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Vector bundles on Riemann surfaces and Conformai Field Theory 

Arnaud B E A U V I L L E ( * ) 

Introduction 

The main character of these lectures is a finite-dimensional vector space, the 

space of generalized (or non-Abelian) theta functions, which has recently appeared 

in (at least) three different domains : Conformai Field Theory (CFT), Topological 

Quantum Field Theory (TQFT), and Algebraic Geometry The fact that the same 

space appears in such different frameworks has some fascinating consequences, which 

have not yet been fully explored. For instance the dimension of this space can 

be computed by CFT-type methods, while algebraic geometers would have never 

dreamed of being able to perform such a computation. 

In the Kaciveli conference I had focussed (apart from the Algebraic Geometry) 

on the TQFT point of view. Here I have chosen instead to explain the CFT aspect. 

The main reason is that there is an excellent account of the TQFT part in the little 

book [A], which anyone wishing to learn about the subject should read. On the other 

hand the CFT is the most relevant part for algebraic geometers, and it is not easily 

accessible in the literature. 

This is an introductory survey, intended for mathematicians with little 

background in Algebraic Geometry or Quantum Field Theory. In the first part 

I define a rational CFT as a way of associating to each marked Riemann surface 

a finite-dimensional vector space, so that certain axioms are satisfied. I explain how 

the dimensions of these spaces can be encoded in a finite-dimensional Ζ-algebra, 

the fusion ring of the theory. Then I consider a particular RCFT, the W Z W model, 

associated to a simple Lie algebra and a positive integer, and I show how the 

dimensions can be computed in that case. 

In the second part I try to explain what is the space of non-abelian theta 

functions, and why it coincides with the spaces which appear in the W Z W model. 

This allows to give an explicit formula for the dimension of this space. Then I discuss 

how such a formula can be used in Algebraic Geometry. 

I would like to thank the organizers of the Conference for providing such a warm and 

stimulating atmosphere during the Conference - despite all the material difficulties they had 

to face. 

(* ) Proceedings de la Conference "Algebraic and Geometric Methods in Mathematical Physics", 

Kaciveli (Ukraine), 1993. 
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Part I : Conformai Field Theory 

1. The definition o f a R C F T 

There are various definitions in the literature of what is (or should be) a 

Rational Conformai Field Theory (see e.g. [B-K-Z], [F-S], [M-S 1], [S]) ; unfortunately 

they do not seem to coincide. In the following I will follow the approach of [F-S], i.e. 

I will deal only with compact algebraic curves. 

I suppose given an auxiliary finite set Λ , endowed with an involution λ ι—̂  λ* 

(in practice Λ will be a set of representations of the symmetry algebra of the 

theory). By a marked Riemann surface (C,p, λ) I mean a compact Riemann 

surface (not necessarily connected) C with a finite number of distinguished points 

ρ = ( p i , . . . , p n ) , each ρ,· having attached a "label" Aj G Λ . Then a RCFT is 
—• 

a functor which associates to any marked Riemann surface (C,p, λ) a finite-

dimensional complex vector space Vc(p, λ) , satisfying the following axioms : 
A O . V p i ( 0 ) = C (the symbol 0 means no marked points). 

A 1· There is a canonical isomorphism 

V C ( P , A ) - ^ V C ( P , A * ) 

with λ* = ( λ ΐ , . . . , λ * ) . 

A 2. Let (C,p, λ) be the disjoint union of two marked Riemann surfaces ( Ο ' , ρ ' , λ ' ) 

and ( C " , p " , A " ) . Then 

V C (P , λ) = V c ( p ' , λ ') ® V c » ( p " , λ") . 

A 3· Let (Ci)teD be a holomorphic family of compact Riemann surfaces, parametri­

zed by the unit disk D c C , with marked points Pi(i),... ,p n (* ) depending 

holomorphically on t (fig. 1 below). Then for any t € D there is a canonical 

isomorphism 

V C l ( p t i ) , A ) ^ V C n ( p r O ) , A ) . 

A 4· Same picture, but assume now that the "special fibre" Co acquires a node s 

(fig. 2a and 26); we assume that the points p*(0) stay away from s. Let Co be 

the normalization of Co , i.e. the Riemann surface obtained by separating the two 

branches at s to get two distinct points s' and s" . There is an isomorphism 

V c ( ( p ( i ) , A ) - ^ £ v 5 o ( j ï ( 0 ) , S V ' ; λ, ν, ν*) . 
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There are a number of compatibilities that these isomorphisms should satisfy, 

but we won't need to write them down in this lecture. Let me just mention that they 

are most easily described in the language of vector bundles over the moduli space of 

marked Riemann surfaces : for instance A 3 means that the spaces Vc(p ,A) form 

a projectively flat vector bundle over the moduli space when (C,p) varies. 
—• 

The physicists usually want the spaces Vc(p , λ) to be hermitian, with the 

above axioms suitably adapted. I will not adopt this point of view here. 

2. Physical interpretation 

In this section I would like to discuss in a very informal and sketchy way 

why these spaces appear in physics. We are considering a quantum field theory in 

dimension 1 + 1, so space-time is a surface Σ that we assume to be compact (and 

oriented). We are given a certain type of geometric objects, that the physicists call 

fields : these may be functions, vector fields, connections on some vector bundle... 

One of the most basic objects in the theory are the correlation functions, which assign 

to any finite collection of fields Αχ , . . . , A n located at distinct points z\ ..., zn on 

Σ a number ( A i ( z i ) . . . A n ( z n ) } . Physically, each field A; corresponds to some 

observable quantity (energy, momentum...); intuitively (and very roughly) we may 
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think of (Αχ(ζχ) . . . An(zn)) as the expectation value of the joint measurement of 

these quantities at the given points. 

