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PROBABILITY DISTRIBUTION FUNCTION
FOR THE CAPACITY
OF A MULTITERMINAL NETWORK ()

by Pierre DoOULLIEZ (%)

Summary. — This paper presents a method for finding the probability distribution function
Jor the capacity of a multiterminal network. The capacities of the arcs of the network are
independant discrete random variables and the demands at the different « demand » nodes
are given non-decreasing functions of time. The method has been applied to electrical power
networks for which the reliability level must be known with accuracy. A numerical example is
given and computational experience is discussed.

I. INTRODUCTION

In a multiterminal network, ‘supply ’ nodes are connected to several
¢ demand ’ nodes through some intermediate nodes. The nodes of the network
are joined by arcs and the capacity of an arc is an upper bound to the flow that
may pass over it. The amount of flow that can be provided at each supply
node has also an upper bound which is considered as the capacity of a fictitious
arc joining each supply node to a common supply node. The demand required
at each demand node is a given non-decreasing function of time.

When the arc capacities are known, the largest value of time up to which
all demands are satisfied can be determined by a parametric network flow
approach [1]. This time is called the  critical time > and is denoted by ‘ * °. The
capacity of the network is the sum of demands at the critical time. At the critical
time, there exists in the network a set of critical arcs which separates the set of
nodes N into two subsets N, and N, (N,UN, = N) with the common source
node in N, and at least one demand node in N, and such that no flow augmen-
ting path exists from N, to N, (3).

In this article, it is assumed that the capacities of the arcs of the network
are independant discrete random variables. Thus, the critical time ¢* is also a

(1) The work underlying this paper was performed while the author was at the Center
for Operations Research and Econometrics (C.O.R.E.) University of Louvain, Belgium.
(2) Société de Traction et d’Electricité, 1040-Bruxelles.

(3) When there is only one demand node in the network, the critical set of arc is a
minimal cut as defined in [3].
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40 P. DOULLIEZ

discrete random variable. The problem is to determine the probability distri-
bution function F,.(¢) of the critical time #*. Then, the largest value of time T
up to which the probability of satisfying all demands (or equivalently, up to
which the probability that no set of critical arcs appears in the network) is
above a given confidence level 8 can be found from the equation (!) :

1 —Fu(T)=Pr[t*> T]> 6

In reference [1], the risk of non satisfying the demands due to unplanned
arc capacity reductions has been taken into account in an approximate way.
In that reference the critical time is defined as the largest value of time up to
which all demands can be satisfied even if k arc capacity reductions occur on
any set of k arcs. Therefore, an excess of network capacity is available at the
critical time and this obviously reduces the risk of non satisfying the demands.
However, in many situations, the risk of non satisfying the demands must be
known with accuracy and the probability distribution function for the network
capacity must be computed.

In section 2, the probability associated with a set of network states having
an identical set of critical arcs is defined. In section 3 a method for finding the
probability distribution function of the critical time is presented (2). Section 4
deals with some probability computation problems. A numerical example is
given in section 5 and some conclusions are given in section 6.

2. NETWORK STATES WITH IDENTICAL SET OF CRITICAL ARCS

Let us assume that the capacities of the arcs of the network are independent
discrete random variables. The critical time #* is also a discrete random variable.

If Hjis a discrete random variable for arc j, and if the network has m arcs,
then a state X of the network can be represented by an m-tuple of arc capacity
values X = (H,,,, H,,, ..., H,,,) Where H; assumes positive real values
Hjy, Hj, ..., Hy, with probabilities p;y, p;s, ..., pj,. The network state proba-
bility, denoted as Pr [X], equals the product p,, «p,,, ... Poupn-

m

The total number of network states is [] k;. The enumeration of the

j=1
network states would involve formidable caléulations, even if the number of
arcs is moderate. However, a great deal of network states will never be consi-
dered when the probability distribution of the network capacity is computed,
if the property which follows is taken into account.

1) An appropriate network confidence level 8 is chosen by considering the expenses
needed for a given diminution of the risk of unsupplied demands. The economical aspects
of this problem can be found in reference [5] and will not be discussed here.

