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ABSTRACT. — The memoir presented by Lagrange, which this paper examines,
is usually considered as an elegant, but scarcely practicable, contribution to numerical
analysis. The purpose of this study is to show the significance of the novel mathematical
ideas it contains, and in particular to look at this essay from the perspective of
generating function theory, for which the theoretical foundations would be laid some
little time later by Laplace. This excursus of Lagrange’s does indeed proffer an
abundance of procedures that were to become standard in this latter theory.

Further, Lagrange’s memoir introduces some quite extraordinary elements, e.g. an
algorithm for the approximation of an integral series by means of rational fractions
— quite analogous in some cases to the determination of Padé approximants; or the
introduction of polynomials formally akin to Chebyshev polynomials, to cater for tasks
that would only devolve to the latter in the 20th century.

RÉSUMÉ. — L’ESSAI DE LAGRANGE 〈〈RECHERCHES SUR LA MANIÈRE DE

FORMER DES TABLES DES PLANÈTES D’APRÈS LES SEULES OBSERVATIONS 〉〉.
Le mémoire de Lagrange étudié dans cet article est généralement considéré comme
une contribution à l’analyse numérique, élégante mais difficilement utilisable. Mon
propos est de montrer l’importance des idées mathématiques novatrices qu’il recèle
et notamment de replacer cet essai dans la perspective de la théorie des fonctions
génératrices fondée un peu plus tard par Laplace. Ce texte de Lagrange s’avère en effet
riche en procédures qui deviendront ensuite standard dans cette théorie.

On y trouve de plus des éléments assez étonnants comme un algorithme d’approxi-
mation d’une série entière au moyen de fractions rationnelles, très semblable dans
certains cas au calcul des approximants de Padé, ou l’introduction de polynômes qui,
formellement, correspondent aux polynômes de Chebyshev, dans un rôle qui leur sera
dévolu seulement au XXe siècle.
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1. INTRODUCTION

The aim of this paper is to provide a thorough analysis of this essay

of Lagrange. Contrary to the opinion sometimes expressed by other

historians or mathematicians, I believe it to be a very important piece of

mathematics. Since the structure of Lagrange’s essay is rather complex,

and many topics are discussed, I will list here four points of major interest

I shall be considering.

Lagrange’s essay contains many results which might be defined as

belonging to generating function theory. I shall be dealing mainly with this

subject in my paper, and consequently I shall set out in this introduction

a brief outline history of the origin of that theory.

A well-defined philosophical and methodological point of view concern-

ing the best way of dealing with experimental data is expressed by

Lagrange. I will also point out this aspect in my introduction.

Lagrange’s essay further has the practical purpose of producing astro-

nomical tables. It has not proved very successful in this respect. I shall

refer in this introduction to some historical opinions on the matter, as a

topic to be discussed more specifically in the development of my paper.

Some mathematical results in this essay are “ahead of their time”. I am

well aware of how sensitive a theme the matter of forerunners is. But we

shall encounter an algorithm which coincides with the attempt to calculate

the Padé approximants of a given series; and a class of polynomials which

(formally) coincides with Chebyshev polynomials. Be that as it may, we

may not preclude an investigation of these results, for fear of speaking of

“forerunners”.

1.1. Generating functions

Generating function theory is nowadays a well-established part of dis-

crete mathematics.1 This is a particularly fascinating field, since, in spite

of its richness in terms of deep mathematical results, such is the power

and simplicity of its fundamental idea that its development follows a clear

and intelligible pattern. We have no need to face technical complications,

which sometimes make a mathematical theory hard reading.

1 First originating in strict connection with probability theory, this may now be
considered to be closer to combinatorics, and bound to probability theory only
inasmuch as combinatorics and probability theory overlap.
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This is the main idea: suppose we have a sequence of numbers

(1) d0, d1, d2, . . .

and we want to know something about it.

For example, we may ask about the possibility of obtaining a simple

formula, dependent on n, to express every dn. Or we wonder whether there

exists some relation which connects a generical dn with the ones preceding

it in the sequence.

Now, to use Wilf’s words: “Although giving a simple formula for the

members of the sequence may be out of the question, we might be able to

give a simple formula for the sum of a power series, whose coefficients are

the sequence that we’re looking for” [Wilf 1990/1994, p. 1].

That is, the power series

(2)
∞∑

n=0

dnx
n

may be a simpler object to deal with than the sequence itself.

In some cases it is possible to construct a simple closed form for the

function expressed by series (2) even though sequence (1) may look rather

complicated. In what follows we shall encounter plenty of examples of such

a situation.

A function f(x) such that f(x) =
∞∑
n=0

dnx
n is said to be the generating

function of the sequence.2

The “birth” of the theory of generating functions is usually (and

rightly) attributed to Laplace, on account of his celebrated “Mémoire sur

les suites” [Laplace 1782]. As might be expected, Laplace did not start the

theory from scratch. On the contrary (and without any wish to deny the

great originality of Laplace’s work), a great merit of Laplace’s “Mémoire”

is the very fact that it organises and collects many previously-obtained

results, as well as his own personal achievements, into a theoretical unity.

All mathematicians knew about geometrical series, at least from

the mid-seventeenth century. But such is the triviality of the sequence

2 Within generating function theory one looks at a generating function as an algorithm
that produces, by the rules of differentiation, the terms of a given series, with no concern
about convergence.
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1, 1, 1, . . . that no-one could be interested in looking at the correspon-

dence (1, 1, 1, . . .) �→ (1−x)−1. This was simply interpreted as an identity

1 + x+ x2 + · · · = (1− x)−1.

It is the theory of recurrent series,3 which goes back to de Moivre, that

yielded the first fundamental results. A recurrent series is, by definition,

a sequence such as (1), such that every term is a finite linear combination,

with constant coefficients, of the same number of terms immediately

preceding it.

Therefore a recurrent series is given by a sequence d0, d1, d2, . . ., such

that we may express a generical di as

(3) di = λ1di−1 + λ2di−2 + · · ·+ λndi−n,

where λ1, . . . , λn are constants (where i ≥ n and the first n terms are

given). De Moivre called these constants scale of relation (or index)

[1718/1756, p. 221], a terminology subsequently adopted by all authors in

this field.

The remarkable discovery made by de Moivre (see, for example

[1718/1756, pp. 220–222]) is that recurrent series precisely correspond

to rational functions.

Let a rational function P (x)/Q(x) be given, such that Q(0) �= 0, and

that the degree of P is less4 than the degree of Q. Consider its Taylor

development d0 + d1x+ d2x
2 + · · · = P (x)/Q(x), and let

Q(x) = c0 + c1x+ · · ·+ cnx
n.

On account of P (x) = (d0 + d1x+ d2x
2 + · · ·)(c0 + c1x+ · · ·+ cnx

n), for

i > n, we have

(4) 0 =

n∑

k=0

ckdi−k.

Since c0 �= 0 we may solve (4) with respect to di. We deduce

di = − c1
c0
di−1 −

c2
c0
di−2 − · · · − cn

c0
di−n ,

3 Recurring series, in de Moivre’s original terminology [1718/1756, p. 220].

4 Let f = P/Q. If the degree of P is higher than the degree of Q we may effect the
division, to yield f = q+R/Q. It is clear that the series development of f coincides with
that of R/Q after a finite number of terms have been modified by the polynomial q.
We may restrict ourselves to the hypothesis given without any loss of generality.
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and we have proved that the d0, d1, d2, . . . constitute a recurrent series.