These correlation functions are usually defined in terms of Feynman integrals, 

for which no mathematically correct definition is known (in fact what we are trying 

to do here is to bypass the Feynman integral by formulating its main properties 

as axioms). These integrals involve a metric on the surface Σ , but if the theory is 

conformai they actually depend essentially only on the conformai class of the metric 

- i.e. on a complex structure on Σ , which we see as a point m in the moduli space 

of Riemann surfaces. 

The symmetry algebra of the theory acts on the space of fields; let me 

assume that each field A2- belongs to an irreducible representation λ, (these are 

called "primary fields"). From the behaviour of the Feynman integral, the physicists 

conclude that 

( A i ( z i ) . . . An(zn)) =< vA(z,m)\vA(z,m) > 

where vA(z, m) is an element of V s m ( z ; A ) which depends holomorphically on ζ 

and m (more precisely, vA is a holomorphic section of the projectively flat vector 
—* 

bundle formed by the V £ m ( z , λ) ) ; here < | > denote the scalar product on the 

hermitian vector space V s m ( z , λ ) . From the known properties of the correlation 

functions one may deduce that the spaces V c ( z , λ) must satisfy A O to A 4 (see 

[F-S]). 

Let me conclude this section with an important warning : in the physical 

literature the correlation functions are often normalized so that one gets 1 when 

there are no fields. Here we consider unnormalized correlation functions, which means 

that when no field is inserted we get the partition function of the theory - so this is 

somehow the most important case. We will see later that in algebraic geometry also 

the corresponding vector spaces V c ( 0 ) play a prominent part. 

3. The fusion ring 

In this lecture I will be interested only in the dimension of the spaces Vc(p , λ) 

(this is why I didn't care to be precise about the isomorphisms involved in the 

axioms). Observe that as a consequence of A 3 this dimension does not change 

when one deforms (holomorphically) the surface and its marked points; therefore 

it depends only on the genus g of C , and of the set of labels (λχ , . . . , λ η ) (the 

order is irrelevant). It is convenient to introduce the monoid of formal sums 

Λχ + . . . + λ η for η > 0 , λχ, . . . , λ η G Λ ("free monoid generated by Λ " ) . For 
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χ = λ χ + . . . + λ η 6 Ν ( Λ ) , we put 

N < ? 0 ) "·= dim Vc(pi , . -. , p n ; λ ι , . . . , λ η ) , 

where C is any Riemann surface of genus g with η arbitrary (distinct) points 

Pi ? · · · » Pn · So we can view Ng as a function from into Ν . Let us write the 

consequences of our axioms. A 0 and A 1 give respectively : 

(1) No(0) = 1 and N f l(x*) = N a ( x ) 

(we have extended the involution À ι—> λ* to Ν^Λ^ by linearity). 

A 3 has been already taken into account. As for A 4, there are two cases to 

consider (fig. 2a and 26). In case a), the normalization Co has genus g — 1, so we 

get : 

(2) 

In case δ), Co is the disjoint union of two smooth curves C and C" , of genus 

g1 and g" respectively, with gf + g" = g ; the curve Co is obtained from Co by 

identifying s* G C with s" G C" . Some of the marked points (p^) of C 0 lie on 

C , while the others are on C" ; let xf = ^ λ ζ , χ" = Xj . Using A 4 and 

A 2 we get 

( 3 ) Νβ(χ' + Χ") = Σ ® 9 ' ( Χ ' + V ) ® 9 " ( Χ " + V*) • 

Clearly formula (2) allows to compute all the 's by induction starting from 
No , so the problem is to compute the function No : Ν^Λ^ — • Ν . For the case g = 0 
the above relations read 

These relations (together with (2)) are called the fusion rules. We are now 

faced with a purely combinatorial problem : can we describe in some simple way 

all functions satisfying these identities ? Here is the elegant solution found by the 

physicists. 

Let me define a fusion rule on Λ as a function Ν : Ν<Λ> -* Ζ satisfying (F 0) 

to (F 2) ; I will assume moreover that Ν takes at least one positive value on Λ . 

I will also assume that Ν is non-degenerate in the sense that for each À 6 Λ , there 

exists an element χ of such that Ν(λ + x) φ 0 (otherwise one can forget this 

λ and consider the restriction of Ν to Λ — {À} ). 
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Kg(x)=Y/Kg-1(x + \ + X*). 

(F 0) No(0) = 1 ; 

(F 1) No(x*) = No(z) for every x G 

Ν(Λ) . 
(F 2) N 0 (x + y) = Σ N 0 (x + v) N 0 (y + v*) for x ,y in 

Ν (Λ). 



Let us denote by Τ the free abelian group Z^ generated by Λ ; we will 

consider Λ as a subset of Τ. 

Proposi t ion 3.1 There exists a one-to-one correspondence between fusion rules 

on A as above and multiplication maps Τ ®z Τ Τ with the following properties : 

- Τ is a commutative ring, with a unit 1 G Λ ; 

- let t : Τ —» Ζ be the Ζ-linear form such that i ( l ) = 1, ί(λ) = 0 for λ G Λ , 

Α φ 1 . Then Λ is an orthonormal basis for the bilinear form <x \ y>:= t(xy*) . 

The correspondence is as follows : given Ν , the multiplication on Τ is defined 

by 

( 4 ) λ · μ = ^ Ν ( λ + μ + ι/*)ι/ . 

