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B A S I C B R A N E M E C H A N I C S 

Brandon Carter 

Département d'Astrophysique Relativiste et de Cosmologie, 

C.N.R.S., Observatoire de Paris, 92 Meudon, France. 

Abstract. 

The basic mechanical properties of classical brane (i.e. submanifold 
supported) models are presented using a fully covariant approach based 
on the use of embedding supported background tensors. The application 
to stationary equilibrium states of elastic string models is given a more 
particular attention, and a specific illustration is provided by the special 
case of the non-dispersive (integrable) string model. 

1. Introduction. 

The following review offers a brief introduction to the essential principles 
and archetypical applications of a formalism 1 ' 2 that was originally designed for the spe­
cific purpose of describing the macroscopic behaviour of current carrying cosmic strings 
(a subject that will be briefly discussed in the final sections) but that is potentially 
useful for dealing systematicly with a much wider range of problems involving what 
have recently come to be known as branes. Specifically the term ρ — 1 brane has come 
to be increasingly used 3 ' 4 to denote a dynamical system with support confined to a ρ 
(or more specificly ρ — 1 space plus one time) dimensional subsurface in a background 
spacetime of dimension η say, extreme cases being that of a point particle which qualifies 
as a 0-brane, and a continuous medium which is qualifies as an η — 1 brane. In higher 
dimensional contexts, such as Kaluza-Klein type cosmology, many intermediate possi­
bilities can be conceived, but the only non-trivial examples in ordinary space time with 
?i — 4 are those of a string, which qualifies as a 1-brane, and an ordinary (hypersurface 
supported) membrane which qualifies as a 2-brane. 

The approached described here is designed to facilitate the derivation and 
expression of general laws by using a formulation that is fully covariant - working 
as far as possible in terms of quantities that are strictly tensorial - with respect to 
local background coordinates χμ say (μ = Ι , . , . ,η ) , and as far as possible avoiding the 
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technical complications that would result from recourse to specific systems of intrinsic 
coordinates for the various (possibly mutually intersecting) brane submanifolds that may 
be involved. An important example of a generally valid law that is easy to formulate in 
the formalism described here but not so simple in other systems is the equation for the 
characteristic covector χμ for extrinsic perturbations of the brane locus, which is given 
generically by 

Τμν*μχμ=0. (1.1) 

where Τμν is the relevant (total) surface stress momentum energy density tensor which 
must be such that the solutions χμ are all real (in order to avoid local instability in 
infinitesimally small timescales 1 ) and which must be also be such that 

9μνΧμΧ, > 0 (1.2) 

(in order to avoid relativistic causality violation) where Ί}μν is what I refer to as the 
(first) fundamental tensor of the imbedding, as derived from the background spacetime 
metric § μ ν by the operation of tangential projection which we shall systematicly denote 
by the use of an overhead parallelism symbol, = , while using an overhead perpendic­
ularity symbol - 1 for the complementary orthogonal projection operation, so that the 
identity projection tensor splits up as the sum of a rank ρ tangential projection tensor 
g μ

ν and a rank η — ρ orthogonal projection tensor ~g μ
ν in the form 

g μ
ν ΧμΧ,+g μ

ν 

(1.3) 

While desirable for reasons of notational simplicity and clarity whenever 
possible, it is particularly when several intersecting brane subsurfaces are involved that 
it is advantageous to avoid the use of tensors with indices defined with respect to inter­
nal coordinates ξ1 (i = 1, ...,p) say that might be introduced for the explicit expression 
of a corresponding imbedding mapping, ξ1 h-> χμ. Thus although the background met­
ric tensor gflu and a ρ dimensional Lagrangian density C may naturally be used for 
the specification, as an intermediate step, of the correspondings internal metric tensor 
hij and internal stress momentum energy tensor i u , according to prescriptions of the 
standard forms 

3χμ dxv  

lJ ~ 9μν dV ' 
lJ ~ 9μ3χμ dxv  

ν  
(1.4) 

the use of the kind of formalism described and advocated here requires as the next 
step that such quantities should be pulled back (in contravariant form) to give the 
corresponding background tensors 

8χμ dxv 

-ζμν _ h11 

8χμ dxu 

- 8χμ dxu 

8χμ dxu (1.5) 
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2. Curvature Tensors of the Imbedding. 

