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O N THE DEFINITION OF 2-CATEGORY OF 2-KNOTS 

V . M . K H A R L A M O V , V . G . T U R A E V 
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1.INTRODUCTION 

The aim of this paper is to define a 2-category of 2-knots in 4-dimensional 
Euclidean space. The categorical approach to knots and tangles in R 3 intro­
duced in [Tu], [Ye] plays an important role in the construction of 3-dimensional 
topological quantum field theories (TQFT's) based on the theory of quantum 
groups (see [RT1], [RT2]). The category of tangles consists of objects which 
are finite subsets of M considered up to isotopy in M and morphisms which 
are isotopy classes of tangles in Μ2 χ [0,1]. Each tangle has several (> 0) 
bottom endpoints lying inM = S x 0 x 0 and several top endpoints lying in 
Μ = Μ χ 0 χ 1. Such a tangle is regarded as a morphism from the set of its 
bottom endpoints in the set of its top endpoints. For instance, links in R 3 are 
just endomorphisms of the empty subset of M. The composition of morphisms 
is defined by attaching one tangle on the top of another one and compressing 
the result into R 2 χ [0,1]. This category of tangles admits a number of useful 
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modifications. For instance, one may consider oriented tangles, framed tan­
gles, colored tangles, etc. It is important that the category of tangles admits a 
purely algebraic description (in terms of generators and relations or in terms 
of universal properties). It is this fact which allows to use the category of 
tangles in 3-dimensional TQFT's. 

To extend these ideas to surfaces in R 4 it is natural to involve the notion of 
2-category. A 2-category is a category provided with so-called 2-morphisms. 
More precisely, for any two (ordinary) morphisms / : X —• Y, g : X —* Y we 
have a class of 2-morphisms "acting" from / into g. The 2-morphisms are 
subject to two composition operations ο and *. The composition * transforms 
a pair of 2-morphisms f => g and g => h into a 2-morphism f => h. The 
composition ο transforms a pair of 2-morphisms / => g and / ' => g1 with 
source(f') = source(g') = target(f) = target(g) into a 2-morphism / ' / 
g'g. For more details see Section 2. 

The 2-categories seem to be adequate for an algebraic description of surfaces 
in R 4 . The idea is to use as 2-morphisms the isotopy classes of surfaces in 
R 2 x [0,1] χ [0,1] interpolating between a tangle in R 2 χ [0,1] x 0 and a tangle 
in R 2 χ [0,1] x 1. The compositions ο and • of such 2-morphisms are obtained 
by attaching one such surface on the top of another one along the third or 
forth coordinate respectively. 

2-categories of surfaces in R 4 were first considered by J.E.Fisher [F]. De­
spite the simplicity of the underlying ideas, this approach meets an important 
difficulty. Namely, to define the composition * one has to glue a surface in 
R 2 x [0,1] χ [0,1] to a surface in R 2 χ [0,1] χ [1,2] along isotopic tangles in 
R 2 x [0,1] x 1. To perform this gluing one has to fix an isotopy in question. 
In general, different isotopies give rise to topologically different results which 
leads to absence of a correctly defined composition *. The problem is due to 
the fact that the space of tangles isotopic to a given one may have a non-
trivial fundamental group. Note that a similar problem does not come up in 
the lower dimension because for any η > 0 the space of η-point subsets of R 
is contractible. 