Conversely, starting from the ring Τ, we define Ν by 

Ν(λ 1 + . . . + λ η ) = ί ( λ 1 . - . λ η ) . 

It is not difficult to check that the two constructions are inverse of each other : I refer 

to [B 3] for a detailed proof. • 

So to each CFT is associated a commutative ring Τ, the fusion ring of 

the theory. It carries a ring involution * , and a scalar product < | > satisfying 

<xz I y >=<x I z*y > , with an orthonormal basis containing 1. The structure of 

these rings is quite subtle. However, once we extend the scalars from Ζ to C , it 

becomes essentially trivial : 

Lemma 3·2 The ring To := Τ'®ζ C is isomorphic to the product ring C n , 

with η = Card(A) . 

Proof : Extend the bilinear form < | > on Τ to a hermitian scalar product on 

To · For any χ G Τ, let mx denote the endomorphism y ι-> xy of To . The formula 

<yx I z>=<y I x*z> implies that the adjoint endomorphism of mx is mx* ; since 

the endomorphisms mx commute, they are normal, hence diagonalizable, and the 

C-algebra To is semi-simple. • 

Let Σ be the spectrum of To , that is the (finite) set of characters 

( = ring homomorphisms) Τ —» C . There is a natural homomorphism of C-algebras 

Φ : To —• C s mapping χ G Τ to (χ(χ))χ£Σ · One can rephrase the lemma in a more 

intrinsic way by saying that Φ is an isomorphism of C-algebras. 

For any χ G JF, let m x denote the endomorphism y \-+ xy of JF. Then the 

endomorphism Φ w,x Φ - 1 of C s is the multiplication by Φ(χ) ; in the canonical 
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basis of C s , it is represented by the diagonal matrix with entries ( χ ( χ ) ) χ Ε Σ · This 

implies in particular Trrnx — Σ Χ£ΐ; X ( X ) · ® N ^ e ° ^ β Γ hand, from the relation 

Χμ = Ν(λ + μ + ι/*) ν = Σ ν 

one gets Τττηχ = Σ „ £ Α t(Xvv*) — ί(Χω), where ω is the element ΣΑΕΛ ^λ* °f f · 

By linearity this gives 

(5) t(xiü) = Ύττηχ — ^ χ(χ) 

for all χ G · Since χ (ω) = Σ Λ € Λ | χ (λ) | 2 > 0 , the element ω is invertible in . ^c 5 

replacing χ by χω~λ gives 

< ( I ) = V Î Ë 

Let us now commute N f f : from (3) we get by induction on 

Ν 9 (λ ι + . . . + λ η ) = Σ Ν 0 ( λ 1 + . . . + λ η + ι/ 1 + ι/Γ + . . . + ^ + ^ ) 

i>i,...,vg€A 

ui,...,vg£A 

comparing with (5) we obtain 

Ν,(λχ + . . . + λ η ) = Σ χ(λχ) . . . χ ( λ η ) χ ( ω ) ^ 1 . 

In conclusion : 

Proposition 3.3.— Let (Ο,ρ ,λ) be a Riemann surface of genus g with η marked 
points. Then for any RCFT 

dim VCCP, λ) = Σ Χ ( λ 0 · · · Χ ( λ " ) ^ ω ) 9 ~ 1 

where Σ is the set of characters of the fusion ring, and χ (ω) = X)>Gyv l x ( ^ ) | 2 · • 
—• 

Thus we will be able to compute the dimensions of the spaces Vc(p , λ) 

once we know explicitely the characters of the fusion ring - or equivalently the 

isomorphism jFc —* C E . 

4. The Verlinde conjecture 

The physicists use an equivalent, but slightly different formulation of the 

Proposition. We have seen in lemma 3.2 that the endomorphisms mx (x G Fe) 
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form a commutative subalgebra of End(jFc), stable under adjunction. Such an 

algebra is diagonalizable in an orthonormal basis; in other words, there exists a 

unitary matrix S = (βχμ)χίμ£Α such that the matrix Ax : — S m x S _ 1 is diagonal for 

every χ Ε Τ (here we still use the notation mx for the matrix of the endomorphism 

mx in the basis Λ ). The physicists use to say that the matrix S "diagonalizes the 

fusion rules". 

Fix such a matrix S . For λ Ε Λ , χ Ε Τ, let X\(x) be the diagonal coefficient 

( Δ χ ) λ λ · Clearly χ λ is a character of Τ, and we get in this way all the characters. 

So the choice of the matrix S provides a bisection Λ Σ . Moreover the characters 

χ χ have a simple expression in terms of S : the equality SmM = AßS , for μ Ε Λ , 

is equivalent to 

Σ S * »
 N 0 + Ρ + Ο = ΧΧ(Μ) S A P 

Ν 

for every λ, ρ Ε Λ . Take ρ — 1 ; from ( 4 ) we get N(l + μ + ι/*) = 8μν , hence 

Let us express Proposition 3 .1 in terms of S . Replacing S by DS , where D 

is a diagonal unitary matrix, we can suppose that the numbers SAI are real positive. 

Since S is unitary we have 

Χ λ Μ = Σ Ι Χ λ ( ^ ) ! 2 = Σ = ' 

and therefore 

Ν 9 ( λ 1 + . . . + λ ρ ) = Σ % ^ ; 

this is the formulation usually found in the physics literature. 

Let me know explain the original Verlinde conjecture. I have to be sketchy 

here because I ha\̂ e not formulated precisely the rules that the isomorphisms which 

appear in the axioms A 0 to A 4 should obey. 