By the very structure of the proof it is clear that, conversely, if we have

a sequence whose generical term verifies equation (3), we can form the

polynomial Q(x) = 1 − λ1x − · · · − λnx
n. The choice of an arbitrary

polynomial P (x) of degree lower than n, corresponds exactly to the choice

of the original arbitrary initial values d0, d1, . . . , dn−1.

In the first book of Euler’s Introductio, recurrent series take up a lot of

space. Chapter XIII is expressly devoted to them. In chapter XVII we find a

brilliant use of recurrent series (originally expounded by Daniel Bernoulli,

as Euler notes) to approximate the roots of equations.

But what is of special importance is that, by using the results about

the resolution of rational functions into partial fractions described in

chapter II, Euler is able to express the general term of a recurrent series,

whose generating function is P (x)/Q(x), by the help of the roots of the

polynomial Q(x).

As may be expected, Lagrange, who throughout his work made exten-

sive use of power series — to such effect that, at the close of his career,

he could consider the whole of calculus to be a theory of power series —,

made some outstanding contributions to the building up of the theory of

generating functions.

Two results at least must be mentioned. In a classic paper [Lagrange

1759] he arrived at a famous result, by explaining the relation between

recurrent series and finite difference equations, considered in parallel with

linear differential equations having constant coefficients.

Another remarkable result of Lagrange’s, though it did not appear at

the outset in the context of generating functions proper, is his celebrated

inversion formula. Nowadays it is a fundamental tool of the theory5 even

though, initially, the formula appeared in the more restricted context

of equations with literal coefficients [Lagrange 1770b, p. 25].6 Since the

inclusion of the Lagrange inversion formula into the theory of generating

functions only took place subsequently, we shall dispense with dealing

with it here.

5 One need only refer to what is said by Wilf [1990/1994, chap. 5].

6 The topic is considered more generally in the Théorie des fonctions analytiques (see
[Lagrange 1797/1847, chap. XV]).
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1.2. Astronomical tables and laws

The production of astronomical tables usually corresponds to the

following mathematical situation: we have a sequence of data such as

the one we abstractly considered previously d0, d1, d2, . . . and we know

that it comes from the evaluation of a function, having a prescribed

form, at equally spaced values of a variable t, t0, t1, t2, . . . For the sake

of simplicity we may assume that these values are 0, 1, 2, . . . We have

some general information about the form of that function: it must be a

(general) trigonometric polynomial such as

(5) p(t) =
N∑

j=1

Aj sin(aj + αjt),

and consequently, what we are actually dealing with is a sequence, every

term of which comes, so to speak, with information about its genesis7

(6) dn = p(n) =
N∑

j=1

Aj sin(aj + αjn).

What we want is to reconstruct function p(t) from (6).

Since we do not even know a priori how many terms have to be added

up to give p(t), the task looks awesome. It is to overcome that difficulty

that Lagrange introduces a “revolutionary” idea: we do not need to search

directly for function p(t). Instead we require to construct the generating

function of the sequence (6).

From a modern standpoint this looks like substituting for the search

for a function of a given type another investigation of the same nature.

Which may be smart, one might say, but anything but astounding. This,

however, was far from true in Lagrange’s time.

Just to make one point, we have to observe that a “generating function”

was not deemed a function at all in Lagrange’s time: this is simply a

procedure to establish a correspondence of a given number for every

positive integer. But we have neither an analytical description (in general

cases), nor have we a meaning for the evaluation at an arbitrary “real”

7 Lagrange explains, at the beginning of his essay, how the inequalities in the
movements of the planets are represented by functions of this kind [Lagrange 1775,
pp. 507–511].
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number. The very concept of a function mapping from N into R is lacking

in the eighteenth century. Formula (6) indeed does apparently look like

that, but what it means is simply that originally we have a function, as

given by (5), but we restrict its evaluation to particular points.

The restriction to the search for a generating function of sequence (1),

leaving in the background the problem of finding the function p(t), in

effect brings about a radical change in the point of view. Lagrange, as a

rule so modest, this time emphasises the significance of what he is doing.

This is how he explains the general purpose of his research:

“On s’occupe depuis longtemps à rechercher a priori les inégalités

des mouvements des planètes d’après les principes de la gravitation uni-

verselle; mais personne, que je sache, n’a encore entrepris de donner des

méthodes directes et générales pour trouver ces mêmes inégalités a posteri-

ori, c’est-à-dire, d’après les observations seules. C’est à remplir ce dernier

objet dans toute son étendue qu’est destiné le Mémoire que j’ai l’honneur

de présenter à l’Académie Royale des Sciences” [Lagrange 1775, p. 507].

The story of the publication of this paper of Lagrange’s has been

masterly told by Bru and Crépel in [Condorcet, Arith. pol.]. Such was the

enthusiasm of d’Alembert and Condorcet, when Lagrange’s paper reached

Condorcet at the end of 1773, that it was decided to publish it immediately

in the 1772 volume of the Mémoires de l’Academie des Sciences, which

was late.8

Bru and Crépel have also reproduced the Compte rendu Condorcet

wrote about Lagrange’s essay. In it, we find descriptions of the effect

that Lagrange’s work would have such as “une carrière nouvelle et

immense qu’il ouvroit aux mathématiciens”, or conclusions like: “Il y a peu

d’ouvrages d’analyse plus utiles aux progrès de la Physique, & plus propres

à produire une révolution dans l’étude de cette Science” [Concorcet, Arith.

pol., pp. 108–109].

It is possible, Bru and Crépel observe, that some kind of “politics”

was at stake. But it is undeniable that the “proto-positivist” spirit of

Lagrange’s essay had really impressed the two encyclopedists.

Lagrange’s essay is highly important for its philosophical attitude, but

as it didn’t achieve its practical aim, this very philosophical significance

has been forgotten. I do not know of any modern author that considers it

8 See also [Taton 1974].
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from this point of view.

1.3. Historical judgements

As we recalled previously, Lagrange’s essay had, after all, the practical

purpose of improving the technique of producing astronomical tables. In

this respect it cannot be considered a success. Here are some opinions on

Lagrange’s work.

Delambre, in his obituary of Lagrange, remembers it by these words:

“Parmi ces jeux de son génie qui cherchait des difficultés pour mieux

montrer sa force, se rangerait encore le Mémoire où il indique les moyens

de construire les Tables astronomiques, d’après une suite d’observations,

et sans connâıtre la loi des mouvements célestes. C’est le problème

que résolvaient de tout temps les Astronomes, par les voies les plus

élémentaires. Les moyens de Lagrange sont plus analytiques et plus

savants; mais dans l’exemple même qu’il a choisi, et qui est des plus sim-

ples, il est permis de douter que les moyens qu’il emploie soient les plus

sûrs et les plus faciles” [Delambre 1867, p. xxx].

Burkhardt, who considers Lagrange’s paper as a contribution to

trigonometric (generalised) interpolation, in his brief (but extremely

interesting) excursus on the history of trigonometric interpolation expresses

the same appreciation:

“The rapid progress of perturbation theory in these years is the reason

why Lagrange’s method has found no use. In a subsequent place (Berl.

astr. Jahrb. 1783 [80], Nr. 12; Œuvres 7, p. 547) Lagrange observes that

his method has never been used because the word continued fraction is

unusual for the astronomers, who prefer to use linear equations”.9

9 “Dass Lagrange’s Verfahren keine praktische Anwendung fand, liegt wohl an den
raschen Fortschritten der deduktiven Störungstheorie in jenen Jahren. An späterer
Stelle ... stellt Lagrange sein Verfahren noch einmal dar, indem er das Wort Ketten-
bruch als den Astronomen ungewohnt vermeidet und nur von der Auflösung linearer
Gleichungen redet” [Burkhardt 1904, p. 675, footnote 127].

