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Elementary acceleration and multisummability

ELEMENTARY ACCELERATION AND MULTISUMMABILITY I !

Jean Martinet, Jean-Pierre Ramis

Lorsqu'il suit le bon rayon vers la périphérie, le promeneur peut découvrir...

André HARDELLET, Périphérie”.

This paper? is extracted from the contents of a forthcoming book by the same authors
[MR 3]. Parts 1 to 3 joined to chapter 2 of [MR 2] form a more or less self-contained set:
We recall basic definitions about Borel-summability (Borel [Bo 1}, [Bo2]), and its
natural generalization k-summability (Leroy [Le], Nevanlinna [Ne], Ramis [Ra 1]).
We describe the "elementary acceleration” introduced by Ecalle [E 4] and different
summability operators related to it. If one compares to [E 4], our description is slightly
modified in order to fit with our "geometric” interpretations [MR 2], [MR 3]. In part 4, as
an example of application, we give a "natural”, simple and general, definition of Stokes
multipliers3, using a result* of Ramis [Ra 3] (Cf. also [Ra 2]), and derive a new proof
of a theorem of Ramis [Ra 4], [Ra 5], about the computation of the differential Galois
group of a linear differential equation. As a byproduct we get also the description of the
meromorphic classification of meromorphic linear differential equations on
a Riemann surface by the finite dimensional linear representations of a "wild
fundamental group' (that is a natural generalization of the Riemann-Hilbert
correspondence). Part 6 is very sketchy, we describe "infinitesimal neighborhoods” of
the analytic geometry (following an idea of Deligne [De 4]), sheaves of "analytic
functions” on these neighborhoods (weakly analytic and wild analytic functions); then
we are able to give a ""geometric interpretation' of the notions of acceleration,
summability and Stokes phenomena’ and various generalizations (the sum of a

formal power series being now a wild analytic function).

1 Ppart I of this paper contains paragraphs I to 4, paragraphs 5 and 6 will appear in Elementary
acceleration and multisummability 1. The second author has exposed a part of this paper at 1989 R.C.P.
25 mecting dedicated to R. Thom.

2 A preliminary manuscript version of parts I to 4 of this paper has been distributed during a Luminy
Conference (september 1989).

3 Compare with the program of [Me]. Relations between our description of Stokes phenomenon and the
cohomological approach [Ma 3], [Ma 4], [Si], [De 3], [J], [BIL], [BV], will be explained in 4.

4 The main steps of the proof of this result, using Gevrey asymptotic expansions technics, are detailed in
5.

5 Partially based upon a cohomological version of Phragmén-Lindel6f theorem due to Lin [Li] (Cf.
also Il'Yashenko's lectures at Luminy Conference).
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Elementary acceleration and multisummability

1. Borel summability, Borel and Laplace transforms.

We denote by B, the Borel transform in the direction d.

Byf(&) = f(&) = Z—f; l flx) (e¥%dxix?).

d

Y

This formula makes sense with"good" hypothesis on f [MR 2]. We will omit d and
write B f if B f is independent of d (up to analytic continuation).

If §is a convergent power series ( $ e C{&}), we will denote by ¢(&) =S tf;('é) its sum
on a "small disc" centered at zero.

If f is an analytic function in a "small disc" centered at zero, or, more generally, in a
"small sector" bisected by the direction d, we will denote by ; f its analytic continuation
(if it exists) along d. In the following, when we write +; f , we will always suppose that
+4 [ isdefined on a sector bisected by d with infinite radius.

Operators S and ¢, are clearly injective homomorphisms of differential algebras (laws
being addition and multiplication, and derivation being d/dé or E2d/dE) or of "convolution'
differential algebras” (laws being addition and convolution, and derivation being
multiplication by &). ‘

If >0 andf(x) = A, we get

By flé) = Bfi&) = E*1/ I(A) ; in particular, for A=n € N*, f(x)=x"
(neN) :
Bfi&) = &1 In)= &1 (n-1)!.
If we introduce
B, f= By fi&) d& ; then for f{x)=1, we get as a natural generalization:
B, f= 6 (Dirac distribution).

A
We can now define a "formal Borel transform” B :

A A Z
For fe CIIx]}f(x) = &4, an2"

3
! The convolution law is defined by ¢Fy = Jq&(t)w( &—+t)d: in the analytic case and $*{/\/ is deduced, in
0

gm—l é:n—l §m+n——1
Tm) T(n) - T(m+n)

the formal case, from the identities
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Elementary acceleration and multisummability

f(g) = ﬁf(ﬁ) = Z>1 a, &1/ (n-1)!. This definition can be extended,
n .

replacing N as a set of indices for the expansion f by a more general semi-group
(contained in R*): A*=A—{0},
# >, PR >, A1
x) = a;x* B = a [ T
= g, axt BiY)= & ad T
We will also use later formal expansions indexed by A € a+ N (e C), and the
corresponding asymptotic expansions (named asymptotic expansions at the origin in the

following).

Lemma 1.
We have an isomorphism of differential algebras:
B

Differential algebra C{x} of convergent —— Convolution differential algebra of
power series. entire functions of order <1.

Let f be holomorphic with exponential growth of order <1 ina "small" sector
bisected by the direction d (or, more generally, infinitely differentiable on d!, with an
exponential growth of order < 1) We can define its Laplace transform along d:

fix) = Ly fix) = !if(é:) (e 57d¢)

If f e Clx} (resp. f entire of order <I ):
LBf=f and BLf =f.
With "good hypothesis":
LyBy=id and ByL; =id [MR2].
Example: For f(€) = & (u>-1), we have L f(x) = [(u+1) EH+1
Let f be a formal power series, of Gevrey order 2 1 (f‘ € C[[x]];). Then
§f= f e C{E}.If f = Sf can be analytically extended along
some direction d in a fonction f =e<; S f which is analytic with exponential growth
of order <1 on a small sector biseth\ad by d, we cz}‘n /c\leﬁne:
Ja(x)=Lg 4 Sf =L;g ;S Bf.By definition f; isthe "Borel
sum” of f in the direction d (}? is Borel-summable in the direction d).
Clearly if f C{x}, SB=8 and fy(x)= Sfix). So Sy =Ly +4S B eutends

the operator S.

1" A function "infinitely differentiable on d " is infinitely diffcrentiable on the right at zero, by
convention.
2 For definitions and notations see [MR 1].
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Lemma 2.
The operator S is an injective morphism of differential algebras:
S4
Differential algebra of Borel ———> Differential algebra of germs of

summable series in the directiond.  holomorphic functions on sectors bisected by d.

So Borel-summability is "natural” (i.e. "Galois").
Let R >0 and d adirection.

Let Dy = {te C/|Argt ~Argd < 7 and Re (¢#42%~1)> I/R}.
We denote 7 the boundary of Dr.; oriented in the positive sense.

1
Let Bafi§) = A& =2= | ) (e¥dxia?),

2irm YR

if fix) = o(x?), and
By fié) = 1,if fix) = x. We get B, f for flx) = o(x).
Later we will need the "well known"

Lemma 3.
The operator
L
Convolution differential algebra  ——— Differential algebra of functions
of functions infinitely differentiable analytic on open discs Dg .4
on d,with exponential growth (R > 0 arbitrary ), with
of order < 1 atinfinity. asymptotic expansion 1(without

constant term) at zero.

is an isomorphism of differential algebras.

Let f be analytic on the open Borel-disc Dg.;, with an asymptotic expansion

(without constant term at zero). Then, using Fubini's theorem, and the formula

Lie™){) = —%— , we geteasily L B f = f(see [Bo 2]).

Let f be infinitely differentiable on d, with an exponential growth of order < /. If
Lf =0,then f= 0 (using inversion of Fourier transform ).

Now, from L(BLf)=LB(Lf)=Lf,wededuce BLf = f. That ends the proof
of lemma 3.

1 Uniform on closed subdiscs DR'.4 (R'>R).
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2. k-summability, k-Borel and k-Laplace transforms.