In so far as we are concerned with tensor fields (such as those appearing 
in (1.5)) whose support is confined to an imbedded ρ surface, the effect of Riemannian 
covariant differentation along an arbitrary directions on the background spacetime 
will not be well defined, only the corresponding tangentially projected differentiation 
operation 

def _ 

(2.1) 

being meaningful for them. In particular this operation can be used for the construction 
of various kinds of purely geometric tensor characterising the curvature of the imbed­
ding, starting with the second fundamental tensor, Κμν

ρ, which may be def ined 5 , 1 , 2 in 
terms of the first fundamental tensor g^ of the imbedded p-surface under consideration 

by 
def _ _ 

(2.2) 

Such a tensor Κμν
ρ is of course definable not only for the fundamental projection tensor 

of a p-surface, but also for any (smooth) field of rank ρ projection operators Ί)μ
ν as 

specified by a field of arbitrarily orientated p-surface elements. What distinguishes the 
integrable case, i.e. that in which the elements mesh together to form a well defined 
p-surface through the point under consideration, is the condition that the tensor defined 
by (2.5) should also satisfy the Weingarten identity 

Κ[μι/]
ρ = 0 (2.3) 

(where the square brackets denote antisymmetrisation), this symmetry property of the 
second fundamental tensor being derivable 2 as a version of the well known Frobenius 
theorem. In addition to this non-trivial symmetry property, the second fundamental 
tensor is also obviously tangential on the first two indices and almost as obviously 
orthogonal on the last, i.e. 

y μ ι ν σι/ — ̂ μν υσ — υ · (2.4) 

The second fundamental tensor Κμν
9 has the property of fully determining the tangen­

tial derivatives of the first fundamental tensor g^ by the formula 

^ μ9νρ = 2ΑΓμ(Ι,ρ) (2.5) 

(using round brackets to denote symmetrisation) and it can be seen to be characterisable 
by the condition that the orthogonal projection of the acceleration of any tangential 
vector field ιιμ will be given by 

^ μ9νρ = 2ΑΓμ(Ι,ρ)y μ ινσι/ — 
(2.6) 
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It is very useful for a great many purposes to introduce the extrinsic cur­
vature vector Κμ, defined as the trace of the second fundamental tensor, i.e. 

def _ 
Κ^μμ Κμ = 0 (2.7) 

The specification of this extrinsic curvature vector for a timelike p-surface in a dynamic 
theory provides what can be taken as the equations of extrinsic motion of the p-surface 1 

(the simplest case being the "harmonic" condition Κμ = 0 obtained from a simple 
surface measure variational principle such as that of the Goto-Nambu string model 
or the Dirac membrane model). It is also useful for many purposes 2 to introduce 
the extrinsic conformation tensor Ομν

ρ defined as the trace free part of the second 
fundamental tensor by 

def _ 

Κ^μμ — ϊ\μν ρ Ç μ ν 1\ , c y = ο. (2.8) 

which (like the Wey tensor of the background metric) has the noteworthy property of 
being conformally invariant with respect to conformai modifications of g^ κ-> β2σρμμ of 
the background metric. 

Going on to higher order we can introduce the third fundamental tensor 2 

in an analagous manner as 

ϊ\μν ρ Çμν Κμ = 0 
(2.9) 

which by construction is obviously symmetric between the second and third indices and 
tangential on all the first three indices. In a spacetime background that is flat (or of 
constant curvature as is the case for the DeSitter universe model) this third fundamental 
tensor is fully symmetric over all the first three indices by what is interprétable as 
the generalised Codazzi identity which is expressible 2 in a background with arbitrary 
Riemann curvature ϋ \ μ

ρ
σ as 

ϊ\μν ρ Çμν Κμ = 0^ κ-> β2σρμμβ2σρμμ 

(2.10) 

The condition of preserving the tangent element to an imbedded p-surface 
at a point breaks down the full η dimensional rotation group preserving the background 
metric into the product of the restricted ρ dimensional rotation group preserving the 
induced metric in the imbedding with the restricted (n — p) dimensional, rotation group 
preserving the induced metric in the orthogonal element. Associated with each of these 
subgroups there is a corresponding naturally induced connection and covariant differen­
tiation operator acting on the corresponding bundles of tangent vectors and orthogonal 
vectors respectively, and for each there will be a corresponding, respectively "inner" and 
"outer" bundle curvature, which will be represented corresponding background tensors, 
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ϋμνρσ a n d Ω μ ν ρ
σ say, the former "inner" curvature tensor being just the pull-back onto 

the background by the imbedding mapping of the ordinary Riemann curvature of the 
intrinsic geometry induced by the imbedding. An overhead wide tilde is used here to 
distinguish the "inner" Riemann curvature tensor Κμν

ρ
 σ from the ordinary Riemann 

tensor Κμν
ρ

 v of the background, which (for η > 2) will be decomposible in terms of 
the the corresponding (trace free conformally invariant) Weyl tensor 0 μ ν

ρ
σ , and of the 

usual background Ricci tensor and Ricci scalar, 

R — R p R = Rv
v , (2.12) 

in the form 
D pa _ ri ρσ , 4 [ρ ^σ] 2 „ [ρ σ] (2.13) 