In brackets Burkhardt quotes both the first German translation of a paper read by
Lagrange at the Berlin Academy of sciences on 3rd September 1778, and published in
1780, and the original French text reproduced in theŒuvres from Lagrange’s papers in
the Bibliothèque de l’Institut de France. He has erroneously indicated the page number
in the Œuvres as 548. I have corrected it in the quotation. In what follows I will refer
to this text as [Lagrange 1778]. Be that as it may, these are the words of Lagrange
to which he implicitly refers: “La méthode que j’ai donnée pour cet objet . . . est peut-
être ce qu’il y a de plus direct pour cette recherche; mais, comme cette méthode est
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A similar judgment is echoed in [Pearson 1978]. Pearson also interprets

the subject of Lagrange’s paper as a matter of generalised interpolation.

By considering a series written in the form given by (6) he observes

that “Clearly Lagrange is supposing the series to consist of N Fourier’s

series . . . What he wants to show is that there is a linear relation between

successive terms, which may therefore be determined one from another”

[Pearson 1978, p. 619]. We will analyse in detail in the following paragraph

what here is only hinted.

E.S. Pearson (the son of K. Pearson and editor of [Pearson 1978]) notes,

in a comment on the same page, that Lagrange’s results “are used in

his later works”. He does not give a precise reference, but it is clear

that he is refering to [Lagrange 1778], the contents of which are partly

analised at p. 622 of [Pearson 1978]. E.S. Pearson does not reproduce all

the arguments of his father. He contents himself with adding a short note

where he sums up his opinions: “K.P. now discusses two methods proposed

by Lagrange but concludes that while the theory is suggestive it is doubtful

whether it will stand the touchstone of numerical practice”.

Goldstine also, in his book about the history of numerical analysis

[Goldstine 1977] considers jointly the papers of 1775 with the previously-

mentioned memoir of 1778 on interpolation.10 As he considers the text of

1778 to be somewhat of “a refinement and improvement on the first one”

[Goldstine 1977, p. 171] he pays, initially, little attention to the paper that

is the subject of my essay. But a few pages further on he reconsiders his

strategy, and observes: “Up to this point, we have more or less avoided

discussing recurring or recurrent series or sequences. Since they played

such a large role in the work of Stirling, de Moivre, Euler, etc., and since

they are inherently important, perhaps we should say more on the topic”

[Goldstine 1977, p. 176].

What follows, in Goldstine’s book, after that somewhat underwhelming

declaration, is a brief, clear analysis of Lagrange’s 1775 essay, with no

great deal of attention expended on some details that are, in the plan of

fondée sur la théorie des fractions continues, qui n’est peut-être pas assez familière
aux astronomes, nous allons en proposer une autre qui a l’avantage de ne demander
que des opérations élémentaires” [Lagrange 1778, p. 547].

10 In his bibliography, at the end of the book, Goldstine quotes also another German
translation of [Lagrange 1778], that is Lagrange, Mathematische Elementarvorlesun-
gen, Leipzig 1880.
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my exposition, very important.

Goldstine’s opinion, insofar as it does in part coincide with mine, is

that the significance of Lagrange’s essay lies more in the manipulations of

power series he achieved than in the providing of new tools for astronomy.

Where my opinion differs from Goldstine’s is in the fact that I believe that

Lagrange did not restrict himself to dealing with recurrent series but went

far beyond in the direction of generating function theory.

Wilson in his book-length paper about perturbations and solar tables

explicitly contrasts Laplace’s to Lagrange’s attitude: “The basic orienta-

tion [of Laplace] is ever toward the practical result. Lagrange, by contrast,

remains above all the lover of beautiful forms, algebraic or geometrical:

there is sometimes impracticality in his elegant and elaborate solutions to

the problems”. In a note he adds, after having recalled Delambre’s remarks

quoted a few lines before:

“One thinks, for instance, of Lagrange’s ‘Recherches sur la manière de

former des tables des planètes d’après les seules observations’,. . . , of which

no use, so far as the present writer knows, was ever made: the course of

astronomical conquest lay in the opposite direction” [Wilson 1980, p. 219].

Lagrange’s paper is something like a melting pot of eighteenth-century

techniques, some of which, like continued fractions,11 are still in use in

modern mathematics more or less in the same form they took on at

that time. Finding a formula that literally coincides with a modern one

(possibly after giving it a face-lift by use of modern notations) may well

be a discovery of something that was unknown but may equally be an

arbitrary rereading. That is quite clear; but it is also completely obvious

that there are no recipes to avoid this danger. We can but trust in our

experience and in our own esthetic judgment.

11 The main aspects of the theory were set out for the first time by Euler [1744], and
subsequently a whole chapter of [Euler 1748] was devoted to them. Lagrange had made
extensive use of continued fractions in the sixties. Just to quote two important papers
near in time to the essay we will be considering, we may mention [Lagrange 1769, § III],
and the “Additions” to the French translation of Euler’s Algebra [Lagrange 1773].
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2. THE FUNDAMENTAL THEOREM

Let us have a sequence d0, d1, d2, . . . and suppose we know a priori that

(7) dn =

N∑

j=1

Aj sin(aj + αjn).

Lagrange begins by proving that such a sequence may be generated not

only by a rational function but also by a very special rational function.

This is how Lagrange states the matter:

“Toute série dont un terme quelconque est représenté par la formule

A sin(a+mα) +B sin(b +mβ) + C sin(c+mγ) + · · · ,

m étant le nombre des termes précédents, est une série récurrente dont

l’échelle de relation dépend uniquement des angles α, β, γ, . . .” [Lagrange

1775, p. 511].

Therefore a sequence d0, d1, d2, . . . for which (7) holds, is a particular

recurrent series corresponding to a rational function whose denominator

depends only on α1, α2, α3, . . . Other peculiarities will become clear as the

proof unfolds.

The construction of the generating function may be easily obtained

by using only the results contained in Euler’s Introductio (§§ 217–218).
Lagrange prefers a more direct application of the complex variable to

solve the problem.12 What follows is an outline, in modern terms, of his

proof.13

12 Euler too had considered the possibility of using geometric series, but he noted that it
was feasible to give another method “if we wish to avoid complex expressions” [1748,

§ 218]. Euler’s method consists in a direct proof of (9) by induction. An interesting
analysis of this part of Euler’s Introductio is in [Panza 1992, vol. 2, pp. 500–515]. Euler
gives a more general result about sums of this type in §§ 258–260.
13 Taton [1974, pp. 4–5] gives a long list of faults present in the Œuvres of Lagrange

as edited by Serret and Darboux. Taton comes down particularly harshly against the
modernisation of notations. So, before introducing an even stronger modernisation, a
few remarks are called for. Firstly it should be noticed that in the particular case of the
edition of this essay, the original text in theMémoires de l’Académie royale des sciences
is quite similar to the one reproduced in the Œuvres. The main difference is that in the
Mémoires we find sin ·x, while in the Œuvres there is simply sinx. Consequently I will
use the text of theŒuvres and not the original as the first is more accessible to a modern
reader. As regards my own modernisations, I will use a0, a1, a2, . . . , am, . . ., to denote a
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In the expression for dn, as given by (7), we use Euler’s formulas to

substitute sinϕ for (eiϕ − e−iϕ)/2i. By use of the usual properties of

geometrical series Lagrange arrives at

(8)

∞∑

n=0

dnx
n =

N∑

j=1

Aj
sin aj − sin(aj − αj) · x
1− 2 cosαj · x+ x2

·

Observe that, by writing (7) in the form

dn =

N∑

j=1

Aj sin(aj + αjn) =

N∑

j=1

Aj cos aj · sin(nαj) +Aj sin aj · cos(nαj),

and by using the identities

(9)





∞∑

n=0

sin(nα) · xn =
sinα · x

1− 2 cosα · x+ x2
,

∞∑

n=0

cos(nα) · xn =
1− cosα · x

1− 2 cosα · x+ x2
,

given by Euler in § 218 of his Introductio, we equally14 arrive at (8).