To circumvent this problem we have to change the definition of 1-morph-
isms. We use as 1-morphisms the diagrams of tangles in R χ [0,1] considered 
up to a certain equivalence relation. We look for a relation such that the space 
of diagrams equivalent to a given one is simply-connected. There are differ­
ent equivalence relations satisfying this condition. For instance the identity 
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relation (geometric coincidence of diagrams) obviously satisfy this condition. 
However, the resulting 2-categories are too large and can not be described 
in algebraic terms. Thus, our aim is to find an equivalence relation satis­
fying the condition above but leading to a not excessively large 2-category, 
possibly admitting a purely algebraic description. Here we propose such an 
equivalence relation. For each diagram we consider the set A (resp. B) of 
points of local maximum (resp. minimum) of the projection Μ χ [0,1] —• [0,1] 
restricted to the diagram. Both these sets are ordered in accordance with 
the values of the projection. We consider the equivalence relation generated 
by ambient isotopies of diagrams in 1 χ [0,1] preserving the order both in 
A and B. In other words, we consider those isotopies which never exchange 
the levels of two points of local maximum or two points of local minimum. 
Our main result affirms that the space of diagrams equivalent to the given 
one is simply-connected. This leads to a 2-category of surfaces in M 4 which 
seems to be suitable for an algebraic study. Similar to the classical setting 
this 2-category -admits various modifications involving oriented, framed, and 
colored tangles and surfaces. 

The results of this paper and related results were reported by the first 
author at the 56-th RCP in May 1993. This talk also included a discussion of 
the relationships between our work and the tetrahedron equations (see [Za], 
[M-S], [Kh], [F], [K-V], [K-S]). 

We thank D. Bennequin for a helpful discussion concerning the proof of 
Theorem 3.4. 

2. TWO-CATEGORIES 

2.1. The notion of 2-category. The categories we axe interested in are 
strictly associative and have strict units. That is why some authors, see for 
example [K-V], name them strict 2-categones. We omit the adjective "strict" 
and call them 2-categones. 

Let us recall the definition. 
Definition. A 2-category Λ is a collection of : 
(a) three sets 
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Λο, 

whose elements are called respectively objects, 1-morphisms and 2-
morphisms] 

Αι Α2 



(b) four maps 
so,to : Αι —* AQ, 

si,ti : A2 —• Ai, 

SQ,SI and <θι*ι are called respectively source and target maps; 
(c) two maps 

Ιο : Λ> - * Λι,Ιχ : Αι —> >12, 

their images Ιο (Λ),-A € *4ο and Ii(tt),u G *4ι are called identity m or-
phisms and denoted respectively by 1^ and l u ; 

(d) a composition operation for 1-morphisms 

(u, v) *-+ ti ο ν 

defined when u,v verify the condition to(v) = SQ(U); 
(e) two composition operations for 2-morphisms 

(F, G) ^ F ο G, 

(F, G)^F*G, 

the first is defined for any 2-morphisms F,G such that t$si{G) = 
so^i(F), the second for 2-morphisms with t\(G) = si(F). 

It is required that 

(1) ÎQSI = toti, soti = SQSI; 
(2) AQ} AI, SQ,tQ, ο form a category (called the underlying category of A) 

with 2-sided identities 1A, A G *4o> i-e- the composition ο of 1-morph­
isms is associative and the equalities 1B°V> = U = UOIA are verified 
for any 1-morphism u with s0(u) = A,t0(u) = B; 

(3) Αι,A2, Si,ti,* form a category with 2-sided identities lu,u G Αι, 
i.e. the composition * of 2-morphisms is associative and the equalities 
lv*F = F = F*lu are verified for any 2-morphism F with Si(F) = 
u,tQ(F) = ν, 

(4) Ao,A2, s0ti,t0Si, ο form a category with 2-sided identities lu,u = 
IAIA G AQ, i.e. the composition ο of 2-morphisms is associative and 
the equalities lvoF = F = Folu are verified for u = 1^, ν = Iß and 
any 2-morphism F with soti(F) = A,t0si(F) = B\ 

154 



(δ) for any 1-morphisms ν such that to(v) = SQ(U) there is the equality 
luou = lu ° If J 

(6) for any 2-morphisms F,G such that ÎQSI(G) = soti(F) there are the 
following identities 

F ο G = (F ο l t l ( G ) ) * ( l J l ( F ) ο G) = ( l i l ( F ) ο G) .* (F ο l 5 i ( G ) ) . 