In terms of the tangential projection of the latter, as denoted by an overhead parallel 
symbol (indicating contraction with the fundamental tensor g^), one can evaluate the 
corresponding internal curvature tensor in the form 

R p — 2Kpr r K ι 4- R p (2.14) 

which is the translation into the present scheme of what is well known in other schemes 
as the generalised Gauss identity. The much less well known analogue for the (identically 
trace free and conformally invariant) outer curvature, for which the most historically 
appropriate name is arguably that of Schouten, is given 2 in terms of the corresponding 
projection of the background Weyl tensor by the expression 

Ω μ „ ' σ = 2<V>C„]r<r + g%9\CKX
a

r
Jg>a

Jgr
t, . (2.15) 

It follows from this last identity that in a flat or conformally flat background (for which it 
is necessary, and for η > 4 sufficient, that the Weyl tensor should vanish) the vanishing of 
the extrinsic conformation tensor Ομμ

ρ will be sufficient (independently of the behaviour 
of the extrinsic curvature vector Κμ) for vanishing of the outer curvature tensor Ω μ ι /

Ρ
σ , 

which is the condition for it to be possible to construct fields of vectors \ μ orthogonal to 
the surface and such as to satisfy the generalised Fermi-Walker propagation condition 
to the effect that g ρ

μVu\p should vanish. It can also be shown 2 (taking special trouble 
for the case ρ = 3 ) that in a conformally flat background (of arbitrary dimension n) 
the vanishing of the conformation tensor C μ ν

ρ is always sufficient (though by no means 
necessary) for conformai flatness of the induced geometry in the imbedding. 
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3. Mechanics of a brane-complex. 

Employment of brane models of dimension ρ lower than the background 
dimnsion η is often useful for providing an approximate description of higher dimen­
sional configurations when the the fields characterising the latter are highly concentrated 
in the neighbourhood of a lower dimensional world sheet within a distance that is small 
compared with the scales characteristic of dynamic variations in directions tangential 
to the world sheet. Thus for example a point particle model might be useful for de­
scribing the motion, with respect to a relatively slowly varying background, of a small 
loop in a string model that might itself be just an approximation for decribing what at 
a more microscopically accurate level might need the use of a continuum model. The 
example that has been most important in motivating the development of the relativis-
tic formalism described here is that of the representation ( as originally suggested by 
Kibble 6 , Witten 7 and others) of vortex defects (due to spontaneous symmetry breaking) 
of the vaccuum by ("cosmic") string models as a macroscopic approximation for use in 
the (cosmologically important) cases in which the vortex thickness can be treated as 
negligible compared with other relevant length scales. This lead to the introduction of 
models of variational type in which the action was to be thought of as being derived 
from the microscopic action of the relevant underlying field theory by integral across 
the vortex in a local equilibrium state. 

The most general variational models involve a compound system with a 
total action of the form X^X, in which the action contribution of an individual ρ brane 
of the system will be given by a corresponding ρ surface integral 

I = J CdS (3.1) 

where dS denotes the induced surface measure and £ is a Lagrangian scalar function 
of whatever internal fields on the world sheet are involved and also of any relevant 
externally induced fields. We shall restrict our attention here to cases in which the only 
relevant background field is the (flat or gravitationally curved) spacetime metric, but 
there is no particular difficulty in allowing also for electromagnetic effects 1. 

Let us consider the very large class of situations 1 that can be represented 
by a "well behaved" brane complex ( or "rigging system") in which direct action of 
a lower on a higher dimensional brane occurs only when the former forms a smooth 
boundary segment of the latter (as when a monopole, treated as a point particle, forms 
the termination of a string, or when a sail forms the boundary between two external 
wind volumes), subject to dynamic equations to the effect that the infinitesimal variation 
of the relevant fields other than the externally determined background metric g^, gives 
no contribution to the variation of the combined action Y^T taken over the various 
brane constituents of the system, restricting ourselves to cases in which derivatives of 
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the external fields g[iV are not involved in the action. (The exclusion of more general 
derivative couplings merely avoids the extra technical complications that are present 
in more elaborate, e.g. polarised systems, but the exclusion of direct action except 
on a smooth boundary is more essential, being needed to avoid the serious divergence 
difficulties, exemplified by that of the radiation back reaction on a point particle, which 
would otherwise be involved.) 

Since (using the surface tangentiality condition that the surface stress en­
ergy momentum tensor must satisfy by the construction) the variation in the action due 
to an infinitesimal diffeomorphism gμv i—» gμv + V( / X(" i /) of the metric will be given by 
the surface integral of an adjustment expressible as 

gμv i—» gμv + V(/X("i/)gμv i—» gμv + V(/X("i/) (3.2) 

it then follows (by systematicly using (3.2) to convert divergences to boundary con­
tributions) that the requirement that this combined action ^2 Τ should be identically 
invariant under diffeomorphisms generated by an arbitrary vector field ζμ is equivalent 
to a local energy momentum conservtion law to the effect1 that for each brane of the 
system we should have 

gμv i—» gμv + V(/X("i/) gμv i—» gμv + V(/X("i/) (3.3) 

in which the force density on the right is obtained as the sum of contact contributions 
from the higher dimensional (untilded) stress momentum energy density tensor Τμν of 
each of the attached ρ branes (at most two if ρ = η, but arbitrarily many for ρ < η) of 
which the (ρ — 1 ) brane under consideration is a boundary segment. 