(2) It is worth quoting the work done by Frank and Hakimi [4] for expressing mathe-
matically the distribution function of the capacity of a network between two of its nodes.
This function was obtained from the joint probability density function of the capacities
assumed by the elementary cuts of the network. According to their statements, computing
this function would represent, to say the least, a formidable task even for a digital computer.
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MULTITERMINAL NETWORK 41

For notational convenience, we suppose that H;; < Hj, ... < Hy , for all j.
Let us denote the critical time and the set of critical arcs of a given network
state X respectively by #(X) and A(X). These are easily found by using a method
presented in reference [1].

Let J be the set of arcs in A(X).

If A(X) is a set of critical arcs for a network state X = (Hy,,, Hyy * Hpo)s
then A(X) is also a set of critical arcs for a network state X’ = (H,,{, H,,3,
where v} > v; for each j ¢ J and v} = v; for each j € J.

The number of network states for which A(X) isa set of critical arcs is at least

seey

11 (k; — v; + 1). These network states constitute a set denoted by S(X) (1).
JTéi

The probability that A(X) is a set of critical arcs is at least :
Pr [S(X)] = I;I, PrH; > Hy,)- |1 PrH; = H,]
J

jer

= ]I ( Zj Pjh) . g Djv;- M

i¢s \h=v;

For any network state X” defined above, we necessarily have S(X’) < S(X)
and the set S(X’) need not to be retained for probability computations.

The probability Pr [S(X)], computed in (1), is not larger than the proba-
bility for the critical time ¢* to equal #(X). Indeed, the time #(X) may be also the
critical time for some network states which are not in S(X).

3. THE ALGORITHM (see flow chart)

The algorithm consists of finding successively each value of time ¢* which
is the critical time for at least one network state, so that the associated proba-
bility for ¢* to be a critical time exists on the time interval (0, c0). For each
such value ¢*, the algorithm selects some network states X for which the critical
time #(X) = t* and such that the probability Pr [t* = #(X)] can be computed.

Step 1

Start with the network state X for which the capacity of each arc is the
smallest that could be assumed. Then, X = (H,,, H, (,.... H,,). Find the set of

(1) The set S(X) may be enlarged when a maximal flow through X is available. Then,
the flows in arcs j(j € J) are not necessarily at their upper bounds Hj.. Let Hjy, be the
capacity of an arc j ¢s immediately greater than the flow in arc j. We have ©; < vy and the
number of network states for which A(X) is a set of critical arcs is at least II(k; — o; + 1).

J¥7
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42 P. DOULLIEZ

critical arcs A(X) and the critical time #(X). Let t* = #(X) and let K be a vector
in which some network states with critical time ¢* will be stored. The network
state X is a first component for K.

Step 2

In vector K, take a network state X which has not yet been considered. The
set of critical arcs A(X) and the critical time #(X) are known. Increase succes-
sively the capacity of each arc in A(X). A set of network states X' is created.

Step 3

For a network state X’ not yet examined, compute #(X") and A(X"). If the
time value #(X”) is met for the first time, a new vector K’ is associated with the
value #(X”) and let X’ be the first component of K’. Go to step 5.

If the value #(X’) has been already met, there exists a vector K’ in which
each component X” has a critical time #(X") = #(X") (}). If in K’, there are
no network states X” for which A(X") = A(X"), store X’ in vector K’ and
go to step 5. Otherwise, consider the set V of network states X” for which
AX") = A(X).

Step 4

If there exists at least one X” in ¥V, such that for each arc j not in the set of
critical arcs, the capacity of arc j in X’ is not less than the capacity of arc j
in X, then the network state X’ must not be retained for probability compu-
tations. Go to step 5. If not, store X’ in vector X’. If in K’, there exist some
network states X” in ¥ such that for each arc j not in the set of critical arcs, the
capacity of arc jin X" is not less than the capacity of arc jin X, these network
states are cancelled from K’.

Step 5
If all X’ have been examined, go to step 6. Otherwise, go to step 3.

Step 6

If all components in X have not been examined, go to step 2. Otherwise,
compute the probability Pr [t* = #(X)] by using all components X constructed
in vector K, as explained in section 4. Discard vector K. If all network state
vectors have been exhausted, go to step 7. Otherwise, some network states
with critical times greater than ¢* have been constructed by the algorithm. Let
the vector K be the vector in which the network states X have the smallest
critical time #(X). Let #* = #(X) and go to step 2.