As traditionaly, we use symbols u : A —+ Β and Λ —> Β to notate a 1-
morphism u € Ai with Λ = s0(u) and Β = t0(u). A 2-morphism F with 
Si(F) = u,ti(F) = v is notated by the symbol F : u => ν and the pictures 

1Λ 

A 

•ν (XruL 

A 

1 1 

ρ 

A 
TT 

Β 

where s0(u) — A,t0(v) = B. The figures 

A 
F 

and 

Α­ λί A 
I 

ς - ρ. 

5 5 
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serves to indicate the composite F*G and the figures 

A 
Gr . 

• & 
F 

c 

artet 

.A 

t 

G- •C 

serves to indicate F ο G. 
Remark finally that at the situation indicated at the following pictures 

c -

A 
c i . 

F 6 
ρ" . 

c 

A A A 
G 

F F' 

C c c 
(F ' * F) ο (G' * G) = (F ' ο G') * (F ο G), as it follows from the definition of 
2-category, and thus one can give the unique meaning to composites presented 
by this and similar plain cellular and polygonal decompositions. 

2.2. Examples. We sketch several elementary examples. For more examples 
and a detailed discussion, see [K-V]. 

( A ) . At the basic example coming from the theory of categories .4o consists 
of all categories1, Αι of all functors between categories and A2 of all natural 

1 There are several well known ways to overcome the difficulty produced by the fact that 
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transformations of functors. Here, to define the composition * of two natural 
transformations 

T={TL: <p(L) - 1>(L)\L β€}:φ-^φ, 

S={SL: r/,(L) -+ i{L)\L G C} : φ - η, 

where φ, ψ and η are functors from C to M (£, Λ4 G AQ), one takes 

(S*T)L = SLoTL. 

To define the composition ο of two natural transfromations 

U = {UL : <p(L) -> € £ } : y> - Φ, 

Τ = {TM : ψ\Μ) — φ'{Μ)\Μ 6 M) : φ tf', 

where y?, V a r e functors from £ to .M and ^ ' ^ ' are functors from M to jV 
(£,M,J\f G .4ο), orie takes 

( B ) . Another typical example comes from the homotopy theory. There, 
considering points of an arbitrary topological space X as objects, continuous 
pathes as 1-morphisms and homotopies of pathes as 2-morphisms one supplies 
them easily by a structure of 2-category. Two types of composition of 2-
morphisms correspond to two types of decomposition of a rectangle in 2 halfs: 
they are decompositions produced by vertical and horizontal pastings. Indeed 
if, as usually, a path is defined to be a map ξ : I —* X and a homotopy to 
be a map Η : I χ I —• Χ, then the resulting 2-category will be not strict and 
will not satisfy axioms enumerated in 2.1 : thus, in particular, composition 
of 1-morphisms will be not associative. To obtain a true strict 2-category it 
is sufficient to identify pathes and, correspondingly, homotopies differing by 
reparametrization. 

( C ) . A simple example more closed to our needs is provided by scanned 
surfaces in R 4 . This is a category S such that So is formed by finite subsets 

they don't constitute a set. 
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of Ifr, Si by one-dimensional proper submanifolds of χ Δ , Δ being an 
arbitrary non-fixed closed interval in R, and «So by two-dimensional proper 
submanifolds of R 2 χ Δ χ Δ ' , Δ ' being also an arbitrary closed interval. Here, 
to overcome a difficulty analogous to that of the preceeding example, we define 
the composition of 1-morphisms t C R 2 x Δ and ί ^ 1 2 Χ Δ ' only if the end-
point of Δ is the beginning-point of Δ ' (and, certainly, if in addition the 
target oft coincides with the source of f). Taking the same precautions at 
the definition of compositions of 2-morphisms we get a 2-category in the sense 
of 2.1 (i.e. a strict one). 

3. SPACES OF TANGLE-DIAGRAMS 

3.1. Systems of arc and loops. In what follows we denote the closed strip 
R 1 χ [0,1] by Β and its boundary components R 1 χ {1} and R 1 χ {0} by 
respectively Bi and BQ. 