Let Ε be an elliptic curve, which we write as the quotient of C by a lattice 

Ζ + Z r , with τ Ε H (Poincaré upper half-plane). In this way H parametrizes a 

(universal) family of elliptic curves. Since for each 7 Ε SL2(Z) the curves corre­

sponding to ητ is isomorphic to E, axiom A 3 provides an action of SL2(Z) on 

V E ( 0 ) · This action should be linear (or at least projective), and unitary for the 

natural hermitian metric of V E ( 0 ) · 

On the other hand, let us degenerate Ε into P 1 with 2 points p , p* 

identified. Axiom A 4 gives an isomorphism V E ( 0 ) 0 λ Ε Λ Vpi(p,p*; λ, λ*) , 

which again must be unitary. We know that Vpi(ρ,ρ*; λ, λ*) is one-dimensional; 

actually, because of A 4 it should have a canonical generator, so we get a unitary 
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isomorphism V E ( 0 ) —* · Putting things together we obtain a unitary action of 
S I J 2 ( Z ) onto To . This action can usually be written explicitely : for instance when 

the symmetry algebra is a Kac-Moody algebra (as in the W Z W model that we will 

study below), it corresponds to the usual action of S L 2 ( Z ) on the characters of the 

representations parametrized by Λ . In any case, the conjecture is : 

Verlinde's conjecture.— The matrix S = ^ ^ ^ acting on To diagonalizes 

the fusion rules. 

I must say the current status of the conjecture is not clear to me. A proof 

appears in [M-S 2], but there seems to be some doubt among the experts. Moreover 

it is not obvious that the axioms of a RCFT given in [M-S 1,2] coincide with ours. 

5. The W Z W model 

Of course the above analysis is interesting only if we can exhibit examples 

of theories satisfying our axioms. A basic example for the physicists is the Wess-

Zumino-Witten (WZW) model. It is usually defined through a Feynman integral ; in 

our framework, the rigorous construction of these models and the proof that they 

satisfy axioms A 0 to A 4 have been carried out in the beautiful paper [T-U-Y]. 

The W Z W model is associated to a simple complex Lie algebra 0 and a 

positive integer £ (the level). We choose a Cart an subalgebra f)C 0. Recall that 

the irreducible finite-dimensional representations of 0 are parametrized by certain 

linear forms on f) called the dominant weights (in the case 0 = £ l r ( C ) , we take for f) 

the subspace of diagonal matrices ; the dominant weights are the linear combinations 

rtiSi where ε% is the linear form Η H-> Η;; and the rti 's are integers satisfying 

1̂ > RI2 > . . . > n r _i ). We denote by P_|_ the set of dominant weights; for λ G P+ , 

we let V A be the corresponding representation. We define the level of V A as the 

integer (λ, 0V) , where 0V is the coroot associated to the highest root of (0, fy) - for 

0 = s l r ( C ) and λ — ̂ η,-ε,· as above, the level is η χ . 

The set of dominant weights of level < ί is finite; this will be our auxiliary 

set Λ . For λ 6 P^ , the dominant weight λ* associated to the dual representation 

of V A still belongs to P^ ; this defines the involution on Pf . 
—* 

To define the spaces Vc(p, λ) for a connected Riemann surface C , we choose 

an auxiliary point q £ C distinct from the pi 's, and a local coordinate ζ at q (the 

construction will be independent of these choices). We denote by A c the algebra of 

regular functions on C — q - that is, functions which are holomorphic in C — q and 

meromorphic at q . We endow 0 ® Ac with the obvious Lie algebra structure given 

by [X (g) / , Y ® g] = [Χ, Y] ® fg . We will define below a natural representation Tie 
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of g ® Ac ; on the other hand, 0 ® Ac acts on each VA, by (X ® / ) · υ = f(pi)Xv , 
hence on the tensor product := V\x ® . . . ® VAu . We put 

Vc(p, A) := H o m g 0 A c ( ^ , V j ) 

To explain what is %£ , let me first recall the definition of the affine Lie 

algebra 0 associated to 0 (I refer to [K] for the few facts I will use about Kac-

Moody algebras; the reader may take them as a black box). Let C( (z ) ) denote the 

field of meromorphic (formal) Laurent series in ζ ; we put 0 = ( 0 ® C((z) ) ) ® Ce , 

the bracket of two elements of 0 ® C((z)) being given by 

(6) [X®/,Y®flf] = [X,Y]®/<7 + c • (X IY) R e s o l d / ) , 

where ( | ) is the normalized Killing form ( (A | B) = Tr AB for 0 = s I r (C) ). 

Kac-Moody theory tells us that 0 admits a unique irreducible representation 

Hi , called the basic representation of level t , with the following properties : 

a) The central element c acts by multiplication by t ; 

b) There exists a non-zero vector ν in Τίι annihilated by 0 ® C[[z]] . 

Let U~ be the subalgebra of End(?1^) spanned by the elements X ® 2 " ~ p 

with ρ > 1 ; let XQ G 0 be an eigenvector for the adjoint action of f) w.r.t. the 

highest root θ (for 0 = s l r ( C ) , X# is the elementary matrix E i r ) . Then 

c) As a U~-module, 7ίι is spanned by the vector υ , with the only relation 

(Xe®z-1)i+1v = 0. 

Let us go back to our situation. By associating to each function / G Ac 

its Laurent expansion at q , we get an embedding Ac c —• C ( ( z ) ) , hence also 

an embedding of Lie algebras 0 ® Ac β —• 0 ® C((z)). The Residue theorem and 

formula (6) imply that 0 ® Ac is also a Lie subalgebra of 0, hence 0 ® Ac acts 

on Τίι as required. 

