set of arcs A to be critical in the time interval (0, t), we have :

for all A.

In the above example, the probability for a set of arcs A to be critical in the
feasible time interval (0, 13) is different from zero for the only five sets of arcs
shown in figure 5. The probability function Pr [A(t)] for each of these sets of
arcs is given in figure 6.

Figure 5
The sets of critical arcs

n° V-l, 1971.
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1
2
3
4
5
6
7
8
9
10
11
12
13

PrUtW]

.0

.0

.0

.0

.0

.0

.000025

.000025

.000025

.000895

.001735

.028293

.887023

PrW2(0]

.0

.0

.0

.0

.0

.0

.0

.000025

.000025

.000846

.000846

.001667

.001667

.0
.0
.00000081
.00000081
.000053
.000053
.000881 !
.000881
.000881
.002497
.028257
0.29078
.082252

Pr 14401

.0

.0

.0

.0

.0

.0

.000026

.000026

.000026

.001647

.001647

.001647

.001647

.0

.0

.0

.0

.0

.0

.000026

.000026

.000026

.001694

.027454

.027454

.027454

Figure 6
Probability fonctions for sets of arcs to be critical

From figure 6, it can be known, at any time t, which set of arcs À has the
largest probability to be critical in the time interval (0, t). Since a set of critical
arcs is isolating a set of demand nodes from the common source node, the
probability for this set of demand nodes to be isolated by a set of critical arcs
in time interval (0, /) is also known from figure 6.

The results presented in this section were obtained after 20 seconds of
computer time. The computer program was written in FORTRAN IV and
was executed on a 360-40 IBM computer.

6. CONCLUDING REMARKS

The method presented in this paper finds the capacity distribution function
of a network with random arc capacities and can be used to evaluate the
network reliability. Usually, when a network has been constructed with least
cost equipment, it must be verified whether a product can be shipped through
the network with high enough reliability.

Increasing the reliability of service is one of the great, continuing challenges
faced by industry. This is especially true for power supply industry to which
the method presented in this paper has been applied. Because in an âge of
total or near-total electric homes and industries, power failure is more than a
mère inconvenience. It can be both costly and serious. If the demands for
electrical power are rigorous from residential customers, they are doubly so
from industrial customers. Power failure can take out a production line; to the
degree a plant is automated, it can cripple an entire plant. Therefore, ensuring

Revue Française d* Informatique et de Recherche opérationnelle



MULTITERMINAL NETWORK 49

a high reliability of service at a least cost is the primary problem for the power
supply industry.

Although the algorithm presented in this paper was efficient for finding
the capacity distribution function of small networks, it is expected that the
computer requirements will increase fairiy rapidly with the size of the network
and the number of levels each are capacity can assume (1),

REFERENCES

[1] P. DouLLiEZ, Optimal Capacity Planning of Multiterminal Networks, Thèse de
Doctorat, Université de Louvain (1970).

[2] W. FELLER, An Introduction to Probability Theory and its Applications, volume I,
Wiley (1964).

[3] L. R. FORD and D. R. FULKERSON, Flows in Networks, Princeton University
Press (1962).

[4] H. FRANK and S. L. HAKIMI, Probabilistic Flow through a Communication Network
IEEE Trans, on Circuit Theory, 413-414 (1965).

[5] R. TURVEY, Optimal Pricing and Investment in Electricity Supply-, London, G. Allen
and Unwin (1968).

(1) Since these lines were written, a different approach which is computationally more
advantageous for finding the capacity distribution function of a large network has been
established by the author.
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