We call a compact subset L of Β a regular system of arcs and loops if it 
verifies the following conditions: L is a 1-dimensional smooth submanifold of 
Β except in a finite number of points, each exceptional point is a transversal 
double point and lies in the interior of J3, each boundary point of L belongs 
to BQ U J5I, and L is nowhere tangent to BQ U B\. It is clear that any regular 
system of arcs and loops can be presented as the image of a proper immersion 
of a disjoint union of intervals and circles. 

A regular system L of arcs and loops is said to be generic if the projection 
Β = R 1 χ [0,1] —* [0,1] restricted to L is a Morse function whose critical 
values are pairwise distinct and neither critical point is a double point of L. If 
the projection Β —> [0,1] restricted to L is a Morse function except in a finite 
number of points which are simple degenerated critical points (i.e. the third 
derivative of the function is φ 0 at these points, while the first and the second 
ones are equal to 0) and if, in addition, neither two local maximum values or 
two local minimum ones are equal, the system L is said to be weakly generic. 

3.2. Tangle-diagrams. A 1-diagram (or a tangle-diagram) is a regular sys­
tem of arcs and loops in Β = R 1 x [0,1] equipped with an overcrossing-
undercrossing mark at each double point; the mark serves to distinguish the, 
so called, upper and the lower branches2. A 1-diagram is said to be generic 

2 Such a definition is originated by the fact that any 1-diagram can be represented as the 
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if the underlying system of axes and loops is generic. If the system is weakly 
generic, then the diagram is called weakly generic too. 

3-3. Spaces of diagrams. The set of 1-diagrams supplied with the C°° 
topology is an infinite dimensional topological space. This space has an infinite 
number of connected components: 1-diagrams belong to the same component 
if and only if they are isotopic3. 

Let us denote the space of all 1-diagrams by D, the subspace of the generic 
diagrams by D° and the subspace of the weakly generic diagrams by D ' . 
Remark, that isotopic generic or weakly generic 1-diagrams may belong to 
different components of D° and respectively D'. For example, 3 diagrams 
shown at Figure 1 belong to 3 different components of D° and to 2 different 
components of D' (the second diagram and the third one are from the same 
component of Df). 

FIGURE 1 

3.4. Theorem. Each component of D1 is simply connected. 
This result is the key point at the construction of 2-category of 2-knots. 

projection of a proper imbedding of a disjoint union of intervals and circles into Β X R, cf. 
3.4 

3 I n other words, we consider the group of C°° ambient isotopies supplied with the C°° 
topology and introduce in the set of 1-diagrams the minimal topology for which the action 
of the group of ambient isotopies is continuous. 
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Remark that the space D° has the same property and thus can replace D/ 

in what follows. We préfère to employ D1 because it has a less number of 
components and thus simplifies the category under construction. Contrary to 
Df and D°, the space D is not simply connected. 

Our proof of the theorem looks as follows. 

Take a general loop in D'. It is represented by a family of weakly generic 
1-diagrams La, or G S1 in Β. The graph of the family is the image of a fiber-
to-fiber map F : I x S1 —+ Β χ S 1 , where . F | / x { a } , a £ S 1 is a parametrization 
of Ζ, α , / being a disjoint sum of segments and circles. This map is a proper 
immersion. 

The composition Ff of F with the projection Β χ S1 — R χ [0,1] x S1 —• 
[0,1] x S1 has, in general, critical points. The critical point set Ce of F' is 
a union of a finite number of disjoint circles in / x S1. The restriction of F' 
to Ct is a topological imbedding locally. The points w7here it is locally not a 
smooth imbedding are pleats of F1 : I x S 1 —• [0,1] x S 1 . At all other points 
the image F'{Ct) is transversal to fibers of [0,1] x Sl —+ S1. 