Let me now state the main result of [T-U-Y] : 

Proposi t ion 5.1.— The spaces Vc(p, λ) = Ηοπι 0 ®Α α (Ή£, V^) satisfy the axioms 
A O <o A 4 , and therefore define a RCFT. • 

We will denote by 7^(0) the corresponding fusion ring. What can we say 

about this ring? The spaces Vc(p , λ) are quite difficult to compute in general, but 

the situation is simpler when C = P 1 : the ring Ac is just the polynomial ring 

C [ ^ _ 1 ] , so Vpi(p, λ) is the space of maps Τίι —> which are both 0-linear and 

U~-linear. By property c) above such a map is determined by the image υ' of υ , 

with the only relations 0 · υ' = 0 and (X# ® ζ - 1 / 4 " 1 · υ' = 0 . Therefore : 

Proposi t ion 5.2.— Vpi(p, λ) is the subspace of elements of which are 

annihilated by 0 and by (X# ® z - 1 ) ^ " 1 . • 

137 



To explain the significance of this result, consider the situation when i —» oo . 

The set Ρ> becomes the (infinite) set P_|_ parametrizing all irreducible (finite-

dimensional) representations of 0. The condition of annihilation by (X# ® z"1)^1 

is always satisfied for £ large enough, since the action of X# on any representation 

is nilpotent. So the limit space V ^ ^ ( p , A ) is simply the 0-invariant subspace of 

. In particular, we find 

Ν(λ + μ + ν*) = dimHom f l(V,,, V A ® Υ μ ) 

Write V A ® V M as a sum of irreducible representations V p (possibly with multiplic­

ities). By Schur's lemma H o n ^ V ^ V p ) is 0 for ν ψ ρ, and C for ν = p. Hence 

Ν(λ + μ + ι/*) is (in the limit) the multiplicity of V„ as an irreducible component 

of VA ® V M . In other words, the limit fusion ring Too is the representation ring 
R(g) of 0 : by definition, this is the free abelian group with basis ([VA])AEP+ a n d 

with multiplication rule 

[Υλ] · [νμ] = [V A ® V M ] := V > U V " ] W H E R E V * ® V M = ® N^V„. 

For finite I, we only get Ν(λ + μ + ι/*) < .Hence the product [ V A ] · [VM] 

in the fusion ring 7le(o) is the class of a 0-module V A © V m which appears as a 

quotient (or a submodule) of VA ® V M . We have thus defined a kind of "skew tensor 

product" for representations of level < t , which unlike the usual tensor product is 

still of level < t . Finding a more natural definition of this product, e.g. through the 

theory of quantum groups, is a very interesting question which is apparently still 

open ; such a definition should provide a better proof of the proposition below. 

We see in particular that the natural inclusion of 7^(0) into 7^(0) is not a 

ring homomorphism. It turns out that 7^(0) can be viewed as a quotient of 7£(0) : 

Propos i t ion 5.3 .— There is a natural ring homomorphism π : 7^(0) —> 7^(0) such 

that TT([VA]) = [VA] for each λ G P£ . 

The proof (see [F]) follows from a case by case combinatorial analysis. It is easy 

for the Lie algebras s[r or $p2r , more involved for the other classical Lie algebras; 

to my knowledge it does not even exist for some exceptional Lie algebras. Hopefully 

a more conceptual proof would follow from a better definition of the product in 

TZi(g) as mentioned above. • 

From Proposition 5.3 it is not difficult to write down explicitely the characters 

of 7£^(0) : they correspond to those characters of 7^(0) which factor through π . 

I refer to [B 3] for the general case, which involves some Lie theory. Let me give the 

simplest possible example, namely the case 0 = s l 2 (C) · 
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6. A n example : g = s [ 2 (C) 

In this section we take g = s l 2 (C) ; we denote by S p the p-th symmetric 

product of the standard representation C 2 of g. The Sp 's for ρ > 0 form all 

irreducible representations of g. The tensor product of two such representations is 

given by the Clebsch-Gordan rule 

Sp ® = S p + * Θ S ^ * - 2 Θ . . . Θ Sp~q for ρ > q . 

The level of the representation Sp is ρ (with the notation of § 5, the highest 

weight is ps\ ), so 7^(g) is the free Z-module with basis { S ° , . . . , S ^ } . Working 

out Proposition 5.2 in that case gives the following rule for the product : 

S p o S * = S p ® S * if p + q<£ 

= S 2 i ' p - q Θ S2£-p-q-2 Θ . . . Θ Sp-q if p>q,p+q>t. 

From this it is an easy exercise to check that the fusion ring 7Ζι(&) is the quotient 

of 7£(g) by the ideal generated by [S^ - 1 ] . 