Using B, Ly 4 .S and ramification operators py (k> 0) itis easy to build new
operators By.; and Ly.; (and the formal operator ﬁk corresponding to By.q4 ):
We will use the notation (k > 0) : pg fix) = f(xI /k) (x is varying on the Riemann
surface of Logarithm); p;z = o’ .
If 4 corresponds to d by the ramification py, we will set:
Big = pi’ Byt py and
Lia = P’ La* px
We have (in general we will simplify our notations: f;, = f, & = &):

Bra &) = fil&) =Zf7 { Fx) (k S gk +1)
k

Li.g full8) =f(6) = J;fk(ék) (k e~Skkink £h-14E,)

The operator Ly.; can be applied to functions holomorphic with exponential growth
of order <k on a small sector bisected by d, and an asymptotic expansion at the origin
(indexed by —k + N) . These functions form a k-convolution differential algebra:

the k-convolution is defined by:

feregi = Pl (o f)* (o &)= ot (F *2)
Operations are: +, *j, and derivation Jj = By (x* d/dx)L;, (9, will be explicitely
described later; d; is multiplication by x).

Lemma 4.
We have an isomorphism of differential algebras:
By
Differential algebra C{x} of convergent ——— k-convolution differential algebra of

power series . entire functions of order <k

We will use the following notations:
Cl[x]]1 1s the differential algebra of formal power series of Gevrey

order 1/k (Gevrey level k)!;
C{x}ip.q 1s the differential algebra of formal power series k-

summable in the direction d (definition is given just below);

1 Notations of [MR 2]. (Be careful, these notations differ from those of [Ra 1], [Ra 2], [Ra 7].)
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Elementary acceleration and multisummability

C{x};; 1is the differential algebra of k-summable series (that is of

formal power series k—summable in every direction but perhaps a flmte number).
Let fe Cl[x]]iy - Then fk = Bk f e C{{ ) If fk = ka can be analytically
extended along some direction d in a function ¢, fk = 4 S fk analytic with

exponential growth of order <k on a small sector bisected by d, we can define:

A
fod () = Lig *a Sfc = Lica *a SBif . By definition fp.g is the
"k-sum" of f in the direction d (],’\ is k-summable in the direction d) .
a)
It is clear that S;.; = Li.4 °4 S By extends the operator S (defined for

A
fe C{xp.

Lemma 5.
The operator Sy.4 is aninjective morphism of differential algebras:

Sk;d
Differential algebra of _— Differential algebra of germs of
k-summable series in the direction d. holomorphic functions on sectors bisected by d.

So k-summability is “natural” (i.e. "Galois").

We have built a one parameter family (k R, k > 0 ) of summation processes. We
will now compare these processes for different values of the parameter & > 0 : if a formal
power series is summable by two processes then the two sums are equal , but this is quite
exceptional because k;-summability and k»-summability for k; # kp requires in some

sense very different conditions. More precisely:

Proposition 1.
Let k, k' >0 with k <k’ and feC[[x]] k-summable and k’-summable in the
direction d .Then : A A
() Skaf =Skaf Y
(ii) The power series f is k-summable in every direction d’ with
argd € Jargd —nk +n/k’ , arg d +nlk — Wk’ [ and the sums Si.4 f glue together
by analytic continuation;
(iii) The power series ]4\ is k"-summable in every direction d" with
argd” € Jargd — 7r/k +nlk”, arg d +nlk —nlk”[, for k < k"< k’
Moreover Sy f NG f .

Proposition 2.
, . , A A A
Let k, k' >0 with k <k’ and fe C[[x]]ip . If f is k-summable, then f isa
convergent power series (i.e. Cl[x]]jp N C{x}ip= C{x}).
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Elementary acceleration and multisummability

This result, announced in [Ra 2], is proved in [Ra 5] (for a particular case and
exemple, see [RS 1]).

From such a result it is easy to understand that summation operators S;.; (with d
and k > 0), if very useful, are not sufficient if one wants to deal with quite simple,
situations as "non generic" linear algebraic differential equations:

A formal power series solution of a “generic” linear algebraic equation is k-summable
for some k> 0 [Ra 2], [MR 2], [MR 3]. Let now f] ]% e C[[x]], be divergent, with
f] k;-summable, fg ky-summable (k; # k). Then f :f]+ fz is divergent
(proposition 2) and there exists no k > 0 such that f is k-summable (proposition 1 and
2). If we suppose that there exists Dj, Dy € C[x][d/dx] with D fj =0,D, ]% =0,
then there exists
D e C[x][d/dx] such that Df: 0 (for an explicit exemple see [RS 1]).

Any formal power series solution of any analytic linear differential equation
can be summed using a "blend"” of a finite set of processes of k-summability (cf. 4, 6,
infra). The corresponding values for k are computable using a Newton polygon [Ra 1],
[Ra 7). We get this way a process of summability (replacing each formal power series in
the blend by its k-sum ). This method gives an injective morphism of differential algebras
but is purely theoretical (i.e.not explicit). This motivates the introduction of a more
general tool, that is multisummability. Multisummability (due to Ecalle') is effective and a
"blend" of k-summable power series is multisummable. Here we have slightly modified
Ecalle’s presentation in order to be as near as possible of our geometric description of

multisummability (cf. 6, infra).

1 Tt is a particular case of his concept of “accelerosummability”.
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3. Acceleration and multisummability.

We will introduce here only a very elementary acceleration (for a more general
theory cf. Ecalle [E 4]). It is sufficient for our applications (and easy to generalize along
the same lines [MR 3]). Following Ecalle, Acceleration operators are first defined using
Laplace, Borel and ramification operators; afterwards we get an equivalent definition
using an integral formula. The important fact is that this integral formula lead to a natural
extension of the domain of the corresponding operator.

Let o 2> 1. Formally the operator p, of o-acceleration is the conjugate of the
operator p,, of ramification by the Laplace transform:

Pa= LlpyL = Bp,L

The operator p,, is an isomorphism of differential algebras, so the operator pg, is

an isomorphism of convolution differential algebras. More precisely:
Po= Lla pgLy,and:

Pa
Convolution differential algebra of ——— Convolution differential algebra of
analytic functions on sectors bisected analytic functions on sectors with
by d with exponential opening > 7 (o — 1), bisected
growth of order </ at infinity by d% with exponential
and asymptotic expansion at zero. growth of order </ at infinity

and "asymptotic expansion” at zero. !
is an isomorphism.
As p, the operator p, moves the direction d. It is useful to introduce operators of

"normalized acceleration” not moving d:

A= PriaPa= Po LT paL = (Lpg)  poL = ByL.
So A is the commutator of B =L and py/p= pgl.

The operator A, gives an isomorphism of "convolution” differential algebras:

AC{
Convolution differential algebraof = ——— a-convolution differential algebra of
analytic functions, on sectors bisected analytic functions, on sectors, with
. . . o -1
by d, with exponential opening> n/f=7m ,
o

growth of order </ at infinity and bisected by d, with exponential
asymptotic expansion at zero. growth of order <o at infinity and

asymptotic expansion at zero.

For the proof ot this statement see below the more general case of Ay .
If necessary we will denote more precisely the operator A, by Ay.4.

1 This asymptotic expansion is in powers of x!/%.
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Elementary acceleration and multisummability

The operator A, is clearly related to level 1. We need now to introduce similar
operators for arbitrary levels &k > 0 Let k' > k, a = k'k, we will denote:

A= PrkAaPr = ( P (pun) 'L py L py
Apg= (P L p L o = (o) L pp (o) L g

The operator Ay, gives an isomorphism of "convolution" differential algebras

Ak
k-convolution differential algebra of ——— k’-convolution differential algebra of
analytic functions, on sectors bisected analytic functions, on sectors with
. . . k'—k
by d, with exponential opening > /K= —7— ,
growth of order <k at infinity and bisected by d, with exponential
asymptotic expansion at zero. growth of order <k’ at infinity and

asymptotic expansion at zero.

If necessary we will denote more precisely the operator Ay ; by Agg.4.
We have:
A F *c8) = P L7 peuw L pi pi (0 ) * (Pr 8) )
Api O *£8) = Pl LD pe L ((pr ) * (0x 8))
Ak F *18) = o L pep (L o (L pyc 8))
Ay F %8 = Pt W (e L pie ) * (L7 (o L pic 8))
Api f *18) = App [ *p Ay 8
To prove that Ay is an isomorphism it suffices to remark that L, is an
isomorphism between the convolution differential algebra of analytic functions on sectors
bissected by d with exponential growth of order </ at infinity and asymptotic
expansion at zero, and the differential algebra of analytic functions on sectors with
opening > 7 bisected by d and with asymptotic expansion (having no constant term) at

ZET0.