It typically occurs that the approximate macroscopic treatment of a system 
that is conservative, with a variational formulation, at a microscopic level may require 
the use of a non conservative macroscopic model involving averaging over microscopic 
degrees of freedom that are taken into count as entropy. Although it may invalidate 
the conservative nature of the model as a whole, such an averaging process does not 
invalidate the local conservation laws obeyed by additive quantities such as energy 
momentum or electromagnetic charge: what happens is that instead of having the status 
of Noether identities expressing the invariance properties that hold for the underlying 
variational model, such conservation laws are to be interpreted in the macroscopic model 
as consistency conditions for the existence of a corresponding microscopic variational 
model. These considerations imply that although the above direct derivation starts from 
a variational postulate, energy momentum conservation laws of the form (3.3) can still 
be expected to hold for more general dissipâtive models such as would be obtained by 
macroscopic averaging over internal degrees of freedom whose net effect would be taken 
into account in terms of entropy currents. An alternative (for some tastes more intuitive, 
but mathematically much more awkward) way of deriving (3.3) in such cases would be 
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to consider the brane system as the infinitely thin limit of a continuous medium model 
where the stress energy momentum density components Ύμν are no longer continuous 
fields but have become Dirac distributions, whose coefficients are interprétable as the 
corresponding smooth world sheet supported fields Τμν. 

By whatever route they may have been obtained, the ubiquitous generality 
of ( 3 . 3 ) cannot be overemphasised. As an immediate cosequence (by an integration by 
parts) one obtains the general equation governing the extrinsic motion of any brane of 
the complex in terms of the second fundamental tensor Κμν

ρ of its supporting subsur­
face, in the form of the 44 generalised sail equation" 1 

CE = -Vuv 

( 3 . 4 ) 

where fp is the total orthogonally projected force contribution. It is from this final 
form that ( 1 . 1 ) is derived. 

In the particular case of a free (fp — 0 ) Goto Nambu string model 8 or a 
Dirac membrane model 9 , as characterised by an action of the form ( 3 . 1 ) with L = LQ 
for some fixed value LQ? o n e will simply have Τμν — £ι07}μ", so it can be seen that in this 
particularly simple case the equation of motion ( 1 . 4 ) reduces simply to the harmonicity 
condition Kp = 0. 

4 . Perfect Brane Models. 

For a general brane model, we can always define an energy density scalar, 
U say, as the negative of the eigenvalue specified by 

Τμ
υην = -Vuv ( 4 . 1 ) 

where the corresponding eigenvector ημ is distinguished by the requirement that it be 
timelike or null. As a widely applicable special case (including the Dirac membrane 
mentioned above, as well as all point particle and string models) a (ρ — 1 ) brane may 
be described as "perfect" if its surface stress momentum energy tensor is isotropic with 
respect to the other orthogonal directions, which in the generic case for which the 
eigenvector is strictly timelike (not null) and hence normalisable to unity, one gets 1 

the explicit form 

T»v = (U-T)u"uv-Tg"v , ημημ = - 1 , ( 4 . 2 ) 

where Τ (the negative of the other (ρ—1) degenerate eigenvalues) is what is interprétable 
as the tension of the (ρ — 1 ) brane. 

The category of perfect branes includes, as the extreme case ρ = η, the 
example of an ordinary "perfect fluid" (with U — p, where ρ is the ordinary volume 
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density of mass-energy, while Τ = —P where Ρ is the ordinary, positive, pressure). In 
the other cases, i.e. for a (ρ — 1) brane of lower dimension than the background, ρ < η, 
for which extrinsic displacements are possible (so that the tension must be non negative 
in order to avoid local instability 1) the extrinsic motion will be governed by (3.4) which, 
on substitution of (4.2) gives the dynamic equations for a free perfect brane world sheet 
in the form 

C £
2/^ = (i-c E

2)i"x, « " = ΐ ί " ν „ Μ μ , (4.3) 

where ύμ is the acceleration vector of the unit eigenvector ημ, and the quantity 

CE V)T 
U 

(4.4) 

represents the speed of propagation - relative to the preferred frame specified by ιιμ -
of extrinsic perturbations, as derived 1 ' 5 from the general characteristic equation (1.1). 
It is to be noted that in the ultra relativistic case of a Dirac membrane or Goto Nambu 
string one has cE = 1 which means that the right hand side of (4.3) will vanish. On the 
other hand the strings and membranes that are commonly used (in violins, drums, etc.) 
by old fashionned non relativistic (i.e. non electronic) orchestras for music generation, 
will also be describable to a very good approximation by this same equation but with 
cE << 1, which means that the coefficient cE

2 will be able to be neglected on the right 
though not of course on the left. 