(1) K’ = Kif (X)) = «X).
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MULTITERMINAL NETWORK 43
Step 7

For any value t* greater than #(X), the probability for ¢* to be a critical
time does not exist. All values of time for which such a probability exists have

been found and the probability distribution of the critical time is obtained
END.

l Step 1 For initial network state X,

compute t (X)and A(X)-
Let t¥= t{X)
Xis a first component for vector K

»le

‘ Step 2 Take an X not yet examined in K
t{X) and A(X) are known

Create a set of network states X’

1

l Step 3 | For an X'not yet examined in K
compute t(X') and A(X’)

X
already
met

Yes

r A set of X"in a vector K’ exists J

No
. No A(X) = AX?)
N for some X"
Y Vis thi t of network states
LStore X'in vector K’ j x-l-s witﬁ ie( )?-) 2 Avi/;)(")

l

v'izv"i
¥ for all j& A{X")
nd for at least
Compute Pr{t*=t(X)} ° one )E(‘"inV

by using network states X

?
constructed in K.Discard K.

‘L Store X' in vector K’
Cancel from K'any K" €V
for which V> v’]-

for all j & A{X")

Take vector K with
smallest critical
time t{X)

Let t*=t(X)

All
vectors K
discarded

IStep 7
[;Print the distribution function Fy (t)

Etep 5 All X'
examined
?

All components’
in K examined
?
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4. PROBABILITY COMPUTATIONS

The network states X stored by the algorithm in a vector K are the only
network states needed to compute the probability Pr [t* = #(X)].

If there are no network statesin K with identical sets of critical arcs we have

Pr[t* = t(X)] = Y, Pr[S(X)].

XeK

and the probability can be computed as in (1), section 2.
If, for only two network states X, and X, in K, we have 4(X)) = A(X),
let J be the set of arcs which are in 4(X,) or in A(X,). Then, from the algo-

rithm, we have of < o] for at least one j ¢ J and o7 > o for at least one j¢ J

and therefore S(X)) ¢ S(X,) and S(X,) &£ S(X)).
Therefore,
S(X,) = S(X) NS(X) #+ J

where X, = (max [Hy,9, Hy,\], ... ... ,max [H, I H,,D.

Consequently, the probability associated to network states X, and X,
is : [2], pp- 89.

Pr [S(X,) U S(X,)] = Pr [S(X,)] + Pr [S(X,)] — Pr [S(X,)]
and

Prie* =10l = 3, PriSCO]+ Prisexy) U sl

+Xq,X,
Each term of the right-hand side can be computed as in (1), section 2.
More generally, if several network states X, X, ... X,, in K have an iden-
tical set of critical arcs, let J be the set of critical arcs. Then, from the algo-
rithm, we have v} < ¢} for at least one j ¢ J and v? > of for at least one j ¢ J
gG=l..w—lLir=qg+1..w.
Therefore, S(X,,) = SAPNSX,) A F@g=1..w—L;r=q+1..w),
but any set S(X,,, ...) may be empty.
Consequently, the probability associated to network states Xy, X, ... X, is :

Pr [S(X;) U S(X) ... U S(X,)] = il Pr [S(X)]— il Pr [S(X,)]

g,r=
q¥#r

+ e + (= D7 Pr[S(Xps. )]
Each term of the right-hand side, if non empty, is computed as in (1),

section 2.
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5. NUMERICAL EXAMPLE

The network with random arc capacities is represented in figure 2. The
demands required at the demand nodes of the network are piecewise linear
functions of time and are drawn in figure 3.

The data for the problem are given in figure 1. The capacity of each arc j
is a discrete random variable which can assume only two values H;, and H;,.
For each j, we have H;; < H;, and the associated probabilities are respec-
tively p;; and p;,.

| |

J Hj H;, Pj1 Pjs
s-1 175 350 .03 97
5-2 175 350 .03 | .97
$-3 7.5 15 .03 97
1-2 175 350 .03 97
1-3 0 30 .03 97
2-4 0 30 .03 .97
2-5 30 60 .03 97
3-4 7.5 15 .03 97
4.5 1.5 15 .03 97

Figure 1

The network data

Figure 2
The network with random arc capacities

ne V-1, 1971.
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d(t)T
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Figure 3
The demand functions