It is natural to set:
A k= Lt
Aoo,] = L .
We have Apy= Ap and A= id
Let k" > k' > k > 0. When the formula makes sense, we get:
Apk Apk = Ak -
We will later use the above formula to extend the operator Ay :
The first step is to extend the domain of the operator A;-; and the second to replace
Ay inthe formulaby <y Appa: Ak kid *d Akkd = Ak i kd (definition).
More generally, let k; > ky > ... > k, > 0. When the formula makes sense, we get:
Ak1,k2 Akz,k3-" Akr.l.kr = Aklykr .
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Using this formula, we will later extend the operator A, ; , using extensions of the

operators
Ak gea (1=1,..,r=1) and

Ak],kz,'d °d Akz,k3,'d .y Akr.]»krd = Ak],kz,.--;kr;d . (deﬁnltlon)

Let k'> k, when the formula make sense we get:

Ly Aprp =L (or A Ap = A p)-

So we can extend the operator Ly using Ly *; Ay . Then
id= LBy = Ly Ay By
S=Lp App S ék , and, more generally, for k; > ky > ..>k, :
S=Lg, A ky - Ay 1k, S Bi, -

Then it is natural to extend the domain C{x} of the summation operator S, using the

new summation operator (along the direction d ):
A
Skrhgdrid = Liyid *d Akpkyd -~ *d Ak pkyid *d S B,

(in this formula we have written Ay ;. .., for an extension of Ay . ..; that we
. k . R+ 1y DR+
will define precisely below).

The domain of definition of the operator Ay .4 18
{analytic functions on sectors bisected by d with exponential growth
of order <k atinfinity and asymptotic expansion at zero }.

We will now see that there exists a natural extension of this operator to the larger

domain
{analytic functions on sectors bisected by d with exponential growth

’

of order < k= at infinity and asymptotic expansion at zero };

k'— k
It is clearly sufficient to understand how to extend the operator A,z (x> 1) defined

llk"+ Ilk=1lk; k=k >k.

on the domain
{analytic functions on sectors bisected by d with exponential growth

of order </ at infinity and asymptotic expansion at zero }

to the domain
{analytic functions on sectors bisected by d with exponential growth

of order < =

- at infinity and asymptotic expansion at zero },
a_

lo+ 1/B=1.
This is done using an integral formula for A,.; discovered by Ecalle [E 4]:

We introduce a family of "special functions” C, (0< « < 1), the "accelerating
Jfunctions”:
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Cylt) = J eu—ml'® du ; the path [ being an Hankel contour:

l
\A F
/
It is easy to see that C,, is an entire function and to compute its analytic expansion at
the origin:

) . onm I(l+ n/o)
Co=2i sin — —— 1"
n20 B I(1+ n)
with I/a+ 1/8= 1.
Example:
a=B=2 ;then Cyt)=iVnte

Functions C,, are resurgent at co [E4],[Ma], [C].If o€ Q these functions are
related to Mejer G-functions and solutions of linear differential equations (cf. below
"Formulae about accelerating functions”).

Lemma 6.([E 4], [MR 3]1))

Let B>0,and o= B .Let0<9<§.

6
Let Vo= {te C/|Argtl< 5 1. Then (on Vg):
K
|Cy(t)] € ——2— (152 ¢ (c)?); with Ky>0 and
cos B6
cq = Bla-1)1e.

Proposition 3
Let aa>1.Let Ayg = (Lge pa)'l PaLg and ¢ an analytic function on a sector

bisected by d and with an asymptotic expansion at zero (or, more generally an infinitely
differentiable function on d with an exponential growth of order <1 at infinity). Then

Agg 00 = x% [ Cy(t1x) $(1) dr .
d

1 More precisely, using saddlepoint method, it is possible to get an asymptotic expansion of the function
C, onthe sector Vg(and even in |Arg t| < m/2), cf. [HL], page 45, [Bak], page 84, [MR 3].
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Definition 1.
Let o> 1 and ¢ aninfinitely differentiable function! on a direction d. If the integral

_[ C (1/x) ¢(t) dt exists, we will say that ¢ is o-accelerable
d

in the direction d.

The operator Ay = (Lye P! PuLy is defined on the domain
{analytic functions on sectors bisected by d with exponential growth
of order <1 atinfinity and an asymptotic expansion at the origin },

but we have > 1 and the operator ¢ —— J Cq (t/x) ¢(t) dt is defined on
d

the larger domain
{analytic functions on sectors bisected by d with exponential growth
of order < f at infinity and an asymptotic expansion at the origin },
(More generally a function infinitely differentiable on d with exponential growth of
order < f3 atinfinity is o- accelerable.)
So, proposition 3 gives the searched extension for the operator A,.; (we will also
denote this extension by A.4).

Now using

Apkd W(x) =x¥ _[ w(t) Cgo (tKixK)kik-1ds, for w analytic on a
l

sector bisected by d with an exponential growth of order </ at infinity, it is possible to
extend the operator Ay to the larger domain

{analytic functions on sectors bisected by d with exponential growth

14

of order < k= at infinity and an asymptotic expansion

’

at the origin }.
We can now define the notion of (kj,k5,...,k,)-summability in a direction d and the
corresponding summability operator Sy, ¢, ¢ -4 (in the following definition, operators
Ak, ;.4 mustbe interpreted in the extended sense, that is as integral operators).

Definition 2.
A
Let k; >ky > ...>k, > 0 and a direction d . A formal power series fe C[[x]] is
(k.ky,....k,)-summable in the direction d if the following conditions are satisfied:

(0) f'e CIiT] 1y, -

1 A function infinitely differentiable on d is infinitely differentiable on the right at zero.
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A A A
(1) SBy f can be analytically extended along d to a function <4 S ék, [ analytic

k.7 k
on a sector bisected by d with exponential growth of order < -];LI——]Z—
r-1— ~r

A A
(2) Ak k;d *d SBy, [ canbe analytically extended along d to a function

a8 . L
*d Ak, 1 k,:d *d S By, f with exponential growth of order < PRI
r-27 %r-1

(i) Ap 1k ipd = *d Ak kid °d S ék, f can be analytically extended along
d to afunction A A

d Ak i kriigid < *d Ak k;d *d S By [ with exponential growth of
order < —IM—
kr.i—=Kr.i+1

....................................................................................................

a function A
‘d Ak dyrd - °d Ak, pd:d *d S ﬁk, f with exponential growth of order < k;.

A

If a formal power series fe C[[x]] is (kj,kp,...,k,)-summable in the direction d ,
then: A A

Ly,.d *a Ak kprd -~ *d Ak, k,;d *d S Bi, [ 1s defined and analytic in a sector

bisected by d

We will set A
Skikakrid = Lijid *d Bkpheoid °d Akyphyid *d S By,
Slq,k;,...,k,;df is the (kj,kp,...,k,)-sum of j/f\in the direction d .

If j/“e Cl[x]] is (kj.ky,....k,)-summable in the direction d, we will write it

A
fe C{x}bin, 1k, 10k:d -

A
If fe Cllx]] is (k;,kp,....k,)-summable in all directions, but perhaps a finite

number,we will de/pote it by A
fe€ C{x}ip, 1y, 10k, » and say that f is (kp.kp,....k,)-summable .

.....

Lemma 7.
Let k;, ky,..., k, > 0 and d a given direction Then
(1) C{xtim1iky,.. 01k:d "4 C{X} 1) 1iky,.. 1, are differential
subalgebras of C[[x]];
(ii) The subalgebra of C[[x]] generated by the differential algebras
Cixtirgd Clx 1y e ClX s a5 18 a differential subalgebra of
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C{x} i/, 11ky,... 11k, ;d- Moreover if
A A A
f= z;fl-]...f/;-, , with I finite and f;; € C[[x]h/kj.d (i €1, and
i€ ! ’ > :
j=1,...,r), then

A A A . .
Skz,kz ____ k,:d f = 2 Skl,-d fil - Sk,;d fir o in particular the

ie ]
. . Z A AR " e
analytic function - Sk,:a fig - Sk,id fir is independant of the "decomposition
113

A A : A
ZI fi1--f:r of the formal power series f.
ie ! ’

Proposition 4.
Let k' > k > 0. The operator Ay, interpreted in the extended sense (that is as an

integral operator) gives an injective morphism of "convolution” differential algebras:

Ak
k-convolution differential algebra of ——— k’-convolution differential algebra of
analytic functions, on sectors bisected analytic functions, on sectors with
by d with exponential growth of. opening > /K = n—%-;-—li
order <K=— k ;( at infinity, and arbitrary radius bisected by d,
and asymptotic expansion at zero. and asymptotic expansion at zero.