Lagrange will require and prove those very identities a few pages further

on, but at this juncture he has preferred, as we have noted, a more direct

use of the complex variable.15

In any case, (8) makes it apparent that sum
∞∑
n=0

dnx
n may be expressed

as a rational function.

sequence; but Lagrange uses the perfectly equivalent notation T, T ′, T ′′, . . . , T (m), . . ..
I will use the same notation, without the final dots, to indicate the coefficients of a
polynomial of degree m while Lagrange has (0), (1), (2), . . . , (m) or [0], [1], . . . , [m], or
even [(0)], . . . , [(m)]. Obviously Lagrange does not use the symbol Σ in the modern
sense, but he does use expressions like “a function of the form . . . gives a series whose
general term is . . . ” or similar ones which (in my opinion) are perfectly equivalent to
what the modern notation expresses. About the problem of the edition of Lagrange’s
works see also [Pepe 1986].

14 Euler freely uses complex variables in § 219 to expand fractions of type

1

2

f − ig

[1− r(cos x+ i sinx)]k

into powers of z = r(cos x + i sinx). See also [Burkhardt 1914, pp. 825–826]. Euler’s
attitude need not be considered contradictory. It merely implies that sometimes
complex variables are convenient and sometimes not.

15 Poisson, at the beginning of his 1823 paper gave anew the result of Euler and
Lagrange, paying some attention to the problem of convergence, which we do not need
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Closer inspection of the form of this rational fraction shows that the

denominator, Q(x), is a polynomial of degree exactly 2N , as it is the

product of N monic polynomials of degree 2. Besides, every polynomial

whose product gives Q(x) is a reciprocal polynomial of even degree,16 that

is the coefficients of the terms equidistant from the middle term are equal.

It is clear that a product of two reciprocal polynomials is a reciprocal

polynomial, and consequently the same property holds for Q(x).17

Also, the roots of the denominator Q(x) are of a special kind. In

fact, every term of the product which composes Q(x) when equated

to zero yields the two complex-conjugate roots cosαj ± i sinαj , whose

modulus is 1.

P (x) is simply a polynomial of degree no higher than (2N − 1) and it

has no apparent special properties.

Considering the preceding result, given a sequence of numbers such as

(1), we are to search for a rational function P (x)/Q(x), where Q(x) is a

reciprocal polynomial of degree 2N , having roots of suitable form, such

that

(10) d0 + d1x+ d2x
2 + · · · = P (x)

Q(x)
·

The problem now is to set out an algorithm to find this function.

The structure of the proof of the fundamental theorem is such that

no construction of the required function may be obtained from it. We

to consider here, since Lagrange is working with formal power series. It is noteworthy

that this result, which Euler actually proved once for all, did not acquire the status
of a common theorem. Perhaps the explanation lies in the fact that it is an easy
consequence of the result about the sum of a geometric series, not so trivial however
that every justification might be left out.

Burkhardt more generally observes that “Euler’s method for finding the sum of
trigonometric series has beeen rediscovered and exposed again many times” (“Eulers
Verfahren zur Auffindung der Summen von trigonometrischen Reihen ist dann noch
öfter von neuem gefunden und dargestellt worden” [Burkhardt 1914, p. 828]). A long
list of contributions follows, that includes the work of Poisson, but does not include
the work of Lagrange we are considering. Burkhardt studied and described it as a work
on trigonometric interpolation rather than a work on trigonometric series (see note 9).
Burkhardt did no proffer any explanation for the continued repetition of results which
had been, for the most part, firmly established in Euler’s Introductio.

16 Lagrange deals with the properties of reciprocal and opposite polynomials in an
appropriate Remarque [Lagrange 1775, pp. 552–553].

17 It is also easy to prove that the rational fraction P (x)/Q(x) cannot be reducible, at
least in non-trivial cases.
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do not know how many terms sum (7) has. Whatever that number may

be, we may understand which is the final form of P (x)/Q(x), since that

form remains the same for all addenda, and the process of summation

preserves it.

To construct P (x)/Q(x) we may firstly assume that (7) consists of just

one term. If that be the case we are home and dry. Failing that we must

assume that (7) consists of two terms . . . and so on. This broad notion

of what we have to do is within our grasp. But to convert all that into

an algorithm is quite a different kettle of fish. Let us see what Lagrange

does.

3. THE ALGORITHM

As often happens, it is a good idea to generalise. Lagrange disregards

some of the peculiarities of the series given and simply assumes that it

comes from a rational function of type18 (n−1, n). He constructs a general

algorithm simply designed to approximate the given series

(11) d0 + d1x+ d2x
2 + · · ·

up to the terms of order 2, 4, 6, etc. by successive functions of type (0, 1),

(1, 2), (2, 3), . . . until the Taylor development of the last rational function

found coincides with the given series.

As is widely known, given an arbitrary series such as (11), the problem

of finding a rational function P (x)/Q(x) of type (m,n) such that

d0 + d1x+ d2x
2 + · · · − P (x)

Q(x)
= O[xm+n+1],

the so-called “Hermite problem”, does not always admit a solution.19

None of which is of consequence when we are to investigate a series

originating in astronomical measurements, since we are assured of a

solution with a prescribed form. But when considering the problem in

its generality the difficulty may not be disregarded.

18 In general, by the symbol (h, k) I denote an irreducible rational function with a
numerator of degree h and denominator of degree k.

19 Elementary counter-examples are given in [Lorentzen, Waadeland 1992, pp. 376–
379].
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Lagrange was well aware of this, and even though he did not give

a complete analysis, he observed that sometimes his algorithm did not

succeed in yielding a function of the expected type. He also tried to

calculate at least the degree of the denominator of the approximating

function in this case, but his result is not general, as we will see.

At any rate, the algorithm (which actually constituted one of the first

attempts to construct “Padé approximants” of a given type) is really

beautiful.20 A brief exposition of the “analysis” of the problem (Lagrange

restricts himself to giving the “synthesis”) may be helpful.

Assume the problem has been solved and that we have a rational

function P (x)/Q(x) whose Taylor development is (11). We have the

equality:

d0 + d1x+ d2x
2 + · · · = P (x)

Q(x)
·

We now proceed to write P (x)/Q(x) as a particular continued fraction.