The extreme case of a "zero brane" with ρ = 1, i.e. that of an ordinary 
(massive) point particle, can be considered as being automatically of the perfect type 
characterised by (4.2) with U — m where m is its mass, and with identically vanishing 
tension Γ = 0 which is consistent with the obvious necessity of having zero relative 
speed of propagation of any perturbation in this one dimesional case. For a point 
particle trajectory the first and second fundamental tensors will be given simply by 

9 μ
μ = -^u„ , Τζ Ρ — 77 Τ{Ρ Kà = u 

u (4.5) 

while in terms of the particle mass m say substitution of the appropriate expression 

T\=-mg\ , (4.6) 

into the general expressions (3.3) and (3.4) gives the dynamical equations for free motion 
in the familiar form 

ημνμτη = 0 , —τηΚμ — 0 . (4.7) 

The case of a membrane in 4-dimensions (or more generally of an (n — 
2) brane in η dimensions) shares with the opposite extreme case of a point particle 
the property of having comparatively simple kinematic properties, since any timelike 
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hypersurface has first and second fundamental tensors that are expressible in terms of 
its unit normal λ μ (as specified by an arbitrary choice of orientation) in the form 

Τζ Ρ _ JS \P Τζ Ρ _ JS \P 
μν — λ^ μν Λ ? \μ\μ = ι. (4.8) 

Analogously to the way the first fundamental tensor ~gpv is specifiable (by (1.5)) as the 
pull back of the contravariant version of the induced metric, i.e. of what is commonly 
known as the first fundamental form of the imbedding, so analogously the symmetric 
tensor Κμν is the pull back of the contravariant version of what is commonly known 
as the second fundamental form on the hypersurface, a quantity whose specification, 
like that of the unit normal λμ involves an arbitrary choice of sign. (In addition to its 
principle advantage of being applicable to imbeddings of arbitrary dimension, not just 
hyper surf aces, a convenient feature of the three index second fundamental tensor, as 
compared with the two index second fundamental form even in the hypersurface case 
where the latter is available, is that unlike that of Κμν the specification of Κμν

ρ is 
quite unambiguous.) Whereas the kinematic specifications (4.8) are simpler than their 
analogues for the lower dimensional case of a string, on the other hand the dynamics of 
a membrane are generally more complicated. Unlike the case of a string model which 
must always, trivially, be perfect in the sense of (4.2) (or of its null l imit 1 ) the postulate 
of "perfection" in this sense is a serious restriction in the case of a membrane, being 
satisfied for a Dirac membrane or an ordinary soap bubble type membrane, (and even 
as a reasonable approximation to the way musical drum membranes are most commonly 
tuned), but it will not be at all valid for such applications as to a typical ship's sail. 

5. Strings. 

Between the hypersurface supported case of a membrane and the curve 
supported case of a point particle the only intermediate kind of brane that can exist 
in 4-dimensions is that of 1-brane, i.e. a string model, which (for any background 
dimension n) will have a first fundamental tensor that is expressible as the square of 
the antisymmetric tangential tensor Εμν that is defineable 1 0 as the pullback of the 
contravariant version of the induced measure tensor that is specified modulo a choice 
of orientation by the imbedding, i.e. we shall have 

£μν _ ζ\μν\ £μν _ ζ\μν\ (5.1) 

A special feature distinguishing string models from point particle models on 
one hand and from higher dimensional brane models on the other is the dual symmetry11 

that exists at a formal level between the spacelike and timelike unit eigenvectors ιιμ (as 
already introduced) and νμ that for a generic case (excluding the null state l imit 1 ) are 
characterised modulo a choice of orientation by the expressions 

Τμν =U^uu -Τνμνν , εμ" =ημνμ - η ν ν μ , (5.2) 
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in which the tension Γ appears as the dual analogue of the "rest frame" energy per 
unit length U. This formal duality can also be made apparent in the expression for the 
extrinsic curvature vector of the string, which can be expressed as 

Ku = + g µv (v' v - u' v), (uuP) = µv (v' v - u' v), µv (v' v - u' v), (5.3) 

whose substitution in (4.3) enables the equation of extrinsic motion of a free string to 
be expressed in the manifestly self dual form 

µv (v' v - u' v), = µv (v' v - u' v), 
(5.4) 