Each component s of Ct which is not transversal to the fibers of [0,1] x S 1 — 
S 1 contains two and only two pleats b(s),d(s) and bounds in / x S1 a disc 
C(s). One pleat, 6 ( 5 ) , corresponds to a birth of a maximum Ms(t) and a 
minimum ms(t) at a regular point of some La, the other one, d(s) corresponds 
to their death at a regular point of some Lß. The disc is formed by the arc of 
Ltlt G [α,/?] bounded by Ms(t) and ms(t). 

All pleats can be eliminated by induction: there is a loop in D1 homotopic 
to the given one, L a , a G S 1 , and having 2 pleats less. Indeed, the elimination 
is made by an algorithm which selects a minimal pair of pleats, puts the image 
of critical and double points in an elimination position and eliminates the pair 
of pleats by a standard procedure. 

After elimination of pleats, each component of Ce, as well as each compo­
nent of the set Cd formed by the double points of diagrams, becomes embedded 
in [0,1] χ S1 by F* and transversal to fibers. Images of different components 
of Ce U Cd can intersect one another. Again by some algorithmic procedure, 
these intersection points can be eliminated by pairs. After that the loop is 
easily made constant. 

3.5. From diagrams to tangles. In what follows we denote the closed 
3-dimensional strip R 2 χ [0,1] = Β χ R by Κ and its boundary components 
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R 2 χ { 1 } = Βι x R and R 2 χ {0} = B0 x R by respectively i \ x and J\0. 
By a tangle we mean a proper 1-dimensional compact smooth submanifold 

of Κ. A tangle Γ is said to be regular, if: (a) the standard projection φ : Γ —+ 
Β = R 1 χ [0,1] along the second axis of R 2 is a proper immersion, (b) the 
immersion has only finite number of multiple points each being a transveral 
double crossing and lying in Β \ (BQ U BI). If, in addition, the composition of 
the projections θ : Γ —• R 1 χ [0,1] —• [0,1] is a Morse function whose critical 
values are pairwise distinct and neither critical point is a double point of the 
immersion, the tangle is called a generic tangle. 

Thus the image φ(Τ) of a generic tangle is a generic system of arcs and 
loops and thus the tangle gives rise, in a canonical way, to a 1-diagram. The 
tangle is generic if and only if its 1-diagram is generic. 

Finally, we call a weakly generic tangle a regular tangle whose 1-diagram is 
weakly generic. 

Lemma. Tangles having the same 1-diagram are isotopic. Moreover, tangles 
with isotopic 1-diagrams are isotopic. 

Both assertions concern only regular tangles, because by definition a tangle 
presented by a 1-diagram is regular. 

Let us supply the set of regular tangles with the C°° topology and denote 
this space by D. The subspace of generic and weakly generic tangels are 
denoted respectively by D° and & \ 

Theorem. Each component of Df is simply connected. 

Remark that since D° is simply connected too, each component of D° is 
also simply connected. 

4. TWO-CATEGORY OF 2-KNOTS 

In this section we construct a 2-category of 2-knots in R 4 . We denote it by 

4.1. Objects and 1-morphisms. Let us start with a definition of the 
underlying 1-category. 

Objects of Τ are finite subsets of R 1 considered up to isotopies in R 1 . Since 
the only isotopy invariant is the number points, the set of objects, can be 
identified with N. 
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A 1-morphism of Τ is a weakly generic 1-diagram considered up to isotopies 
in the class of weakly generic diagrams. In other words, a 1-morphism is a 
connected component of D ' , see 3.3, i.e. T\ — KQ{D'). 

The source SQ(U) of a 1-morphism u presented by a 1-diagram d is defined 
to be d Π BQ. Similarly, to(u) = d Π Β\. 

Further, to any object A of Τ one puts in correspondance the identity 
morphism I A presented by the diagram d = A χ [0,1]. Finally, to define the 
composition u ο ν of 1-morphisrns u:v such that t0(v) = 5 0(tx), present them 
respectively by 1-diagrarns c, d, put d in the first one-third R 1 χ [0,1/3] of 
the strip Β and c at the last one-third R 1 χ [2/3,1] and then fill the middle 
one-third by an isotopy between the sets constituting the target of d and the 
source of c, see Figure 2. 