A convenient way of describing the characters of 7£(g) is as follows. Let 

a G C ; for any representation V of g, put X a ( V ) = T r e a v , where äy is the 

endomorphism of V defined by the element ( ^ .̂ J of g. Then v a is a 
y U — ta J 

character of 7£(g), and all characters are obtained in this way. The character χ α  

factors through TZAQ) if and only if it vanishes on [S^ + 1 ] ; an easy computation 
gives 

sm a 
JCTT 

so X a ( S * + *) = 0 iff a is of the form - — - for 1 < k < i + 1. In other words, the 
kir 

characters of the fusion ring TZI(Q) are the characters [V] »—> X a ( V ) for a = ^ ^ , 

(1 < k <£ + l). 
£ 

Recall that the formula for d i m V c ( 0 ) involves the numbers χ(ω) = ^ x ( S p ) 2 

kir 
(the involution * is trivial for $[2 ). Let a = - — - ; a simple computation gives 

e £ 
J2sm2((p+l)a)= - + 1 , 
p=0 

t 
hence χ α ( ω ) = (r + 1)/ sin2 a . Applying Proposition 3.3 we obtain : 

Proposi t ion 6.1.— Let C be a Riemann surface of genus g . For the RCFT 

associated to ^ ( C ) at level I, one has 

f e + 1 1 
d i m V c ( 0 ) = ( - + l)9'1 Y özs • • 
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Part II : Algebraic Geometry 

7 . Classical theta functions : a reminder 

This section contains a brief overview, meant for non-specialists, of the 

classical theory of theta functions. There are plenty of places that the reader 

wishing to learn more may consult, like [B-La] or [A-C-G-H] ; a short and accessible 

introduction can be found in [C]. 

Let me start with some generalities on line bundles and their global sections. 

Let X be a compact complex manifold and L a (holomorphic) line bundle on X . 

We denote by H°(X, L) the space of global holomorphic sections of L ; it is finite-

dimensional. Let s G H°(M,L) . Locally over X we can write s — fr where r is a 

nowhere vanishing section and / is a holomorphic function ; we see in this way that 

s vanishes along finitely many irreducible hypersurfaces D 2 , possibly with some 

multiplicities : we write div(s) = m^D; . 

So we have associated to the pair (L,s) a divisor, that is a (finite) formal 

combination of irreducible hypersurfaces with integer coefficients; moreover this 

divisor is effective, which means that the coefficients are non-negative. Conversely, 

given an effective divisor D , there exists a unique line bundle OÇD) on X and a 

section s G H°(X, 0(D)) , unique up to a scalar, such that div (s) = D . We say that 

(9(D) is the line bundle associated to D . 

Let us denote by Div(X) the group of divisors on X , and by Pic(X) the set 

of isomorphism classes of line bundles on X . The tensor product operation defines 

a group structure on Pic(X) , which is called the Picard group of X . The map 

D 1—» OÇD) extends by linearity to a group homomorphism 

Div(X) — • Pic(X) 

which is surjective if the manifold X is projective. 

Let me now specialize to the case of a compact Riemann surface C . Then a 

divisor is simply a finite sum D = ^ rriiPi , with pi G C ; we put deg(D) := ml . 

It is easy to see that the homomorphism deg : Div(C) — • Ζ factors through 

Pic(C) , so we have an exact sequence 

0 -> JC —-> Pic(C) ^ Ζ -> 0 . 

The group JC which parametrizes line bundles of degree 0 on C has a natural 

holomorphic structure; it is called the Jacobian of C , and is certainly the most 

fundamental object associated to the Riemann surface C . It is a complex torus, i.e. 

the quotient of a complex vector space V by a lattice Γ : in our case we take for V 

the dual Ω* of the space of homolomorphic 1-forms on C , and for Γ the homology 
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H i ( C , Z ) , embedded in Ω* by associating to a loop 7 the linear form J on Ω 

(the fact that this complex torus parametrizes in a natural way the line bundles 

of degree 0 on C is a translation in modern language of the classical Abel-Jacobi 

theorem). 

The complex torus JC = V / Γ has the extra property of having a principal 
polarization, that is a hermitian form H on V whose imaginary part takes integral 

values on Γ and defines a unimodular alternate form on Γ (here Η will be the 

dual form of the hermitian form (α, β) ι-> Jc ä Λ β on Ω ; the integrality property 

follows from Poincaré duality). 

What makes a polarization interesting is that it allows to define beautiful 

functions on V . By the maximum principle we cannot expect any interesting 

holomorphic function on V periodic with respect to Γ , but we can look for quasi-
periodic functions, namely those which satisfy 

(7) θ(ζ + 7) = εΊ(ζ) θ(ζ) for all ζ G V, 7 G Γ . 

for a certain system of nowhere vanishing functions ( e 7 ) 7 ç p on V . In order for (7) 

to have solutions this system must necessarily satisfy 

( 8 ) e 7 +*(z) = ey(z + à)'e6(z) . 

For a general lattice Γ C V ( 8 ) will have only uninteresting solutions. However, if 

we have a (principal) polarization Η , we can take 

(9) εΊ(ζ) = ε ( 7 ) * e ^ H ^ + ï ) 

where & is a positive integer, and ε : Γ —• C* is any map satisfying e(j + δ) = 
£(7) ε(6) e

2 7 r ^ m H ( 7 ^ ) (the particular choice of ε is essentially irrelevant, since one 

passes from one choice to another by a translation ζ »—> ζ + a). Then (7) has 

solutions, which are called theta functions of order k ; they form (for a fixed ε ) 
a vector space of dimension k9 . These functions have a simple explicit description 

as convergent series, at the same time they encode a large part of the geometry of 

the torus. 

The theta functions can be naturally interpreted as sections of a line bundle 

on V / Γ . To explain this, notice first that any system of functions ( e 7 ) satisfying 

( 8 ) defines a natural action of Γ onto V x C by 

7 - ( z , i ) = (2 + 7,e 7(2:)t) . 