Of course the extrinsic equation of motion, whether of the general form 
(3.4) or the free string specialised form (5.4), cannot actually be used to determine 
the evolution of the world sheet until the appropriate prescription has been given for 
evaluating the necessary stress momentum energy tensor components, which in the 
string case can be taken to be just Τ and U. In the simple Goto-Nambu case, for which 
these eigenvalues are specified in advance to have constant values, U — Τ = — L 0 , no 
further preparation is needed for the integration of (5.4) but in general, for a string 
model with non trivial intrinsic structure the completion of the system of equations of 
motion will involve the specification of other differential equations. The simplest non 
trivial possibility, which is applicable to higher dimensionsional perfect brane models as 
well as to strings, is what is known in the specific context of perfect fluid theory as the 
"barotropic" case, meaning the case in which Τ is specified (directly or parametrically) 
as a function only of U by a single equation of state. In this barytropic case (which 
includes the Witten type conducting cosmic string models 7 whose investigation provided 
the original motivation for this work) the only differential equations that are needed to 
supplement the extrinsic equation of motion (4.3) or (5.4) are those that are obtained 
from the projection into the world sheet of the full local momentum energy conservation 
equation (3.3), which in the force free case simply gives 

ν ρ ί ' σ = 0 (5.5) 

whose two independent components can be conveniently expressed as a pair of mutually 
dual surface current conservation laws given by 

Wp(uuP) = 0 , νρ(μυ") = 0 , (5.6) 

in terms of an effective number density ν and an associated effective mass density μ 
that are obtained from the equation of state as functions of U or equivalently of Γ by 
a pair of (mutually dual) integral relations of the form 

ι f d U ι r d T (5.7) 
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which fix them modulo a pair of constants of integration of which one is conventionally 
fixed by imposing the (self dual) restraint condition 

μν = U - T . (5.8) 

Appart from the extrinsic perturbations of the world sheet location itself, 
which propagate with the "brane wave" speed cE (relative to the frame deterined by 
ημ) as already discused, the only other kind of perturbation mode that can occur in a 
barytropic string are longitudinal modes specified by the variation of U or equivalently 
of Γ within the world sheet. Such longitudinal perturbations (the analogue of ordinary 
sound waves in a perfect fluid) can easly be seen 1 , 5 to have a relative propagation 
velocity given by 

/νάμ —dT 
(5.9) 

which must be real in order for the string to be locally stable. Knowledge of whether the 
longitudinal perturbation speed cL is greater or less than the extrinsic speed cE may 
be critically significant for questions such as the stability of stationary rotating ring 
equilibrium s t a t e s 1 ' 1 2 ' 1 3 , 1 4 and their deformed generalisations 1 5 which will be discussed 
in the final section and which for Witten type cosmic strings (as opposed to the ordinary 
Goto Nambu type for which no such equilibrium states exist) may be cosmologically 
i m p o r t a n t 1 2 ' 1 6 ' 1 7 . Most early, and many more recent d i s c u s s i o n s 1 8 ' 1 9 ' 2 0 ' 2 1 of Witten 
type strings were implicitly based on the use of an equation of state for which the sum 
U + T remains constant, which implies longitudinal propagation at a speed equal to that 
of light, cL = 1 which thus necessarily exceeds c £ , but more accurate investigations 2 2 , 2 3 

have recently been developed 2 4 to a stage at which it is becoming increasingly clear 
that in general the opposite the case, i.e. Witten type models would seem to be typified 
by cL < cE. 

A very special interest attaches to the intermediate, non-dispersive case 
characterised by cE = cL, which corresponds to an equation of state specified by either 
of the mutually dual relations 

U = m A / m 2 + ν2 , Γ = m\J m 2 — μ2 (5.10) 

where m and m are constant mass parameters, so that the eigenvalue product is con­
stant: 

TU = mm . (5.11) 

This leads to dynamic equations that I have shown 2 5 to be explicitly integrable (like 
those of the degenerate Goto Nambu case) in a flat spacetime background, the general 
form in an arbitrary curved background being expressible as 

L±"V„V = 0 , 
L ± = VU-T ' 

(5.12) 
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where the (timelike) unit vectors Σ±Μ are directed along the "left" and "right" moving 
unit characteristic directions, the former being parallel propagated by the latter and 
vice versa. 

This special "constant product" string model can be recognised 1 as turn­
ing up spontaneously by the Nielsen mechanism 2 6 in the context of Kaluza Klein 
t h e o r y 2 7 , 2 8 , 2 9 (an observation which incidentally invalidates the uncautious c laim 2 7 

that the Nielsen mechanism 2 6 leads to dynamical behaviour equivalent to that result­
ing from the more complicated but more physically realistic Witten mechanism 7 , since, 
as remarked above, the latter gives rise to more complicated dispersive equations of 
state 2 4 that are generically characterised by the strict inequality cL < cE.) The special 
integrable equation of state with cL = cE is not just of purely mathematical interest: 
my heuristic argument 2 5 to the effect that that it should provide a good description of 
the averaged effect of random noise perturbations on an "ordinary" Goto-Nambu type 
cosmic string (on the grounds that their presence should not introduce dispersion) has 
been confirmed by Vilenkin's more detailed "wiggly string "calculations 3 0 . 