We write P (x)/Q(x) = 1/(Q(x)/P (x))· By taking the Taylor development

arrested at the first order (or a simple kind of division, introduced by

Newton in De analysi [MP 2, pp. 212–215]), we have21

Q(x)

P (x)
= p1 + q1x+ x2+λ1

R1(x)

P (x)
·

If R1(x) is identical to 0 our research is at an end. Otherwise, we keep

on dividing. We have

P (x)

Q(x)
=

1

Q(x)

P (x)

=
1

p1 + q1x+ x2+λ1
R1(x)

P (x)

=
1

p1 + q1x+
x2+λ1

p2 + q2x+ x2+λ2
R2(x)

R1(x)

·

Once again, we can test to see whether the remainder is 0. In this case

we stop: otherwise, we continue. But since P (x)/Q(x) is to be a rational

20 An analysis of Lagrange’s algorithm is also given in [Brezinski 1991, pp. 119–120].

21 Lagrange at first considers the case in which every λi is zero. Only afterwards does
he describe the general algorithm. I presume that the modern reader will find easier it
to go directly through the general case.
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function, a simple test upon the degree of the remainders shows that we

must stop after a finite number of steps. Eventually we arrive at this

particular continued fraction expansion

(12)
P (x)

Q(x)
=

1

p1 + q1x+
x2+λ1

p2 + q2x+
x2+λ2

. . .
+

x2+λn

pn + qnx

·

If λ1 = λ2 = · · · = λn = 0 (this being the general case) P (x)/Q(x)

is a function of type (n− 1, n). Otherwise the degree of the denominator

(at least) must be modified. Lagrange maintains that in that case it should

be n+λ1+λ2+ · · ·+λn [1775, p. 534], but this result is not always true.

Let us come back to Lagrange’s essay. So far we have assumed that

the function P (x)/Q(x) is available to us. However we only have its series

development d0 + d1x + d2x
2 + · · ·. Hence the problem is to find the

development into a continued fraction by sole use of the given series.

Let us start by writing

1

Q(x)

P (x)

=
1

1

d0 + d1x+ d2x
2 + · · ·

·

The type of division previously mentioned may be extended without any

difficulty into a power series [Lagrange 1775, pp. 525–529].

Let us suppose we have two series developments

a0 + a1x+ a2x
2 + · · · , b0 + b1x+ b2x

2 + · · · , where b0 �= 0.

We may determine the polynomial of degree 1, a0/b0+(a1b0− a0b1)x/b20,
which clearly is such that

a0 + a1x+ · · · −
(a0
b0

+
a1b0 − a0b1

b20
x
)
(b0 + b1x+ · · ·) = x2+λR(x),

where R(x) ≡ 0 or λ ≥ 0 and R(0) �= 0.

We apply this division to the power series 1 = 1 + 0x+ 0x2 + · · · and
d0 + d1x + d2x

2 + · · ·. This gives for the first step of the algorithm the

quotient p1 + q1x = 1/d0 − d1x/d
2
0.
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The remainder R1(x) is obviously given by the difference

1− (p1 + q1x)(d0 + d1x+ d2x
2 + · · ·) = x2+λ1(α0 + α1x+ α2x

2 + · · ·)
= x2+λ1R1(x).

If R1(x) �= 0, we take as dividend d0 + d1x + d2x
2 + · · ·, and as divisor

R1(x) and we proceed to the second step.

We carry on subsequent divisions until we arrive at the final result

as given by formula (12). The algorithm described is a general method

for approximating (in general situations) a given power series by rational

functions of prescribed type.22 It has clearly an independent value, and

Lagrange underlines its relevance:

“La solution du problème précédent n’est . . . qu’une simple application

de la théorie des fractions continues; mais, quoique cette théorie ait

déjà été traitée par plusieurs grands géomètres, il parâıt que l’application

dont il s’agit peut néanmoins être regardée comme neuve à plusieurs

égards, et surtout relativement au point de vue sous lequel nous venons de

l’envisager” [Lagrange 1775, p. 542].

An example may be helpful to clarify the details of Lagrange’s algo-

rithm.

Example 1.

This is actually the second example given by Lagrange [1775, p. 534].23

Consider the sequence

1, 1, 1, 2, 4, 6, 7, 7, 7, 8, 10, 12, 13, 13, 13, 14, 16, . . .

22 Lagrange does not stop to note that his algorithm, when applied to a finite number

of arbitrary data (in general situations) produces, in the worst case, a rational function
with a denominator of degree equal at most to half of the number of data. This is of no
great interest if we are looking at the possibility of giving an “economical” description
of the series of data, but it may be read as a remarkable result about trigonometrical
interpolation. I think that Condorcet had grasped this point, when he remarked in his
Compte rendu: “il ne s’agira plus que de chercher la série récurrente la plus simple,
dont cette suite de nombres représente les coëfficiens, & l’expression générale de cette
série, qui, comme il est aisé de le voir, ne peut monter à un degré plus élevé que la
moitié du nombre des observations” [Arith. Pol., p. 108].

23 The nature of the sequence chosen makes it evident that Lagrange is interested in
discovering some kind of structure in the sequence considered in its own right. Which
is exactly the mindset of generating function theory.
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We convert it into the series

s = 1 + x+ x2 + 2x3 + 4x4 + 6x5 + 7x6 + 7x7 + 7x8 + 8x9 + · · · .

Now the quotient of 1 and s is (1− x), while the remainder is

−x3 − 2x4 − 2x5 − x6 − x9 − 2x10 − 2x11 − x12 − x15 · · · .

We divide the remainder by −x3, and take as dividend s and as divisor the

remainder. We make another division and we obtain as quotient (1−x). We

keep on dividing and taking the remainder, and so on, until we arrive at

1

1− x+
− x3

1− x+
x2

1− x

·

This continued fraction expansion may be converted in the usual form,

which yields

s = 1 + x+ x2 + 2x3 + 4x4 + 6x5 + 7x6 + 7x7 + 7x8 + 8x9 + · · ·

=
1− 2x+ 2x2

1− 3x+ 4x2 − 3x3 + x4
·

4. THE ROOTS OF THE DENOMINATOR AND CHEBYSHEV

POLYNOMIALS

To return to the analysis of the paper, suppose we have a sequence of

numbers d0, d1, d2, . . .. Let us consider the series d0 + d1x + d2x
2 + · · ·.

With the help of the algorithm described, we can construct a rational

function P (x)/Q(x). But we now have to check that the degree of Q is an

even number 2N and that Q is a reciprocal polynomial having its roots

in the requisite form.

That is, we still have to verify that Q may be factored in the form

(13) (x2 − 2 cosα1 ·x+1)(x2− 2 cosα2 ·x+1) · · · (x2 − 2 cosαN · x+1).

To facilitate this task Lagrange introduces a general technique to

transform a reciprocal polynomial of degree 2N into a polynomial of
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degree N whose (real) roots may be used in a simple way to calculate

the roots of the original polynomial.24

By the substitution of variables z = x + x−1, a reciprocal polynomial

Q(x), having degree 2N , may be transformed into xN Q̃(z), where Q̃(z) is

a polynomial of degree N in z. This is self-evident if N is a small number.

But if N is large, we have to face the problem of writing xn + x−n as a

polynomial in z = x+x−1. Lagrange shows how this happens for n = 2, 3

and immediately writes

(14) xn+
1

xn
= zn−nzn−2+ n(n− 3)

2
zn−4− n(n− 4)(n− 5)

2 · 3 zn−6+ · · ·

leaving it to the reader to verify (14).

For the sake of completeness, I shall give a proof in modern terms,

noting, however, that equation (14) has, for Lagrange, a complete trans-

parency not requiring any proof.

Let us write (14) in modern form as

(15) xn +
1

xn
=

[n/2]∑

k=0

(−1)k n

n− k

(
n− k

k

)
zn−2k.