FIGURE 2. Composition of two 1-morphisms 

Correctness of the last definition follows from the fact that the configuration 
space of finite subsets of given cardinality in M is contractible (cf. 4.2, where 
the similar arguments used to verify correctness of definitions concerning 2-
morphisms compositions are given in all details). 

Standard arguments4 show that the morphisms 1A,A G J ^ O , are 2-sided 
identities with respect to the composition ο of 1-morphisms and the com-

4 T h e same ones which are used in the construction of the fundamental group. 
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position of 1-morphisms is associative. In particular, we conclude that the 
collection (JF0, T\, s,i, o) forms a category. 

4.2. Two-morphisms. In the category under construction, JF, two-
morphisms are presented by surfaces in Κ x [0,1] = R 2 χ [0, l ] 2 satisfying 
certain boundary conditions. 

To precise the definition, let us consider a compact smooth proper 2-
dimensional submanifold Σ of Κ χ [0,1]. The boundary of such a surface 
is decomposed in 4 parts: 

ί(Σ) = ΣΠ (Ko χ [0,1]), β(Σ) = Σ Π (Κι χ [0,1]), 

and 
8(Σ) = Σ Γ) (Κ χ { 0 } ) , *(Σ) = Σ Π (Α' χ { 1 } ) . 

Such a surface Σ is said to be regular, if 

(1) ί(Σ), β(Σ), s(E) and ί(Σ) are proper 1-submanifolds of, respectively, 
KQ x [0,1],Xi x [0,1],Κ x { 0 } and Κ χ { 1 } ; 

(2) s (Σ) and ί(Σ) are weakly generic tangles in Κ = Κ χ {0} = Κ χ { 1 } ; 
(3) the image of ζ (Σ) , as well as of β(Σ) , under the projection /<o * [0,1] = 

K\ χ [0,1] = R 2 χ [0,1] -+ 5 = R 1 χ [0,1] forgetting the second 
coordinate of R 2 is a graph of an isotopy of a finite subset of R 1 . 5 

By definition: each 2-morphism of the category Τ is represented by a reg­
ular surface; two surfaces Σχ, Σ 2 represent the same 2-morphism if an only if 
they are isotopic in the class of regular surfaces. 

Further, a 2-morphism F being represented by a regular surface Σ, the 
corresponding 1-morphisms 5 1 ( i r ) and t\(F) are realized by the 1-diagrams 
of tangles $(Σ) and ί (Σ) . To define the unity 2-morphism l u , where u is a 
1-morphism, we represent u by the 1-diagram of a weakly generic tangle 7 
and take lu to be the cylinder 7 χ [0,1]. 

Consistence of the preceeding definitions is trivial. And it is clear that the 
maps 5 , i defined above verify the relations ίο$ι = <ο*ι>$ο ι̂ = $ο$ι· 

The remaining 2 definitions are definitions of compositions of 2-morphisms. 

5 T h a t is the case if the images of χ(Σ) and β(Σ) are proper 1-submanifolds of Β = 
R1 X [0,1] and the projection R 1 X [0, l ] —* [0, l ] restricted to these submanifolds has no 

critical points. 
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First, let us define the composition o. Assume that F, G are 2-morphisms 
such that toSi(G) = sç,ti(F). Then there exists a finite set i c i and regular 
surfaces Σ ι , Σ 2 representing 2-morphisms F and G and such that 

e (E 2 ) = ( A x { r } ) x { l } x [ 0 , l ] , 

t ' (E 1 ) = ( A x { r } ) x { 0 } x [ 0 , l ] . 

Put Σ 2 in the first half of Κ x [0,1] = K0 χ [0,1] χ [0,1] by the map 

Ko x [0,1] χ [0,1] — Ko x [0,1/2] χ [0,1], (χ,y, z,t) π- (χ, y, ζ/2,t) 

and Σι in the second half by the map 

Ko x [0,1] χ [0,1] — Ko x [1/2,1] χ [0,1], (χ, y, ζ, t) (*, y, (1 + ζ)/2, t). 