The computed probability distribution function F,.(z) is given in figure 4,
where the time parameter ¢ is considered as a time interval (say, a year). Then,
the probability Pr [t* = ¢] is the probability for critical time ¢* to occur at
year ¢t (or equivalently, the probability for the network to have a set of critical
arcs at year t).

t Pre* — 1] Fu*(1)

1 0 .0

2 .0 .0

3 00000081 00000081

4 .0 00000081

5 00005238 .00005319

6 .0 .00005319

7 .00089919 .00095238

8 .00002540 00097778

9 .0 .00097778
10 .00659816 00757594
11 05237082 05994676
12 02820158 .08814834
13 91185165 1.00000000

Figure 4

The probability distribution function

From figure 4, it can be concluded that no set of critical arcs could appear
in the network before # = 3. No set of critical arcs could occuratt =4,¢t =6

Revue Frangaise d’Informatique et de Recherche opérationnelle
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and ¢ = 9. Beyond ¢ = 13, no time value could satisfy the definition of critical
time (unfeasibility region).

The largest value of time T up to which the probability of satisfying all
demands is above a given confidence level can be determined.

If B =.99, the value T lies at the beginning of year #=11 since
1 — F,i(10) = .993 and 1 — F.(11) = .941.

The function F,.(t) gives the probability for the network to have a set of
critical arcs in the time interval (0, #). If we define Pr [4(¢)] as the probability
for a set of arcs 4 to be critical in the time interval (0, ), we have :

Fu(f) = ) Pr[A(3)] for all 4.
A

In the above example, the probability for a set of arcs A4 to be critical in the
feasible time interval (0, 13) is different from zero for the only five sets of arcs
shown in figure 5. The probability function Pr [4(¢)] for each of these sets of
arcs is given in figure 6.

Figure 5
The sets of critical arcs

n° V-1, 1971.
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t | Prid,@®) Pr[4,()] Pr [A43(2)] 'I Pr [A44(1)] Pr [A5(1)]
, i
1 0 0 ) L0 0
2 0 0 0 |0 0
3 0 0 00000081 | .0 0
4 0 0 00000081 | .0 0
5 0 0 000053 | .0 0
6 0 0 000053 | .0 L0
7 .000025 0 000881 | .000026 .000026
8 .000025 .000025 000881 | .000026 .000026
9 .000025 000025 | .000881 , .000026 .000026
10 .000895 .000846 002497 | .001647 001694
11 001735 .000846 1028257 .001647 027454
12 .028293 001667 | 0.29078 001647 027454
13 | .887023 001667 | .082252 = .001647 | .027454
| | |
Figure 6

Probability functions for sets of arcs to be critical

From figure 6, it can be known, at any time ¢, which set of arcs 4 has the
largest probability to be critical in the time interval (0, ¢). Since a set of critical
arcs is isolating a set of demand nodes from the common source node, the
probability for this set of demand nodes to be isolated by a set of critical arcs
in time interval (0, ¢) is also known from figure 6.

The results presented in this section were obtained after 20 seconds of
computer time. The computer program was written in FORTRAN IV and
was executed on a 360-40 IBM computer.

6. CONCLUDING REMARKS

The method presented in this paper finds the capacity distribution function
of a network with random arc capacities and can be used to evaluate the
network reliability. Usually, when a network has been constructed with least
cost equipment, it must be verified whether a product can be shipped through
the network with high enough reliability.

Increasing the reliability of service is one of the great, continuing challenges
faced by industry. This is especially true for power supply industry to which
the method presented in this paper has been applied. Because in an age of
total or near-total electric homes and industries, power failure is more than a
mere inconvenience. It can be both costly and serious. If the demands for
electrical power are rigorous from residential customers, they are doubly so
from industrial customers. Power failure can take out a production line; to the
degree a plant is automated, it can cripple an entire plant. Therefore, ensuring

Revue Frangaise d’Informatique et de Recherche opérationnelle
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a high reliability of service at a least cost is the primary problem for the power
supply industry.

Although the algorithm presented in this paper was efficient for finding
the capacity distribution function of small networks, it is expected that the
computer requirements will increase fairly rapidly with the size of the network
and the number of levels each arc capacity can assume (1).
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(1) Since these lines were written, a different approach which is computationally more
advantageous for finding the capacity distribution function of a large network has been
established by the author.
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