Now consider the identity

(16) xn+1 +
1

xn+1
=

(
x+

1

x

)(
xn +

1

xn

)
−
(
xn−1 +

1

xn−1

)
.

Identity (16) means that, if we denote by Ln(z) the polynomial in z which

expresses xn+ x−n as a polynomial in z = x+ x−1, we have the recursive

definition

(17) Ln+1(z) = zLn(z)− Ln−1(z).

By dint of (17) it is elementary to prove that the coefficients have the

form given in (15). It is enough to remark that

n− 1

n− k − 1

(
n− k − 1

k

)
+

n− 2

n− k − 1

(
n− k − 1

k − 1

)
=

n

n− k

(
n− k

k

)
.

24 Lagrange describes this technique at an ealier point in his text. I prefer to introduce
it here. See [Lagrange 1775, pp. 515–517].
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Formula (17), as I have set it out, will look rather familiar to the modern

reader. It immediately reminds us of the usual definition of Chebyshev

polynomials, which is

(18) Tn+1(z) = 2z Tn(z)− Tn−1(z).

Comparison between (17) and (18) shows25 that Ln(2z) = 2Tn(z).

In other words, these polynomials Ln(z) are the “Chebyshev polynomi-

als” of degree n on the interval [−2, 2]. These polynomials were introduced

by Lanczos (see [Lanczos 1952], where he called them Cn(z)), who judged

that these polynomials had simpler numerical properties than the ordinary

Chebyshev polynomials.26

That the polynomials considered by Lagrange are Chebyshev polyno-

mials only in a formal sense, is quite obvious. The fact that they may be

defined in a very similar way might appear as sheer historical contingency.

But what is remarkable, is the fact that they were introduced by Lagrange

precisely to effect one of the tasks that nowadays are usually assigned to

Chebyshev polynomials (see chapter 5, especially section 5.3 in [Rivlin

1974/1990]).

Chebyshev polynomials were introduced to solve a well-defined problem

in approximation theory. But nearly a century later it was discovered that

they also have nice arithmetical properties [Schur 1973].

Can we say that Lagrange was in some sense a “forerunner”? I

believe this question to be pointless. What is astounding is the nature

of mathematical objects: even when they seem aimed to solve a strictly

defined problem they may have completely unforeseen applications.

If we substitute eiϑ for x in (16), we obtain

cos(n+ 1)ϑ = 2 cosϑ · cosnϑ− cos(n− 1)ϑ,

a common identity used to define Chebyshev polynomials.

In Euler’s Introductio § 243, this identity is used to obtain the further

equality

2 cosnϑ = 2n cosn ϑ− n · 2n−2 cosn−2 ϑ+ · · · ,

25 We have T0(z) = 1, T1(z) = z, and consequently L0(z) = 2, L1(z) = z.

26 I gave this information to prof. Rivlin, who not only pointed out Lanczos’ paper
to me, but has also had the kindness of sending me a photocopy of this paper which
is very difficult to find. Prof. Rivlin was also a fund of useful information about the
history of Chebyshev polynomials.
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which rapidly leads to (14), but Lagrange does not mention Euler and it

may be that he had another idea about the meaning of equality (14).

Be that as it may, to return to our purpose, let us assume we have a

reciprocal polynomial of even degree 2N such as

Q(x) = a0+a1x+a2x
2+ · · ·+aNxN + · · ·+a2x2N−2+a1x

2N−1+a0x
2N .

We may write

Q(x) = xN
[
a0

(
xN +

1

xN

)
+ a1

(
xN−1 +

1

xN−1

)
+ · · ·+ aN

]

= xN
[
a0LN (z) + a1LN−1(z) + · · ·+ 1

2
aNL0(z)

]
.

Now let us make the substitution z = x + x−1 directly in (13). We

obtain

xN (z − 2 cosα1)(z − 2 cosα2) · · · (z − 2 cosαN ).

Thus we may consider the particular features that we may expect

for Q(x) in another way: it must be a reciprocal polynomial of even

degree 2N , such that after the substitution z = x + x−1, it assumes the

form xN Q̃(z), where Q̃(z) has exactly N real roots in the interval [−2, 2]
[Lagrange 1775, p. 574].

5. LAGRANGE’S PROCEDURE

It will be useful to summarise the procedure Lagrange suggests.27

Let us consider the sequence d0, d1, d2, . . ., considering it as the power

series d0 + d1x+ d2x
2 + · · ·.

We apply the algorithm described to construct a rational fraction

P (x)/Q(x) such that d0 + d1x + d2x
2 + · · · = P (x)/Q(x); by hypothesis

such a function does exist, hence the continued fraction development must

stop after a finite number of steps.

The denominator Q(x) is to have the requisite form, and in it we effect

the substitution z = x+ x−1, in order to have Q̃(z).

27 Here I shall describe only the first solution given by Lagrange. I leave out the
explanation of the other two solutions to avoid technical complexities.
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We need to calculate the real roots28 of Q̃(z) and we thus write

Q(x) = (x2−2 cosα1 ·x+1)(x2−2 cosα2 ·x+1) · · · (x2−2 cosαN ·x+1).

Now we must decompose fraction P (x)/Q(x) into partial fractions, to

obtain

P (x)

Q(x)
=

N∑

i=1

Mi +Nix

1− 2 cosαi · x+ x2
·

By availing ourselves of the identities29

∞∑

n=0

sinnα · xn =
sinα · x

1− 2 cosα · x+ x2
,

∞∑

n=0

cosnα · xn =
1− cosα · x

1− 2 cosα · x+ x2
,

it is a straightforward matter to obtain for every addendum

Mi +Nix

1− 2 cosαi · x+ x2
=

∞∑

n=0

Ai sin(ai + nαi) · xn,

with

(19) tan ai =
Mi sinαi

Mi cosαi +Ni

, Ai = ±
√
M2

i + 2MiNi cosαi +N2
i

sinαi

,

where the sign in the second formula has to be chosen in suitable fashion.

Hence, we have

P (x)

Q(x)
=

N∑

i=1

Mi +Nix

1− 2 cosαi · x+ x2
=

∞∑

n=0

N∑

i=1

Ai sin(ai + nαi) · xn.

The analysis is complete. We have found

dn =

N∑

i=0

Ai sin(ai + nαi).

28 Lagrange himself refers here to [Lagrange 1769] and [Lagrange 1770a,b].

29 Which Lagrange introduces at this point [Lagrange 1775, p. 575].
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Example 2

Lagrange will examine the case of this series (taken from Mayer’s Tabu-

lae solares, published in 1750) only after introducing many improvements

to his method (see infra p. 229).30 I prefer to look at it directly, to clarify

some numerical difficulties. Suppose we consider the sequence

456,−168, 274,−933, 220, 631,−232, 349,−823,−72, 772,
− 237, 358,−657, 360, 860,−181, 305,−457,−616, . . .

We convert it into the power series

456− 168x+ 274x2 − 933x3 + 220x4 + 631x5 + · · ·

and we search for a rational approximant of type (2n− 1, 2n) that has all

the requisite particular features. The most suitable such approximant is

given by

−474.52x3 + 561.72x2 + 219x+ 456

0.99988x4 + 0.84251x3 + 0.94414x2 + 0.85005x+ 1
·

The denominator may be judged sufficiently close to a reciprocal

polynomial. We approximate it by

x4 + 0.84630x3 + 0.94414x2 + 0.84630x+ 1.