6. Stationary Applications. 

Whenever the background is stationary in the sense of having a metric 
that is invariant under the action generated by a timelike vector field kp, which must 
therefore satisfy the Killing equations 

ν (ρ&σ) - 0 , (6.1) 

it will be of interest to consider the corresponding subclass of equilibrium solutions15, 
i.e. the class of solutions that are themselves stationary with respect to the action 
generated by the same vector field. This condition of stationarity means not only that 
the imbedded 2-surface of support of the string should include the Killing vector as a 
tangent vector, i.e. 

kpVpT°T = 0 

(6.2) 

where Spcr is the tangent element introduced in (5.1), but also that the the corresponding 
invariance conditions should be satisfied by the physical fields characterising the internal 
state of the string, and in particular by its surface stress momentum energy tensor Τρσ  

for which the required stationarity condition takes the form 

kpVpT°T = 2Tp(aVpkr) . (6.3) 

When these stationarity conditions are satisfied it is easy to see that the in­
ternal equations of motion (5.6) imply the existence of a corresponding pair of Bernouilli 
type constants of the motion, 

W = uvpkp , β = uvpkp , (6.4) 
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which can be extrapolated off the string world sheet as a pair of spacetime fields satis­
fying the uniformity conditions 

ν ρ ω = 0 , V P / 9 = 0 . (6.5) 

The ratio 
υ = β μ 

ων 
(6.6) 

is interprétable as the longitudinal running velocity of the preferred rest frame of the 
string relative to that of the stationary background. The special case β = 0 for which 
this running velocity vanishes is thus interprétable as an equilibrium that is not just 
statonary but actually static with respect to the background rest frame determined by 
the Killing field. It evidently follows from (6.4) that on the world sheet the norm of the 
Killing vector will be given in terms of the "tuning constants" ω and β by the relation 

β2 ω2  

vL μΔ 
(6.7) 

while conversely, using the functional relation between the effective mass μ and the 
number density ν that is specified by the equation of state, the relation (6.7) can be 
thought of as implicitly determining the quantities μ and i/, and thus also the quantities 
Γ and [/, as functions of kpkp not only on the particular stationary string world sheet 
under consideration but by extension via (6.5) as scalar fields over the entire stationary 
background. 

A systematic variational approach 1 5 to the stationary string problem has 
drawn attention to the special interest of a particular string worldsheet generating vector 
given by 

σρ = k»i»vTvp , (6.8) 

whose norm σ, as given by 

2 , ω 2 Τ 2 β*υ2 

σ - σρσρ = — — (6.9) 

is also extensible off the string world sheet as a field over the spacetime background 
via the implicit relation (6.7). Using the relations (6.4) and (6.5), which are such as 
to automatically ensure the satisfaction of the internal equations of motion (5.6), it 
can be verified directly, without reference to the variational analysis that motivated the 
introduction of this vector σ ρ , that it must identically satisfy the relation 

σ" Vvop - <rV'a = {^€στστ){Τ»νΚμν>) , (6.10) 

where σ is the field specified by (6.9). 
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It obviously follows from the identity (6.9) that the the dynamic equation 
for free motion of the string automatically requires that the vector field σμ should satisfy 
an equation of motion of the simple conformai geodesic form 

GUVVGp = aVpa (6.11) 

and conversely that this equation (6.11) is sufficient to ensure satisfaction of the extrinsic 
equation of free motion (the intrinsic equations of motion (5.6) being satisfied in any 
case by (6.4) and (6.5)) to the effect that the combination 

Τμι/Κμ,ρ=^ρ
μ(υυμ^Τν,μ) (6.12) 

should vanish, provided the world sheet generating vector σμ is independent of the 
Killing vector & μ itself. The exceptional case excluded by this independence requirement 
is that for which the factor 

d2U ω2Τ 
νεστστ = £ - f - — (6.13) 

also vanishes, so that (6.9) leaves (6.10) indeterminate. This special case is evidently 
is describable as trans characteristic since the vanishing of the factor given by (6.13) is 
equivalent to the condition 

2 2 (6.14) 

where ν is the running velocity given by (6.6) and cE is the extrinsic perturbation speed 
as given by (4.4). 