This action is free, linear in the fibres, and it makes the projection π : V x C —> V 

equivariant. Let us denote by Ce the quotient variety (V x C)/T . We have a 
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commutative diagram 

V X C Ce 

π 

ν 

π 

V / Γ 

and Ce is (via π ) a line bundle over V / Γ . The sections of this line bundle 

correspond in a one-to-one way to the sections of π which are Γ-equivariant ; but 

the condition for a section ζ »—• (ζ, θ (ζ)) to be equivariant is exactly (7). In other 

words, solutions of (7) with respect to the system ( e 7 ) correspond in -a natural 

one-to-one way to holomorphic sections of Ce . In particular, let us consider the 

system ( e 7 ) given by (9) with k = 1, for a fixed ε ; let us denote simply by C the 

corresponding line bundle Ce . One checks at once that the system (e*) corresponds 

to the line bundle Ck ; hence theta functions of order k correspond in a natural 

way to holomorphic sections of Ck . 

The case k ~ 1 is particularly important. In that case the line bundle C has 

only one non-zero section (up to a scalar), whose divisor is therefore canonically 

defined up to translation : it is called the theta divisor of the torus. 

AU I have said so far applies to any complex torus with a principal polariza­

tion. A special feature in the case of the Jacobian of a curve C is a simple geometric 

interpretation of the theta divisor. Recall that JC parametrizes line bundles of 

degree 0 on C . Fix a line bundle M of degree g — 1 on C and put 

0 M := { L G JC I H ° ( C , L ® M ) ^ 0 } . 

Then Θ Μ is a theta divisor on JC (Riemann's theorem). So in this case we can 

define the theta divisor either as a geometric locus, or by an equation given by an 

explicit power series. This interplay between the analysis and the geometry of theta 

functions gives rise to one of the most beautiful chapters of Algebraic Geometry ; I 

have to refer e.g. to [A-C-G-H] or [B-La] for an introductory account. 

8· Non-abelian theta functions 

Theta functions play such a prominent role in the theory of Riemann surfaces 

that it is natural to look for generalizations. In the influential paper [W], A. Weil 

observes that topologically JC is just the space of 1-dimensional unitary represen­

tations of 71"!(C) , i.e. Hom(7Ti(C), S 1 ) ; he proposes as a natural generalization the 

space of equivalence classes of r-dimensional unitary representations of 7Ti(C) . It is 
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only much later than a celebrated theorem of Narasimhan and Seshadri provided this 

space with a natural complex structure (depending on the complex structure of C ) : 

this analytic space Uc(r) is a projective variety, which parametrizes holomorphic 

vector bundles of rank r and degree 0 on C (the degree of a rank r vector bundle 

Ε is defined as the degree of the line bundle Λ Έ ). Actually a new phenomenon 

occurs in rank > 1 : in order to make the above assertion correct, and also to obtain 

a reasonable moduli space, one must exclude some degenerate vector bundles, and 

consider only those which are semi-stable, i.e. which do not contain subbundles of 

degree > 0. 

The variety UQ(T) is, up to a finite étale covering, a product of JC with the 

subvariety SUQ(T) parametrizing semi-stable vector bundles of rank r with trivial 

determinant; since we know pretty well the Jacobian part, it is more convenient to 

study SUc(r), which is somehow, together with JC , the primitive building block. 

So we now have projective varieties SUc(r) which by all means constitute 

natural non-abelian generalizations of the Jacobian. What should be the general­

ization of theta functions, however, is not so clear : we do not know what should 

replace the presentation of JC as V / Γ . The varieties SUc{r) are simply connected, 

so we cannot define quasi-periodic functions. But we can still look at line bundles 

on SU EIS) and their global sections. The classification of line bundles on SUc(r) 

turns out to be very simple. Note that the geometric definition of the theta divisor 

extends in a natural way to the higher rank case : for any line bundle M G J5""1 (Χ) , 

define 

Θ Μ = {Ε G SUx(r) I H°(X, Ε ® M) φ 0} . 

This turns out to be a divisor on SUx{r). The associated line bundle C := 0 ( Θ Μ ) > 
called the determinant bundle, does not depend on the choice of M . It is in fact 

canonical, because of the following result [D-N] : 

Proposi t ion 8.1.— Any line bundle on SUc{r) is a power of C . • 

By analogy with the rank one case, the global sections of the line bundles Ck 

are sometimes called generalized (or non-abelian) theta functions. The link between 

these spaces and Conformai Field Theory is provided by the following result ([F], 

[B-L]) : 

Theo rem 8.2 .— The space H°(5Wc(^) 5 &) of i t h order generalized theta functions 

is naturally isomorphic to the space V c ( 0 ) associated to the Lie algebra 5 ^ ( 0 ) and 

the level t. 

Recall the definition of V c ( 0 ) · we choose a point q G C and let Ac be the 

algebra of regular functions on C — q ; then V c ( 0 ) is the subspace of the dual Ή\ 

annihilated by the Lie algebra s l ^ A c ) · 
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Let me give a very sketchy idea of the proof in [B-L]. 

1) The key point is that a vector bundle with trivial determinant is algebraically 

trivial over C — q (Hint : show that such a bundle has always a nowhere vanishing 

section, and use induction on the rank). We consider triples (Ε,ρ, σ ) where Ε is a 

vector bundle on C , ρ a trivialization of Ε over C — q and σ a trivialization of. Ε 

in an open disk D centered at q. Over D — q these two trivializations differ by a 

holomorphic map D — q — • G L r ( C ) which is meromorphic at q , that is given by a 

Laurent series 7 ( 2 ) 6 G L r ( C ( ( » ) ) . Conversely given such a matrix 7 ( 2 ) one can 

use it to glue together the trivial bundles on C — q and D and recover the triple 

(Ε, ρ, σ ) . Since we want 7 ( 2 ) in SL r (C( (2 : ) ) ) we impose moreover that Arp and 

Λ Γ σ coincide over D — q . This gives a bijection of the set of triples (Ε, ρ, σ ) (up to 

isomorphism) onto S L r ( C ( ( z ) ) ) . 