The roots of this polynomial are

0.34405 + 0.93895i, 0.34405− 0.93895i,

−0.76721 + 0.64140i, −0.76721− 0.64140i.

From this we deduce the values of two angles (in radians) α = 1.2196 and

β = 2.4453. We can now use formulas (19) to calculate the other constants

to obtain function

f(n) = 457.49 sin(1.4384+n ·1.2196)+587.92 sin(−0.0042476+n ·2.4453).

The first values of this function are

455.99, −166.26, 271.91, −933.57, 218.20,

632.54, −223.36, 340.41, −830.95, . . .

and give an approximation of the given sequence.

30 About Mayer’s tables see [Wilson 1980, pp. 262–264].
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6. THE METHOD IMPROVED (PART I)

Is the approximation given in the example a good one or not? We do not

have many tools available to evaluate this. When we sought to calculate

the expansion of the given series into a continued fraction we stopped

once we could assume that the numerical values of the coefficients of the

remainder would be very small [Lagrange 1775, p. 593]. But we were given

no criterion to evaluate this situation. We were left to our own judgement.

Beside which, the polynomial we found at the denominator was only

approximately reciprocal, and once again it was left to our intuition to

choose a polynomial that would be right.

But what is worse is the fact that, as will be apparent from the very

nature of the algorithm, the approximation we found is a global one. We

must have something like a distance of two sequences if we are to conclude

we have found a suitable approximation.

Thus, applying Lagrange’s method to a real situation may lead to

some real difficulties. These difficulties go far beyond the practical task of

finding fraction P (x)/Q(x) or of calculating the roots of Q(x).

But I have stressed over and over again that the main contribution of

Lagrange’s paper (in my opinion) lies more in the direction of developing

the theory of generating functions than in promoting numerical calculus.

Whatever the case, to overcome some difficulties, Lagrange did propose

an improvement to his method. Once again, this improvement turns out

to be a remarkable achievement in generating function theory.

We have seen Lagrange’s ability to use the correspondence

(d0, d1, d2, . . .) �−→
∞∑

n=0

dnx
n = f(x),

to deduce relations among the elements of the sequence, by analysing the

form of the function f(x). But actually this correspondence is useful in

both directions,31 and what Lagrange proceeds with, in a very few, but

extremely interesting, pages, is a careful examination of some kinds of

31 A well-known example is provided by the functional equation u(x) = x · eu(x). The
calculus of its Taylor coefficients for x = 0 may be obtained by help of differential
calculus rules. But it is a simpler task to look at the series generated and to deduce,
by use of Lagrange’s inversion formula, that their values constitute the sequence nn−1

[Wilf 1990/1994, pp. 168–169].
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relations between a given sequence and of the corresponding generating

functions, in the case where said function is rational.32 At the end of his

analysis he gives a simpler method of finding a rational function which is

generated by a sequence of the form (7). Once again, Lagrange was not

propounding a general theory of generating functions as Laplace would,

a few years later,33 but his results are indeed very impressive.

A given sequence (d0, d1, d2, . . .) was thought, initially, to be the

sequence of values of a function of N into R, but it is quite natural

to give a precise meaning also, in the case of a recurrent series, to its

extension to a function mapping from Z into R. What we are looking for

is a sequence (. . . , d−2, d−1, d0, d1, d2, . . .) such that the same law holds

for the construction of all the elements.

Let us consider the case where the sequence is generated by a ratio-

nal function P (x)/Q(x) of type (n − 1, n). Then Lagrange notes that

the function −x−1P (x−1)/Q(x−1) generates the required sequence, i.e.

(d−1, d−2, d−3, . . .) [Lagrange 1775, pp. 548–551].

Given a polynomial like P (x) =
∑n

k=0 akx
k, the contrary polynomial

is, by definition P̃ (x) =
∑n

k=0 akx
n−k.

It is evident that −x−1P (x−1)/Q(x−1) is equal to −P̃ (x)/Q̃(x), where
the polynomials P̃ (x) and Q̃(x) are the contrary polynomials to P (x)

and Q(x), respectively.

Suppose we have a sequence, which in practical applications will be

given by a finite number of terms and will be considered as beginning at

a given place. We can always consider it as being a sequence of the form

(. . . , d−2, d−1, d0, d1, d2, . . .).

If we know a priori that the given sequence is determined by a

rational function of type (n − 1, n) which has as its denominator a

reciprocal polynomial, we must have Q(x) = Q̃(x) and both functions

P (x)/Q(x) ± P̃ (x)/Q(x) will present special features.

32 In fact we find that Euler in his Introductio has also used this possibility. The
development of a rational function in partial fractions, just to take the first example,
may be viewed as an instrument to be used to analyse a given sequence.

33 This is a reference to [Laplace 1782], previously quoted. An interesting analysis of
this work of Laplace is given by Panza [1992, vol. II, pp. 615–650].
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Indeed, it is a straightforward matter to observe that P (x)± P̃ (x) will
be divisible by (1−x) and (1+x) respectively. By division, they will yield

reciprocal polynomials of degree (n− 2).

In other words, we construct the series

(d0 + d−1) + (d1 + d−2)x+ (d2 + d−3)x2 + · · ·
1− x

=
[
(d0 + d−1) + (d1 + d−2)x+ · · ·

]
(1 + x+ x2 + · · ·),

(d0 − d−1) + (d1 − d−2)x+ (d2 − d−3)x2 + · · ·
1 + x

=
[
(d0 − d−1) + (d1 − d−2)x+ · · ·

]
(1− x+ x2 − · · ·),

which are very easily obtained,34 we know that their generating functions

are of the type (n−2, n) and that both numerators and both denominators

are reciprocal polynomials.

7. THE METHOD IMPROVED (PART II)

What we have seen shows that we may restrict ourselves to applying the

algorithm for development into continued fractions to a sequence of which

we know a priori that its generating function is of the type (2n − 2, 2n)

and such that both the numerator and the denominator are reciprocal

polynomials.

Lagrange [1775, pp. 559–562] goes on to consider this special case. Let

a rational function be given by

P2n−2
Q2n

=
b0 + b1x+ · · ·+ bn−1xn−1 + · · ·+ b2x

2n−4 + b1x
2n−3 + b0x

2n−2

a0 + a1x+ · · ·+ anxn + · · ·+ a2x2n−2 + a1x2n−1 + a0x2n
·

We may write, as before,

P2n−2
Q2n

=
1

x

b0(x
n−1 + x−(n−1)) + b1(x

n−2 + x−(n−2)) + · · ·
a0(xn + x−n) + a1(xn−1 + x−(n−1)) + · · · ·

If we set y = x/(1 + x2), i.e. y−1 = x+ x−1, we find (remembering the

previously-given definition of Ln)

P2n−2
Q2n

=
1

x
· b0Ln−1(y−1) + b1Ln−2(y−1) + · · ·
a0Ln(y−1) + a1Ln−1(y−1) + · · · ·

34 We need not use multiplication to obtain these series. The only operations required
are additions and subtractions.
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Developing all the calculations, we arrive at

P2n−2
Q2n

=
y

x
· pn−1
qn

=
1

1 + x2
· pn−1
qn

,

i.e. (1 + x2)P2n−2/Q2n = pn−1/qn·
Function pn−1/qn is only of type (n−1, n) so that the continued fraction

algorithm may be easier to apply to the series generated by this function.

Once we have calculated pn−1/qn we need only substitute x/(1 + x2) for

its variable and divide the result by 1/(1+x2) to find the original function

we are seeking.

This leads on to the problem of analysing how all this operates at series

level.