Let f and g be infinitely differentiable (as functions of a real variable) on d, with
complex values. If f and g have a growth of order <k (in particular if f and g have
a compact support), we have

A  *18) = oL py L (i 1) * (Px8) )
Apg f *18) = ot LT prge (L pi £) (L pe 8))
App (F *18) = Aprf *1 Ap i 8 -

We get the same formula when f and g only have growth < x by a density
argument. SO Ay, is a morphism of "convolution differential algebras".
The proof of injectivity is a little more subtle. We will need a little bit of Ecalle’s
"deceleration theory” [E 4]:
We have (definition) Ay 1= Dy= (po L) Lpy = L' py I L py and
A= Drp= p'L pyp L pye (formally Dy = Agy).

1 This was proved in [Ra 5] using a different method, answering a question of [Ra 2].
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There exist integral formulae for the operators of “normalized deceleration” D, Dy
. To get them we need a new family of "special functions" C% (a > 1), the

"decelerating functions”:

Ca(t) — J. e—u+tu“"‘ du
R+

It is easy to see that C® is an entire function and to compute its analytic expansion at
zero:
I'(1+nlo) o
n20 I(l+ n)

Example:
400

o=B=2 ;then C21) =1+ 56’2/4 J; e~ %14 qu. This function is related to

o0

2 [ e-vigv=1 —Erf(o).

\x

Functions C % are resurgent at oo [E 4],[Ma 8], [C]. If aeQ these functions are

"error functions”!: Erfc (o) =

Qe—m 4+

related to Mejer G-functions and solutions of linear differential equations (Cf. below
"Formulae about decelerating functions”).
Ecalle's functions C% are particular cases? of Faxén's integrals:

Fi(u,v,t) = J. e—urtuh yu=1Igy (see [O1], [Fa], [BHL])
R+

Fifa ™, 1;0)= C%t).
There is in fact a very interesting family of functions:

Fp.i(o;By) = _[ eP(vIEvy yBay: with o eR, BeC, PeC[w],
T+
and 7Yy aconvenient path.

There are many occurences of particular cases of these functions in the litterature; the
main sources are arithmetic (in connection with exponential sums; cf. the Hardy -
Lintlewood'’s paper on Waring's problem [HL]3, and more recently works of N. Katz
[Ka 4], Deligne,...), physics (Airy, Kelvin, Brillouin4,...), analysis (study of
accelerating and decelerating functions, study of Laplace transform: cf.[Ma 5]), and

probabilities (up to variable and function rescalings, stable densities are real parts of

I The function C° is simply related to Airy function Ai and to Bessel function K3 (cf. [Bak], page
98).

2 This was mentionned to us by A. Duval. .

3 Cf. also Bakhoom [Bak].

4 Cf. also [AS], page 1002.
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accelerating functions, cf.[Fe], page 548). If aeQ the function Fp.,(a;f;y) is solution
of a differential equation (obtained by a method similar to the derivation of Gauss-Manin

connection). These functions! would certainly deserve a thoroughful study.

Lemma 8.([E 4], [MR 3]2)
B .
B -1
Let Dgp= {teC/lArgtl< % and Ret B> 1/RBY. Then (on Dpp):

Let R>0 and >0, a=

lco| < KORP2 (1B-1¢e)P), with K®>0 and
cy = Bla-Dve.

This Lemma is proved using saddlepoint method.

Definition 3.

Let > 1, B= , R>0,andadirection d.

o -1
Let v be an analytic function on the open B-Borel disc

Dgrid= {te C/ |Arg t—Argd | < 5% and Re (1 ¢71A78 d)'ﬁ > 1/ Rﬂ} , and

continuous on the closure of DgR.4.

If we denote by % the boundary of D BR;d oriented in the positive sense, we will

say that y is o—decelerable in the direction d if the integral

¢(&) = L _[ v(l) CECXE/L) dC/CZ exists (for &Ee d,
2in TR

arbitrary).

Proposition 5.

Let o«>1, B=

.Let y be an analytic function on a sector, with

opening > E , bisected by d, with exponential growth of order < o at infinity and an

asymptotic expansion at zero. Then  is o—decelerable in the direction d and:

1" And the similar functions obtained if one replaces the Laplace transform by the Mellin transform in the
definition (cf. the functions I'p studied in [Du]).

2 More precisely it is possible, using saddlepoint method, to get an asymptotic expansion of function
C% on the disc Dgp (cf. [MR 3]).
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1
Daw®) =L pg! Lpaw§ = 5= | W) (2 C&0) ag?.
TR

If the function y is analytic on a sector V, with opening >-§ , bisected by d, and if

v is sufficiently flat at zero, that is if there exists A > 0 such that
v=o(ll* B-o+d) on V , thenitis a-decelerable in the direction d
and D, v is analytic on a sector bisected by d , with exponential growth of order < 3

at infinity.
If a function y is analytic on Dgr.4 and admits asymptotic expansion at zero, and if

there exists a polynomial P such that y = y + P, where y is o—decelerable in the
direction d, we will also say that y is a-decelerable in the direction d and denote it by
Doy= Dyvyy + Dy P (D, P is computed "formally”, see formulae
at the end of the paragraph).
The operator D4 = LT p, 1L p, is defined on the domain

. . . . ¥/ . .
{analytic functions on sectors, with opening >— , bisected by d, with

exponential growth of order < ¢ at infinity and asymptotic expansion
at the origin }.
The operator Y —— 2—1— f w(l) (ECHE/NL) a'éj/é'2 is defined on the larger
1%/ TR
domain

. . . . T . .
{analytic functions on sectors, with opening > E , with arbitrary

radius, bisected by d, with asymptotic expansion at the origin }.

So, proposition 5 gives an extension for the operator Dz .

Lemma 9.
The function C% is o-accelerable in the direction R and

A CHE) = JIHI-0).

Proposition 6.
o

Let > 1, B= .
a— 1

(i) If afunction y is o-decelerable in the direction d ,then D,y is o-accelerable

in the direction d and:
AgDoy=v.
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(ii) If a function ¢ is infinitely differentiable on d, with an exponential growth of
order < Bat infinity, then Ay ¢ is o-decelerable in the direction d and:
DyAg¢= 9.

The proof of (i) is easy, using Fubini's theorem and lemma 9.

To prove (ii), using lemma 3, we first prove it when W is infinitely differentiable on
d, with exponential growth of order </ at infinity (in particular for ¥ with compact
support); then, for y with only an exponential growth of order <8 , we conclude by a
density argument.

From proposition 5 (ii) we deduce the injectivity of A4 . The injectivity of Agp.q
follows. That ends the proof of proposition 4.

The following result is essential:

Theorem 1.
Let k; > ky>...>k,>0,and d agiven direction. Then the summation operator

Sk],/(z,...,k,,’d
Cix} i, 1iky,..., 1kyid s> Differential algebra of germs of analytic

.....

functions on sectors bisected by d .

is an injective morphism of differential algebras.

Operators S and +; are isgmorphisms of differential algebras and of k-convolution
differential algebras. Operator By is an isomorphism of differential algebras between the

differential algebra C[[x]] and the k,-convolution differential algebra C[[x]]. Operator
Ly, is an isomorphism between the convolution differential algebra of analytic functions

on sectors bisected by d with exponential growth of order <k; at infinity and
asymptotic expansion at zero, and the differential algebra of analytic functions on sectors
with opening > 7/k;, bisected by d, and with asymptotic expansion (having no constant
term) at zero. We can now end the proof of theorem 1, using proposition 4 with

k'=k;_j , k=k;j (i =r,.2)

In fact it follows from this proof that the image of the operator Sy ., i .4 is contained
in the differential algebra of analytic functions on sectors with opening > w/k; , bisected

by d, and with asymptotic expansion (having no constant term) at zero.
It is possible to extend proposition 2 :

Proposition 7.
Let k'>k;>ky>...>k,>0.Then:

Cilxlline: D C{X gy 1iky,..c1k, = Clx}.

.....