Their union Σ , smoothed if necessary along their common boundary, repre­
sents a 2-morphism. This morphism is independent on the choice of axulliary 
realizations and that is, by definition, F ο G. 

To verify its independence on the choice made at the definition of o, let 
take another representations Σ ' 1 } Σ 2 of F and G with 

e ( E /

2 ) = ( A , x { r , } ) x { l } x [ 0 , l ] , 

2 ( Σ /

1 ) = ( Α / Χ { Γ / } ) Χ { 0 } Χ [ 0 , 1 ] . 

Since Σ^ ,Σ^ are isotopic in the class of regular surfaces to Σι, ΣΟ, the com­
posed surfaces Σ ' and Σ are also isotopic in the class of regular surfaces. More­
over, reparametrizing the composed isotopy connecting Σ ' and Σ one can get 
an isotopy (in the class of regular surfaces) leading from Σ ' to a regular surface 
Σ " built from 3 parts: the image of Σ 2 under the map KQ Χ [0,1] χ [0,1] —~ 
K0 χ [0,1/4] x [0,l],(ar,y,z,<) Η - (r ,τ/ ,ζ/4,ί) , the graph At)T x {τ} x {t}:r G 
[1/4,3/4], t G [0,1] of a loop at the loop space Map(Sl, Emb(A, R)) and the 
image of Σι under the map KQ Χ [0,1] χ [0,1] -+ R 2 x [3/4,1] x [0,1], (ζ, y, z} t) »-+ 
( * Ι ΐ Λ (3 + z ) /4 , f ) . The configuration space J?mè(^4,R) is contractible and thus 
any loop of loops of this space is homotopic to the trivial loop. Hence the reg­
ular surface Σ " is isotopic to Σ in the class of regular surfaces. From where 
the required independence follows. 
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Now, let us define the composition *. Assume that F\ G are 2-morphisms 
such that ti(G) = Si(F). Then there exists a weakly generic (and even 
generic) tangle 7 and regular surfaces Σ ι , Σ 2 representing 2-morphisms F 
and G and such that * (Σ 2 ) = s(Ei) = 7 . Put Σ 2 in the left half of Κ χ [ 0 ,1 ] 
by the map 

Κ χ [0,1] - χ [0 , l /2] , (x ,y ,z , i ) ^ (x,y,2r,i/2) 

and Σι in the other half by the map 

Κ x [0,1] —* iv χ [1/2,1], (x, y, ζ,*) ^ (x, y, ζ, (1 +1) /2 . 

Their union Σ, smoothed if necessary along their common boundary, repre­
sents a 2-morphism. This morphism is independent on the choice of axulliary 
realizations and that is, by definition, F *G. 

To verify its independence on the choice made at the definition of *, let 
take another representations Σ' 1 ? Σ' 2 of F and G with ί(Σ' 2) = ^(Σ[) = γ'. The 
same arguments as at the preceding verification show that, since Σ^,Σ^ are 
isotopic (in the class of regular surfaces) to Σι, Σο, the composed surface Σ ' is 
isotopic (in the class of regular surfaces) to a regular surface Σ " built from 3 
parts: the image of Σ 2 under the map Κ x [0,1] —• Κ χ [0,1/4], (x, y, ζ, t) ^ 
(x,y, ζ , ί /4) , the graph of a loop of D1 and the image of Σχ under the map 
Κ x [0,1] - Ii χ [3/4,1], (ζ, y, ζ, t) H+ ( X , y, z, (3 + t)/4). By Theorem 3.5, 
each component of D' is simply connected and thus any loop of this space is 
homotopic to the trivial loop. Hence Σ " is isotopic to Σ in the class of regular 
surfaces. From where the required independence follows. 

4-3. Theorem. The collection (JF0, Ρ1} F2) s0,t0l $i, t\, o,*) is a 2-category. 
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