Let us consider the two series t0+t1x+t2x
2+· · · and ϑ0+ϑ1x+ϑ2x2+· · ·,

and suppose that f(x) and g(x) are their generating functions. Suppose

further that the generating functions are linked by the relation

g
( x

1 + x2

)
= (1 + x2)f(x).

Lagrange [1775, p. 562] shows that, in this case

tn = ϑn − (n− 1)ϑn−2 +
(n− 2)(n− 3)

1 · 2 ϑn−4 − · · ·(20)

=

[n/2]∑

k=0

(−1)k
(
n− k

k

)
ϑn−2k

and

ϑn = tn + (n− 1)tn−2 +
n(n− 3)

1 · 2 tn−4 + · · ·(21)

=

[n/2]∑

k=0

n− 2k + 1

n− k + 1

(
n

n− k

)
tn−2k.

Let us stop a moment to examine these results. It is evident that they

concern general series developments, with no requirement that we restrict

ourselves to rational functions. In modern terms we may interpret these

result as follows: we have a functional equation connecting two functions

f(x) and g(x)

g
( x

1 + x2

)
= (1 + x2)f(x),
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and supposing we know one of them from its series development, we can

obtain the series development of the other by help of (20) or (21).

Suppose that g(x) =
1

1− x
= 1+x+x2+· · ·. Then f(x) = 1

1− x+ x2
.

Hence we have

tn =
( 3 + i

√
3

6

)( 1− i
√
3

2

)n

+
( 3− i

√
3

6

)( 1 + i
√
3

2

)n

=

[n/2]∑

k=0

(−1)k
(
n− k

k

)
.

Or consider the particular case where f(x) = 1/(1+x2). It follows that

g(x) ≡ 1. From (21) we get the identity

(22)

m∑

k=0

2m− 2k + 1

2m− k + 1

(
2m

2m− k

)
(−1)k = 0, m > 0.

These are but two of the innumerable identities concerning binomial

coefficients, and, at first sight, this kind of deduction would not seem to be

of great historical relevance. But it is precisely the very ease with which

we move from Lagrange’s mathematics to modern combinatorics that

makes manifest (in my opinion) the legitimacy of reading his mathematics

as I do. And to present this point of view is obviously to exert a historical

judgement.35

A remark should be made. Every rational fraction pn−1/qn is such

that the previously explained manipulations of variables lead to a frac-

tion P2n−2/Q2n where both numerator and denominator are reciprocal.

If we are able to propose a “good” series to calculate pn−1/qn, we have no

cause to trouble ourselves about the problem of having a rational fraction

whose denominator will be a reciprocal polynomial. But, once again, all

these considerations involve a set of problems of approximation. Be that

as it may, let us now turn to a further example.

35 The interested reader who looks at [Gould 1990], just to take a nice example, will
discover manipulations very similar to the ones of Lagrange described in my paper.
The recent book [Graham, Knuth, Patashnik 1989] carries a dedication to Euler.
Great emphasis is laid on the conviction that many instruments of eighteenth-century
mathematics are still at work in modern discrete mathematics. I thank prof. B. Sury
who has remarked a nice connection between identity (22) and Lagrange’s interpolation
formula.
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Example 3

Take the example proposed by Lagrange [1775, pp. 588–589]. I avail

myself of only part of the technical subtleties he brought to bear to

improve calculations, since describing them in detail would be somehow

tedious. Once again let us consider the sequence

456,−168, 274,−933, 220, 631,−232, 349,−823,−72, 772,−237,
358,−657, 360, 860,−181, 305,−457,−616, . . .

But now let us consider it as being given by two sequences proceeding

in opposite directions. The first begins with 772, while the second begins

with the element immediately preceding

772,−237, 358,−657, 360, 860,−181, 305,−457,−616, . . .
−72,−823, 349,−232, 631, 220,−933, 274,−168, 456, . . .

We now form the sum and the difference of the two sequences

700,−1060, 707,−889, 271, 1080,−1114, 579,−625,−160, . . .
844, 586, 9,−425,−991, 640, 752, 31,−289,−1072, . . .

We convert these sequences into the power series

s1 = 700− 1060x+ 707x2 − 889x3 + 271x4 + 1080x5 + · · ·

and

s2 = 844 + 586x+ 9x2 − 425x3 − 991x4 + 640x5 + · · ·

Now we construct the new series

S1 =
s1

1− x
= (700− 1060x+ 707x2 − 889x3 + 271x4 + 1080x5 + · · ·)

× (1 + x+ x2 + x3 + · · ·)
= 700− 360x+ 347x2 − 542x3 − 271x4 + 809x5 + · · ·

and

S2 =
s2

1 + x
= (844 + 586x+ 9x2 − 425x3 − 991x4 + 640x5 + · · ·)

× (1− x+ x2 − x3 + · · ·)
= 844− 258x+ 267x2 − 629x3 − 299x4 + 939x5 − 187x6 + · · · .
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Since we expect both series to be produced by rational functions of the

type (2n − 2, 2n), we manipulate these series using procedure (21). The

first yields

ϑ1 = 700− 360y + 1047y2 − 1262y3 + 2170y4 − 3159y5 + · · · ,

while the second yields

ϑ2 = 844− 258y + 1111y2 − 1028y3 + 2190y4 − 3119y5 + · · · .

The first series may be approximated by a rational function of

type (1, 2)

700 + 227.661y

1 + 0.839y− 1.06y2
·

Substitution of variables as per y = x/(1+x2) and subsequent division

by 1 + x2 gives

700x2 + 227.661x+ 700

x4 + 0.839x3 + 0.936x2 + 0.839x+ 1
·

In like manner, the second series gives

844x2 + 452.096x+ 844

x4 + 0.841x3 + 0.940x2 + 0.841x+ 1
·

I leave out the final part of the calculation which would proceed in the

very same manner we have already seen. It will be enough to observe that

the angles calculated from the roots of the denominators are in both cases

very close to one another.

At the end of the analysis of Lagrange’s paper we are forced to conclude

that, from a numerical point of view, it does not proffer many results

that might be applied to concrete cases. The numerical examples we have

considered explain the difficulty one may encounter in applying Lagrange’s

procedures to concrete cases, and the difficulties we met in them justify

the perplexities expressed in § 1.3.
But the mastery Lagrange shows in dealing with the correspondence

(d0, d1, d2, . . .) �−→ f

is most impressive. Not only is he able to see how the usual operations

reflect themselves in both sides of the correspondence, he also succeeds in
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predicting the effects of substituting variables and of other sophisticated

manipulations. I think that, without being anachronistic, I may indeed

conclude this analysis of Lagrange’s essay by emphasising how powerful

and modern his technique is when manipulating formal power series.

Even if Lagrange did not give a theoretical foundation to the theory of

generating functions, a task it would befall to Laplace to accomplish, he

made manifest, in practice, the great interest that may attach to this

aspect of mathematics.
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des sciences, 38–39), Paris: Société française d’histoire des sciences et des
techniques, 1992.



LAGRANGE’S ESSAY 233

PEARSON (K.)
[1978] The history of statistics in the 17th and 18th centuries, ed. by E.S. Pearson,

London and High Wycombe: Charles Griffin, 1978.

PEPE (L.)
[1986] Sull’edizione delle opere di Lagrange, in E. Giusti, L. Pepe (eds.), Edizioni

critiche e storia della matematica. Atti del Convegno, Pisa: Ets, 1986.
POISSON (S.-D.)
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