2) To get rid of the the trivializations, we have to mod out by the automorphism 

group of the trivial bundle over D and C — q . We get the following diagram : 

{Ε, ρ, σ) SL r (C ( (z) ) ) 

Q := SLP(C((s)))/SLr(C[[*]]) 

{ E } SLP(A c)\SL r(C((z)))/SL r(C[[z]l) . 

So the set of isomorphism classes of vector bundles on C with trivial de­

terminant appears in one-to-one correspondence with the set of double classes 

S L r ( A c ) \ S L r ( C ( ( z ) ) ) /SL r (C[[z] ] ) . With some technical work one shows that this 

bijection is actually an isomorphism between algebro-geometric objects. The appro­

priate objects here are slightly more complicated than algebraic varieties : the quo­

tient Q = S L r ( C ( ( z ) ) ) /SL r (C[[^]]) is an ind-variety, i.e. the (infinite-dimensional) 

direct limit of an increasing sequence of projective varieties ; the double coset space 

S L r ( A c ) \ ô is isomorphic to the algebraic stack of rank r vector bundles with trivial 

determinant. For simplicity I will ignore these technical difficulties and just pretend 

that I have a quotient map of algebraic varieties π : Q —> SUc(r) . We want to 

describe the pull back π*£ of our determinant line bundle to Q . 

3) On a homogeneous space Q = G /H , one associates to any character χ : 

Η —> C* a line bundle L x : it is the quotient of the trivial bundle G x C on G by 
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the action of H defined by h(g, λ) = (gh, \(h)\) . We apply this to the homogeneous 

space Q = S L r ( C ( ( z ) ) ) /SL r(C[[z]]) . The line bundle π*£ does not admit an action 

of S L r ( C ( ( » ) ) , but of a group S L r ( C ( ( z ) ) ) which is a central C*-extension of 

S L r ( C ( ( z ) ) ) . This extension splits over the subgroup SLr(C[[Y]]) , so that Q is 

isomorphic to S L r ( C ( ( * ) ) ) / ( C * χ SL r (C[[z]])) . Then π*£ is the line bundle L x , 

where χ : C* x SL r(C[[z]]) — • C* is the first projection. 

4) A theorem of Kumar and Mathieu provides an isomorphism H°(Q,Lj ) 2 H\ . 

It follows that H°(<SZYc(r), c a n ^ e identified with the subspace of Ή\ invariant 

under S L r ( A c ) . This turns out to coincide with the subspace of Ή\ invariant under 

the Lie algebra ^ ( A c ) , which is by definition V c ( 0 ) · • 

The theorem can be extended to an arbitrary simple Lie algebra g ; the space 

SUQ(T) must be replaced by the moduli space of principal G-bundles on C , where 

G is the simply-connected complex Lie group with Lie algebra g (see [F]). More 

generally, there is an analogous interpretation for the spaces Vc(p , λ) , which has 

been worked out by C. Pauly (to appear) ; it involves the moduli spaces of parabolic 
bundles on the curve C . 

9· A few examples 

The main application of Theorem 8.2 is to give an explicit formula for the 

dimension of H°(<S£/c(r)? ££) · In this final section I would like to explain how this 

formula may be used in algebraic geometry. I will restrict myself to rank 2 vector 

bundles, partly for simplicity and partly because we know much more in this case. 

Proposition 6.1 gives us a formula for h°(C£) := dimH°(5W c (2) ,C £ ) . The 

first values are : 

h°(C) = 2g , h°(£2) = 2g-1(29 + 1) , / i ° (£ 3 ) = 2((5 + V ö ) * " 1 + (5 - V ö ) ^ 1 ) .. 

The first two of these formulas have nice geometric interpretations. Observe 

first that there is a natural map i : JC —> SUc(2) which associates to L G JC the 

vector bundle L φ L - 1 . It is easy to check that the pull back z*£ of the determinant 

bundle is £>(2Θ). 

Proposi t ion 9.1 [Β 1] The pull back map i* : H°(<SWC(2), C) —> H°(JC, 0{2&)) 

is an isomorphism. 

This means that theta functions of order 2 extend (uniquely) to the moduli 

space SUc(2). From this it is easy for instance to give an explicit basis for the space 

H° (5Wc(2 ) ,£ ) . 
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The Proposition is an easy consequence of the formula h°(C) = 2g - the main 

part of [B 1] is actually devoted to an ad hoc proof of the formula in that particular 

case. 

The next number, 2g~l(2g + 1 ) , is well-known from algebraic geometers; it 

is the number of even theta-characteristics on C , i.e. of line bundles κ such that κ2  

is isomorphic to the canonical bundle Kc and dimH°(C, AC) is even. As a matter of 

fact, we can associate to each even theta-characteristic κ the subset D K C <SWc(2) 

consisting of vector bundles Ε such that there exists a non-scalar map Ε —* Ε ® κ . 

It turns out that D K is the divisor of a section dK of C2 , and that the sections dK 

form a basis of H°(<S£/c(2) , C2) [B 2]. The proof uses in a decisive way the formula 

for h\C2). 

I should finally mention that in the rank 2 case there are various proofs of the 

formula using more classical algebraic geometry - the most illuminating probably 

appears in [T], So far none of these proofs has been extended to the higher rank 

case. 
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