Proposition 8.
Let k7, k5., k'p >0 and k"7, k"y,..., k" >0 If
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{kp, kpvoos ky = 1K', K'gros K ) ) {k 7, Ky Ky, with
kj>ky>..>k,>0(r<r',r"), then :
Cixtiw, iy, ik D CI e, 1k, ik = CL 1k 10k 1,

If fe Cl[x]] is (k';,k’5,...k’,)-summable, the smallest set {ky, ky,..., k, } (with
k; >ky > .. >k >0), suchthat f is (kjkp...k,)-summable, is a subset of {k,
k'y,..., k' } and depends only on f‘ The numbers kj, ky,..., k, are the singular
levels of f p

{ky, ky,..., ky } = NX(f) < JO,+ o] (definition).

The situation is very different if fe Cl[x]], is (K';,k'y,....k",")-summable in a
direction d. It is easy to prove then that there exists € > 0, such that f is
(k'; — €.k’ —€,...k'» — €)-summable in the direction d for every £ €[0,€].

We will identify the real analytic blow-up of the origin in the complex plane' with the
circle S1. Then we introduce the "analytic halo" of the origin in the complex plane:
HA) = ]0,+00] x Sl = {(kd)/k €]0,+00], d € S}.
The complex plane with an analytic halo at zero is:
CHy={0} UHRy v C* = (({"0"} U "]J0,+0c0]") U J0,+00[) X SHIR;
R being the identification of 103" x S1 with a point "{0}".
On the set {"0"} U "]J0,+00]") U JO,+c0f) we put the ordering relation:
Ordinary ordering relation on JO,+cof and "J0,+c0]”, p > 0 > k, if p € JO,+ 0o,
ke”]J0,+oo]". ("+00” 1is identified with 0 ). We endow {"0"} U HAy v C* with the
corresponding topology (quotient of the product topology). We will consider
"170" }x SY as the “"real blow up” of 0 in CH, (that is the set of directions starting
from 0 in CHp).
The universal covering of (SL,1) is (R,0). We will interpret I?f?o = J0,+00] X
(R,0) as the "universal covering of HA, pointed on the direction "R*"e{"0"}x SI".

Let Uc S! beanopenarc. Let k; > ky > ..> k, > 0.If fe Cl[x]] is
(ky.ky,....ky)-summable in every direction d € U, then the sums fi ¢, (.4 glue
together in a function f analytic on a "sector” with opening equal to
(opening of U + m/ky).
If now U c S!is an open arc bisected by d, let
Ut= {dteU/ Argd* > Argd}, and
U ={deU/ Argd < Argd}.
If ]/‘\e Cl[x]] is (kj.ky,....k,)-summable in every direction d' € U —{d}, we denote

1 If we use polar coordinates for the points of C* :
C* = {(p,8)/ p>0, B¢ S} = J0,+ 00 [ XS, this set corresponds to {0}x SL.
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N
Ti kgdy:d = Skpdp.hyd ]; and i
S koyd = Sk, k... kyid f the sums of f for d*eU* and

d~eU~ respectively. They are in particular defined on a common "sector” bisected by d,
with opening equal to m/k; . A

If fe C[[x]] is (kp.k,....k,)-summable, then Sf . ., f and
N #  are defined for every direction d e S.

We can along the same lines define operators Lkgb.d and A ,‘fj kisd for ee{1,~1}.

Using decelerating operators, we get easily the very important:

Lemma 10. a
Let k; >ky > ...>k, >0 and d a given direction Then if fe C[[x]], is

(kj.ks,....k,)-summable in every direction of U —{d}, the following conditions are
equivalent:

A . N
(i) [ is (kj.ky,....k,)-summable in the direction d;
.. A _ 4 .
(ii) SE, kg, kpid T =Skpkg,..deid J onasector bisected by d.
Moreover if th(i‘se conditions are satisfied, then B
_ A
St doid | =Skijeokpid T = Skpdgkyid S -

If the conditions of lemma 10 are n/g)t satisfied, we will say that/1 d is a singular

direction for the formal power series f, and we will write d € X(f); the "singular
A A A

support” Xf) of f is clearly finite, and 3(f) = & is equivalent to fe C{x}.We will

see below that the "jump” from

.....

"Stokes phenomenon'' for solutions of linear differential equations.

We will give below (cf. §) a very natural interpretation of multisummability:

A formal power series f\ € C[[x]] is multisummable in the direction d (that is there
exist k; > ky> .. >k >0 suchthat f is (kpky,...k,)-summable in the direction d)
if and only if it is "analytic” ("wild analytic") in an "infinitysimal disc” ! and can be
"extended analytically" along d, across the "infinitysimal neighborhood” 2 in a wild
analytic function on a sector bisected by d, with a "non infinitysimal" radius R > 0.

Then, just like one can give a direct (that is without using Borel and Laplace
transforms) definition of Borel-summability and k-summability using Gevrey
estimates [Ra 2], [MR 1], [MR 2], [MR 3], it is also possible to give a direcr (that is
without any use of Ecalle’s acceleration operators) definition of multisummability using
the wild Cauchy theory recently introduced by the authors [MR 3]. This "geometric”

definition is easier to check in the usual applications . Converserly the "analyric”

! The corresponding punctured disc has a radius > k>0 in the analytic halo at zero.
2 This infinitesimal neighborhood is the union of zero and the analytic halo at zero.
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definition gives an "explicit” way for the computation of the sum (for instance if one has
in mind numerical computations ).

Let U c S! be an open arc bisected by d. Let k; > ky > ... > k, >0 and letfe
C[[x]], be (kj,ky,....k,)-summable in every direction d’' e U — {d}. There is a natural
way to generalize the sums Sf, ¢, & .4 f and  SE, 4, k.:d ]/’\

Let €= (g}, &,....&), with & e{l,-1} (i = 1,...,r). We will say that (d;¢) defines a
"path".> We can now introduce the notion of (k;,ky,...,k,)-summablility along the path
(d;e):

Definition 3. A
Let U c SY be an open arc bisected by d. Let k; >ky > .. >k, >0 andletfe
C[[x]], be (k;,k3,....k,)-summable in every direction d' € U —{d}. Let € = (g,
€9,..6,), with e {l,~1} (i = 1,...r). We will say that ¥ is (k;k,....k,)-summable
along the path (d;e) if
sf f= Ly A%? Af g e SB f
kphadid T = Lijhyd *de Akl kyid Ak kid *d& S By, f

A A
exists. Then Slf].kz k:d | is the sum of f along the path (de).

.....

Theorem 2.
Let k; > ky>...>k,>0,.adirection d and €= (g, &,...,&), with
ge{l,~1}(i=1,.,r). Then the summation operator

Skpks,derid
(k ],kz,...,k,)-sw;zmable > Differential algebra of germs of
power series fe Cl[x]] analytic functions on sectors
along the path (d;e). bisected by d .

is an injective morphism of differential algebras.

. A ’ A . .
Comparison between Slfbkz,---.kr:d f and S]";‘I,k2 k,;a [ for different g, &' will

.....

give birth to a “generalized Stokes phenomenon”.
We will finish this paragraph with a small list of useful formulae:

Let k, k', A, i > 0. Then:
I'l+u) _
Pl = £ py (i = T“)x”*ﬂ ol

o

By (x%) = t A=k k) Ly (t%) = T{1+ wk) x H+k

3" Later we will see that such a (d;e) corresponds to a wild homotopy class of paths in the analytic halo
of the origin, avoiding "singularities” of f in this halo.
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Il+p) I+«
r(l_‘fﬂ)
o

F(k_ﬂi

Ag(tH) =

x HHk—k

Ak’,k (t ,U) =
i

Il +v/o) [ v-1+a
I'lv+a)
k+v

k’ _
Dk',k (x V) — (k’+v) tv+k k

Dy (xY) =

) = (k) T(I+ Ak) P e )

x’l*kx“= I(1+kA) T{1+kp) Al
I{(1+k(A+1))
When £ varies from I to +oo, the k-convolution *; varies from the ordinary

convolution * to the ordinary product » .
Formulae about accelerating and decelerating functions.

The following results were obtained recently (january 1990) by A. Duval:

. 2
Cy(9) = iN3 602’20 ((3)° | //3' 215 )

C2(1) = j ((t/z)2 | 0 0.1/2 )= éq/(u/z; t214);
G is a Mejer G-function [Lu].
(07)
I(—s)
Cyft) = tSds (Hankel type contour around RY),
Il-s/x)
+ oo
(07)
Q /
Cot) =5~ [ I{=s) 1+sie)) (- S ds .
+ oo

If a=pl/q, withp and q positive integers,q >p >0, (p,q) =1 :
(07)
: H _T=s+ilg)
Coap(®) = 1/ N pa(2n)iP =l (p”( tq)9)* ds

.....