In the special case of a string with the non-dispersive equation of state 
specified by (5.10) it is easy to solve (6.7) and substitute the result in (6.9) so as to 
obtain the explicit expression 

σ
2 = -m2m2kpkp - τη2ω2 - rh2β2 (6.15) 

A recent addition to the long list of rather miraculous special properties of the Kerr black 
hole solutions is the discovery 1 5 that, for a background of this particular form, with &μ  

taken as the unique asymptoticly timelike ("primary") Killing vector, the substitution 
of (6.15) in (6.11) gives an equation for σμ that is explicitly soluble by separation of 
variables in the corresponding Hamilton Jacobi equation. 

The transcharacteristic case specified by (6.14) is of particular importance 
in the context of stationarity of the ordinary kind, as determined with respect to a 
non-rotating time translation generator in a flat (i.e. Minkowski) background space-
time, for which the generic Killing equations (6.1) may be replaced by the stronger 
(unsymmetrised) condition 

ν μ * ? „ = 0 . (6.16) 
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This condition (6.16) implies in particular that the magnitude kpkp is constant and 
thus that all the corresponding string equilibrium states must be intrinsicly uniform, 
since (6.7) will then give correspondingly constant values for the quantities μ, ι/, T, U 
and hence also for the running velocity ν as given by (6.6), and for the scalar σ that 
is given by (6.9). The constancy of the latter implies that in these circumstances the 
right hand side of (6.11) will vanish, so that the equation of motion for the worldsheet 
generating vector σρ reduces to that of an ordinary geodesic. This means that all the 
equilibrium configurations will simply be straight, except in the transcharacteristic case, 
for which there is no restriction at all on the geometric configuration, since it can be 
seen that subject to (6.16) (though not in the more general conditions that might apply 
in a curved background) the condition (6.14) is sufficient by itself to ensure that the 
equilibrium equation 

Τμ"Κμι,ρ = 0 (6.17) 

will be satisfied. 
A particularly important application is to the case of closed string loops, 

for \vhich the locally conserved currents appearing in (5.6) give rise to corresponding 
globally conserved integrals 

B = Ιάχρερσ(νιισ) , C = IάχρΕρσ{μνσ) , (6.18) 

and for which straight solutions are obviously excluded topologically, which implies 
that their stationary equilibrium states must necessarily be of the special transchar­
acteristic type characterised by (6.14). This class of topologically compact transchar­
acteristic equilibrium solutions includes, as the geometrically simplest possibility, the 
subclass of circular ring configurations that have been the subject of several previous 
d i s c u s s i o n s 1 ' 1 2 ' 1 3 ' 1 4 : among the geometrically arbitrary equilibrium configurations that 
are in principle possible, the circular configurations can be singled out as those whose 
angular momentum has the maximum value, J = Β0/2π that is compatible with the 
given values of the conserved integrals Β and C. 

The physical interest of any such equilibrium states is of course dependent 
on the extent to which they are stable. No thorough stability analysis has yet been 
carried out, but the most obvious and easily verifiable requirement, namely that for 
given values of the integrals (6.18) the total energy should not be able to be reduced 
by uniform extension or contraction, l eads 1 ' 1 4 to the requirement that the extrinsic and 
longitudinal perturbation velocities cE and cL defined by (4.4) and (5.9) should satisfy 
the inequality 

cL
2 - 3 - c E 2 (6.19) 

whose validity is guaranteed by the negativity of the right hand side whenever c2 < 1/3, 
as will be the case for ordinary non relativistic applications (as exemplified by a cowboy's 
lasso loop) for which one will have Τ « U. 
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Another reqirernent that one would expect to be necessary for strict sta­
bility is based on the argument 3 1 developed by Friedman and Schutz to the effect that 
under rather general conditions a perturbation mode whose propagation velocity is 
slower than that of the unperturbed background is likely to be unstable with respect to 
any kind of radiation to which it may be coupled. Since there will always be at least 
a very weak coupling to gravitational radiation, a corresponding very long timescale 
instability is to be expected whenever the longitudinal perturbation velocity is smaller 
than the extrinsic perturbation velocity that determines the equilibrium running speed 
t>, i.e. whenever 

c 2 

c Δ 

(6.20) 

Although this does not occur in the approximate linearised model implicitly used in 
most early and many more recent d i s c u s s i o n s 1 8 , 1 9 ' 2 0 ' 2 1 of Witten type strings, it has 
recently been found by Peter 2 4 that, on the contrary, in a more exact treatment the 
inequality (6.20) is always satisfied. Since the right hand side of (6.19) is always less 
than unity, this result of Peter establishes that the Witten string loops will always satisfy 
this short-timescale dynamical stability requirement, but it also indicates that they will 
in principle be subject to a long-timescale radiative instability. In practice however, 
the analogy with the familiar case of the Friedman Schutz instability of rotating stars 
suggests that, if the only relevant radiation is gravitational, such an instability is likely to 
be far too weak to be significant on cosmological timescales (whereas if electromagnetic 
coupling is involved, the consequences might be more important). 
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