21p,..(p—1
Cap(t) = 217:/qu(27:)‘1 PG IIqOJ (pP(t1g) | ]]//5, 2/1(; (ﬁ]_]))%);
(07)
C9P(1) :—i\/pq/(ch)‘”P j=0 H F(—s+j/q) H F(s+]/p —jlp) (pp(—t/q)q)s ds

----------

+ oo
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- Ip.2/p,..(p=1)!
Cole(t) = 21 \pgl2mp*? G 2.9 wPuqyi| §fp 50y

Accelerating functions Cgy, are solutions of the differential operators (respectively of

order g—I and q):
¢ M -jj-(-gvpm  I1 (L)) (6=diar)
j _

j=1,...q-1 =1,..., P
and
pi—(-1)37 Il (D +j) (D= dd).
j=l..p 1

We get in particular, for g =n,p = 1:
D" + (=) (%tD + 1),
Decelerating functions C9P are solutions of differential operators

pi- 11 (%tD+j).

j=1,....p
If p—gq iseven, we get the same differential equation fot the accelerating and

decelerating functions.
We get in particular, for g =n,p = I:
D' —(Lm+1).
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4. Stokes multipliers.

Let A = d/idx — A, with A eEnd(n,'C{x}[x_JJ), be a germ of meromorphic
differential operator at the origin of the complex plane C. \

It is well known [Ma 2] that A admits a formal fundamental solution':

Fx) = Au) uMl Q1) with:
u¥ =x (for some ve N*),L € End(n,C), 1/7\( € GL(n;C[[u]][u“]]), and Q a diagonal
matrix with entries in u™! C[u_] ], invariant, up to permutations of the diagonal entries,
by the transformation corresponding to u—— e*®Vy (x —— €%x) and satisfying
[ezi”"L,Q] =0 (and [L,Q]=0,if v=1);L can be supposed in Jordan form.

If Q = Diag{q;, q2...., g5}, then the set {q;, q2,..., 4, } is a subset of wilcmu]
which is independent of the choice of the fundamental solution F (v is choosen
minimal).

We will set  {q;, q2,..., 4,} = q(Q) = q(A); the set g(A) is clearly a formal
invariant of A (invariant by the transformation ¢q(A)(u) —— q(A)( e2inl Vu)).

Proposition 9.
Let k; >ky>...>k,>0,and ve N*. Let d be a fixed direction. Let g, 0,...,

o, €C,and qp, q2,..., G, € X!V C[x!!V]. Then the summation operator

Sk kz,...derid
C{x} 1y 11ky..... 11k :d > Differential algebra of germs of analytic

functions on sectors bisected by d.

can be uniquely extended to a summation operator (still denoted by Sy, r, 1k .d)

(i=1,...m;j=1,...,n) Sfunctions on sectors bisected by d .
such that (a "branch” of Log x being fixed?):

Skikp,dipid (X%) = €%iLO8X Sy 4 a (€)= €%, and Sy, p, 1 .4(Log X)=Log x.

sy

This operator is an injective morphism of differential algebras.

It is easy to extend the definition of the operator Sy =S 4, 4 .4 to the elements of
C{xX} ik, 10k, 10k :d <x%,Log x> (i=1,...,m). Then, using asymptotic expansions (the
inverse of S, restricted to Im Sy, is the asymproric expansion operator in the classical
sense), we get

Cix}<edi> N Cl{x}ip, 1iky,.. 11kyd <X%iLog x> = C{x} (i=1,...m;j=1,...n). The

result follows.

. . e A .
1 Cf. infra for a more precise description of F when v22 ("ramified case").
2 Log x is "formal" in the "left expression”, and an actual function in the "right expression”.
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Theorem 3.
Let A = dldx — A, with A eEnd(n,'C{x}[x"]]), be a germ of meromorphic
differential operator at the origin of the complex plane C.
We denote by k; > ky > ... > k., the positive (non zero) slopes of the Newton
polygon of the (rank n?) differential operator
End A= didx - [A,.]
Let I/*: be a formal fundamental solution of A. Then there exists a "natural
decomposition” ! :
A AL A A . I
H = HjH, ..H, , where H; e GL(n;C[[u]][u™"]) is k;-summable as a
"function” of x (i. e. Vk; summable asa ”functzon” of u), for i = 1,...,r, and such that
(i) Fi(u") = H(u)HH](u) A Au) uvl eQ(14) s g formal
fundamental solution of a meromorphic differential operator ‘AV‘ = didx — A},
with
A €End(n; C{u}u™]), for i=1,.

(i) If 2F)= 2= iy, Hd—sde(fOrl—I )

.....

and
Ha= HygHog - Hyg,
then, for d ¢ 2(H), and every determination of Log x (u = elLog )V qnq yb = el Logu).
Fy(x) = Hy(u) uVL €201 is an actual analytic fundamental solution of

the operator A on a sector bisected by d.
From this result (using proposition 9) it is easy to deduce the

Theorem 4.

Let A = didx — A, with A €End(n;C{x}[x71]), be a germ of meromorphic
differential operator at the origin of the complex plane C. Let I/} be a formal
fundamental solution of A.If we denote by C{x }[x‘1]<I/} >
the differential field generated, on C{x Mx71], by the entries of 1{7\ , then, for d ¢ E(l/;’ ),

the map
A
C{x}[x1]<F> —— Differential field generated, on C{x Wx], by the analytic

solutions of the operator A in a germ of sector bisected by d.

A
defined by "identity” on C{x}[x'] and F —> Fy,

1 Unique up to "natural” analytic transformations (see [Ra 4]); in particular, the matrices H; are well
defined up to analytic (in u) conjugation,
2 Moreover the matrices A,/ and H;,; have a common "blockstructure” and A} canbe reduced by a

transform “Y = Exp(Q; ) Z" to a differential operator whose Katz's invariant [De 1]is k;,; ; Q; being a
diagonal matrix whose entrics arc monomials in u (fixed for cach block)of degree vk; [J], [Ra6].
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is an isomorphism of differential fields.

We will first admit theorem 3, and will go back in § to some indications about its
proof, after some applications. It is very easy to deduce theorem 4 from theorem 3, using
multisummability (other ways to do that are explained in [Ra 5], [Ra 6], and [De 4] N

From theorem 3 and lemma 7 we get

Theorem 5.

Let A =dldx — A, with A eEnd(n;C{x}[x“]]), be a germ of meromorphic
differential operator at the origin of the complex plane C. Let ﬁ be a formal
fundamental solution of A. We denote by k; > ky > ... > k, the positive (non zero)
slopes of the Newton polygon of the operator

\ End A = didx - [A,.].

Then F is (kjky,....k,)-summable in every direction, but perhaps a finite number

belonging to 2(13) c Sl

Clearly (using lemma 7 ) the sums (in a common non singular direction) given by
theorems 2 and 4 are the same.

If de3(F), the operator Sy, i, k.4 isinjective and Galois-differential. So theorem
4 follows from theorem 5. Moreover we have got an "explicit" method of summation

of formal solutions of linear differential equations.? It is interesting to remark
that &y, k,..., k, are rational numbers,so k;/k;_j=a;€Q and Cy (i=1,...1) is

a solution of a linear differential equation; moreover all the functions written under |

when we apply the successive computations of the resummation algorithm are solutions
of linear differential equations. A consequence is that, for numerical computations, we
can apply efficient algorithms in order to compute the successive analytic continuations
4 (Runge-Kutta algorithm, Chudnovskys algorithm [Chu],...).

Letnow d e E(ﬁ ) be a singular direction:

Then (a "branch” of Logarithm being choosen) P

S};I oo kyid ﬁ and Szz,kz,...,kr.'d F are (different) actual

fundamental solutions of A, analytic on a common sector bisected by d, with opening
n'k; , on the Riemann surface of Logarithm. So we get

1 The methods differs by the respective proportions of analysis and algebra used.
2 There exists an algorithm for the explicit computation of the levels kj, k3...., k, [Ma 2]. An effective
computation is possible on a computer using the systems "Reduce”, "Desir" and "D5" [Tou]. For the

("generic”) one-level case there are efficient numerical algorithms of summation [Th]; for the
multilevelled case, algorithms are studied by Thomann.
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F} =Fy Stg,with Stye GL(n;C). By definition Sty is the
Stokes matrix associated to the formal fundamental solution F of A, to the direction
d, and to the choice of branch of Logarithm.

The operator ( SE, k,,.. k d )¢ Sk k... ky:d) =Stq 1s clearly a K-automorphism of
the differential extension C{x}[x~! ]<1€ > (which is a Picard-Vessiot extension of
C{x}[x‘] ] associated to A [Kap], [Kol]), that is an element of the Galois differential
group, clearly independent of the choice of FA ). Later we will systematically write the
operation of elements of St;, and, more generally, of differential automorphisms, on the
right (and ask the reader to be careful with the ordering of compositions...). We will
also denote by St; the induced automorphism (this automorphism depends on de sl
and on the choice of branch of Logarithm!, that is on de (R,0) (universal covering of
(SL,0 ) "above" d) of the C-vector space of formal solutions of A (the matrix of this
automorphism in the basis formed by the columns of Fis Sty ). So the Stokes matrix
Sty is an element of the representation of '"the' differential Galois group
Galg (A) = Autg K<I/:’> (K = C{x}[x‘]]) in GL(n;C) given by the formal
Sfundamental solution ﬁ X

Here one must be very careful: Stokes matrices defined by our method (very near of
Stokes original method [Sto](cf. references and comments in [MR 2], chapter 3)) are
"in" the Galois differential group, but this is in general completely false for "classical”
Stokes matrices. Classical definition, starting from asymptotic expansions in Poincaré's
sense?, is "unnatural” and corresponds to a misunderstanding of the original Stokes ideas
(Stokes was working by numerical computations with in mind something like an idea of

“exact asymptotic expansions” ).

Remark.
Stokes operators St; and Stokes matrices Sty are unipotent (see infra), so we can

define their logarithms st; and st; respectively (the idea of a systematical use of these
logarithms seems essentially due to Ecalle in a more general context):

Sty = Exp stz and Sty = Exp stz. Then

Fg= FYyExp (—-31— stg) = Fq Exp (—2]- stg ), and we can choose
F4 as sum of ﬁ in the singular direction d (this idea is already in Dingle's book [Din];
this has been recently extended to extremely general situations by Ecalle: "sommation
médiane” ). If the differential operator A is real, if G is a real formal fundamental

solution, and if d = R*, then we can choose the fundamental determination of the

1 Up 10 conjugation by the "formal monodromy” (C. infra).

Asymptotic expansions in Poincar€'s sense must be replaced by “transasymptotic expansions” (Ecalle’s
terminology): the transasymptotic expansion map is the inverse of the summation map). Transasymptotic
expansions can only make "exponentially small jumps” on singular lines ("antiStokes lines"), but
Poincaré asymptotic expansions can only make "jumps” on "Stokes lines” (consequence of
transasymptotic expansion "jumps"”, in “quadrature of phasis").
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Logarithm , and the "median sum” G, is real (this can be applied to Airy equation at
infinity, cf. [MR 2}, chapter 3). Moreover stz is a Galois derivation (i.e. commuting
with the derivation of the differential field) of the differential field K <6> , and

Exp ( 7]std ) €Autg K<é> , then, when the reality conditions given above are

satisfied, the map R{x}[x“] ]<6> — germs of real meromorphic functions at
0 € ]0,+oof, defined by

6 —— G4 on 6 and equal to S on R{x}[x_]] is an injective
morphism of differential fields.

The following generalization of a Schlesinger’s theorem! [Sch] was first proved in
[Ra 4], [Ra 5], using a different method?:

Theorem 6.

Let K =C{x}x1]. Let A = didx — A, with A €End(n;K), be a germ of
meromorphic differential operator at the origin of the complex plane C. Let I? be a
formal fundamental solution of A.Let H be the subgroup of GL(n;C) generated
by the formal monodromy matrix 1(‘4 the exponential torus T, and Athe Stokes
matrices of A associated to the given formal fundamental solution F. T h¢n the
representation of the Galois differential group Galg (A) of A in GL(n;C), given
by 19, is the Zariski closure of H in GL(n,C).

Using "Galois correspondence” [Kap], it suffices to prove that the invariant field of H
(that is the subfield of K <f7 > consisting of the invariant elements by H)is K.

First we must define the "formal monodromy” and the "exponential torus” of A.

Replacing u by u €?™ in F(u), we get a (in general new) fundamental solution of
the differential operator A:

F(u eim) = F(u) 1/\\/1, with IOIGGL(n;C). By definition 1<\/I is the formal
monodromy matrix associated to A and to the fondamental solution 14 . The
corresponding element M of Autg K< l? > is clearly independant of the choice of IG and
is a formal invariant of A; it is the formal monodromy of A. (We will later systematically
write the operation of i on the right.)

W;: will/\now define the “exponential torus”. A
Let K= K, < ul, e€> the differential field generated by K, = C[[u ][u'] ] and the

entries of the matrices u- and €.

A N N A
Let L,= K,< el> = K, < el el2, ., eiIn> Cc K.

1 Schlesinger's theorem is for the case of Fuchsian equations.

2 A second proof has been given by Deligne using "Tannakian" ideas [De 4], and, during Luminy
conference (september 1989), I have learned from Y. Il'Yashenko that he has also recently got another
proof...
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If u is the dimension of the (free) abelian Z-module E(A) Cu"] Clu]
generated by qy, q2,..., q, , the Galois differential group AutK /Z,V = Autg L, isa
torus T(Q) = T,,(Q) = T(q(4)) isomorphic to (C*)H (clearly u <n). (We have set
K, C{u}[u—fj and L,=K,< eQ> )

We have /L N K v< ub> = K . Then T(Q) can be identified with a subgroup of
AutK Kleavmg Kv< uL> fixed (still denoted by T(Q)).

We have K<F> CK, and K and K<F> are invariant by T(Q), so T(Q) can be
identified with a subgroup of Aurg K <I/} > = Gal g (A). This group is clearly independent
of the choice of f By definition we call this group "the exponential torus” of A. It will
be denoted by T(A) (it depends only on ¢(A) and is a formal invariant of A). Its
representation in GL(n;C) given by the fundamental solution I/; will be denoted by
T =T(4) =T( Q(A) ) (and still named "exponential torus”)

Let now éj e K <ﬁ > be an invariant element by H (more prec1sely by the subgroup
of Autg K <F> corresponding to H). If x = uY, then & is invariant by p[", that is by
the formal monodromy "in u",so & € K', < 2>, But & is also invariant by the
exponential torus and & €K’,,. From the invariance of & by the Stokes matrices we
deduce that the (kj,ky,...,k,)-summable power series & admits no singular direction
(Lemma 10), so & is convergent and & € K,, . The action of the monodromy matrix

on & e K, is the same as the action of the (ordinary) Galois group Autg K,
(isomorphic to Z /VZ ), so & is invariant by Autg K,, and & € K (by the ordinary
Galois correspondence). That ends the proof of Theorem 5.

Examples.

From fundamental systems of solutions at infinity (z = x1:x=0) for Airy and
Kummer differential equations it is possible to compute formal monodromies, exponential
torus and Stokes multipliers. From these results it is possible to compute the Galois
differential groups of our differential equations'. See [MR 3]).

For a deeper study of germs of analytic linear differential equations we need now a

little “foolbox"? (built with elementary linear algebra).
Let E, = x—l/vc{x—]/V} (ne N*)and E = LJJV* E,.If g={q; q.. q,} < E,
ve

we denote Eq=Zgqg,+Zq+..+2q,CE,

1 "Classical computation” of the Galois differential group of Airy equation is in [Kap]; the computation
of the Galois differcntial group of Kummer equations is , as far as we know, new (it is possible to do the
computations "classically”, using improvements of Kovacic's algorithm [Kov], [DLR], [MR 3]).

2 A first version ot these tools was first introduced by Balser, Jurkat, Lutz [BJL 1], [J]. In our
presentation we have also used ideas of Deligne, Malgrange [De 3], [Ma 3], [Ma 4], Babbitt, Varadarajan
[BV], and the systematic treatment of M. Loday-Richaud [LR4} .
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the sublattice of E generated by qj, qy,-.., 4, - The smallest integer v such that E(q)
cx 1V ¢ {x1V} s, by definition, the ramification of g, or E(q). We have:

E=U Eqg)= Lim Eq).
q q

We define an action of the (classical) Galois group Autg K, = Z/VZ on a sublattice
E' of E,, by

q(x V) —— g(e 2imVx~1IV) (corresponding to x ——e2i). If E’ is invariant
by this action we will say that E’ is Galois invariant. The lattice E(q) is Galois invariant
if and only if the ser ¢ is invariant by the corresponding action (Galois invariant).

If geE(q),its "degree” &gq) is the rational number m/v e%}- 0 , where m 1is the

degree of ¢ as a polynomial in %!V, There is a natural filtration of E by the degree,
that is by the sublattices

E" = {qeE | &q) <m}.

We identify the universal covering of (S1,1) to (R,0). By definition the "front”
Fr(q) of q € E is the subset of (R,0) whose elements are the "lines of maximal
decrease” of e9 (we will also call "front" the natural projection of this set on the v-
covering of (S1,7), identified with another copy of (S1,1)); the front of ¢ depends
clearly only on the monomial of maximal degree &¢q) of g.If d is a direction of the
front of g (or of its projection on S!), we will say that g is”carried” by d.

Let x=uV,K,= C{u}{fu] and I/(\v = C[lu)fu™].

Let Zﬁv = I?V <ell, ez, eln> and L, = K, < e?l, ¢92,..., e9n> . As above we
set Aut[?VﬁV: Autg L, = T(q).

To each g € E{(q), we can associate a character of the exponentiel torus T(q), thatis a
(continuous) homomorphism of groups (denoted still by g):

q: T(q) —> C*
q: 6 — q(8), with
(e1) 0=¢q(6) e? (e1€ L, and 6 actson L, ).
Let (p;, p3,..., py) be a Z-basis of the lattice E(q)
We get an isomorphism
(P1, P2y Py Tlg) — (C*)Y
(P1, P2ss DY) 8 ——= (p1(6), pa(6),..., pL6)).

In the following the exponential lattice E(q) will be identified with the lattice of
characters on the exponential torus T(q).

Let de(R,0) (the universal covering of (SL,1)), we set

Eyq) = {qe E(q) / q is carried by d}; E(q) is a semi-lattice of E(q), and depends
clearly only on the projection d of d on the v-covering of S!:

Eqq) = Eyq).
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To the set q = {q}, q;,..., q,} < E, after the choice of an ordering, we associate
the diagonal matrix eQ, with Q = Diag{qy, q5,..., 4, }.

We will use ordering relations associated to a direction d €(R,0):

q>>4q,ifandonly if ¢'—q €E,(q) (i.e. ¢’ —q is carried by d):

q>g4q, if and only if e9~4 is infinitely flat on d;

q 24 q’, if and only if ¢4~ 9 is bounded on d.

Clearly, if ¢ >>44q',then @ >4q'; and, if q >44’, then g 244"

We will also use an equivalence relation on the space E associated to a rational
number £ > 0, k €Q:

q=q ifandonlyif &q —q' )< k (f &q —q')=k, we will write
q# q)

To a rational number k > 0, we associate the partition of the set ¢ = {q;, q2,..., g, },
defined by the relation =, . This partition is named the "k-partition”. The only
"significative” values for k are in the set {kj, kp,..., k,} = NX(q) of values taken by
o(q;— qj) (q; # q;). We will always suppose in the following that we have chosen an
ordering on ¢y, q»,..., q, such that, for every k>0, k €Q, the elements of each subset
of the k-partition are consecutive. Then, there exists a unique block-decomposition (by
definition the k-block-decomposition) of the matrix @, which is invariant by
transposition, and inducing the k-partition on the diagonal. For k = kj, kj,..., k, we
get, by definition, the "iterated block-decomposition” (cf. [BJL 1], [J]). If a matrix A
admits the same k-block-decomposition than Q, we will say that A admits a (Q,k)-
block-structure. Moreover, a direction d being fixed, it is possible to choose an
indexation (called by definition a d-indexation) of the elements g; of g such that:

q1 <492 <4 ---<4 95 - The corresponding ordering on ¢ satisfies the
above conditions; the corresponding iterated block-decomposition is named a d-iterated
block-decomposition.

The set ¢ and the direction d, being fixed, and an order (perhaps depending on d)
being chosen on ¢, the diagonal matrix @ is defined. To this matrix and a fixed
direction d €(R,0), we will associate families of subgroups of GL(n,;C), indexed by
k, €{k;, ky,..., k,} =NX(q) (isotropy groups, and Stokes groups).

All these groups are unipotent. More precisely, if P is a matrix in one of this group,
all the diagonal terms of P are I, and I — P is nilpotent (if the order on ¢
corresponds to a d-indexation, P is upper-triangular).

Let A(Q;d) = {C= (Cij) lifi=j, Cij = Land, if i #j, and cij¢0, then q;<q4 q; }

A(Q;d) is a subgroup of GL(n;C), named the isotropy subgroup in the direction d.

Let Sto(Q,d) = {C= (cip) I'ifi=], Cj = Land, if i #], and c;j#0, then q;<<q q; I

Sto(Q,d) is a subgroup of A(Q,d), named the Stokes subgroup in the direction d.

Let be now k,, € {k;, kp,..., k., } = N3(q). We set:
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A*m(Q;d) = {C= (cy) | if i=), ¢;j = Land, if i#],and c;#0, then ¢q; <q¢; and
q9i #,, 9t
Akm(Q;d) = {C= (cij) 1 if i=), ¢;j = 1and, if i+, and ¢;;#0, then q; <44, 4q; # 4;
and g; =, q;}
A<kn(Q;d) = {C= (cy) | if i=), ¢;j = Land, if i #], and ¢;j=0, then q;<qq; and
9 =k, 95

and
Stom(Q;d) = {C= (c;) | if i=), ¢;j = Land, if i #], and c;;#0, then q;<<4q; and
q; %, 4jts
Stokm(Q:d) = {C= (c;j) | if i=), ¢;j = Land, if i #j, and c;j#0, then q; <<q4q;,
9 #, qj and q; =¢ _, qj};
Stokm(Q;d) = {C= (cip) !l ifi=j, cj = Land, if i #j, and cij;tO, then q;<<q4; and
9; =k, 9;}

Proposition 10.

Let Q be a diagonal matrix with entries in E, and d €(R,0) be a fixed direction.
Then, for every k > 0, k €Q, the four sequences

{id}—— AZFn(Q:d) —> A(Q;d) —> Akw(Q;d) —{id},

{id}——> Nem(Q:d) — AF*m(Q;d) — A<kn(Q:d) —{id},

{id}—> StoZ*m(Q;d) —> Sto(Q;d) — Sto<km(Q:d) — {id},

{id }——> Stokm(Q:d) —> Sto*m(Q:d) — Sto<km(Q,;d) — {id}

are exact sequences of (algebraic) groups which are split.

Maps are evident inclusions and evident "projections” (by "suppression" of some
entries). The sequences are split by the inclusion maps A<er( Q,;d) — ANQ.d),...

Proposition 9 is a set of "block variations” on the

Lemma 11.

Let D, be the subgroup of GL(n,C) of diagonal invertible matrices. Let T, be the
subgroup of GL(n;C) of upper triangular invertible matrices. Let B,, be the subgroup of
GL(n;C) of upper triangular unipotent matrices. Then we have a split exact sequence of
groups:

{id} > B, > T, > D, >{id }.

The map T,, — D,, is the evident "projection” (we replace by zero the off diagonal
entries), and the map B, —— T, is the natural injection; the natural inclusion
D, —— T, gives the splitting.

Then T, is the semi-direct product of B, and D, .We will write

T,=D, Ix B, ;
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A(Q;d) is the semi-direct product of Azk'n( 0;d) and A<km( Q,d), we will write
MQ:d) = Akn(Q.d)ix AZFn(Q:d), ...

Lemma 12.
If {ky, ky,..., kp } = {8(q;— qj) i,j=1,..,nand q—q;#0}
(k; > ky > ..> k, >0), we have:
ANQ;d) = A(Q;d)Ix Ar-1(Q:d) ¢ ... & Ak1(Qd).
If Ce A(Q;d), there exists a unique decomposition:
C=C, C,_;..C;,with C; e AK(Q;d).

We can now go back to linear differential equations. We need a more precise version
of theorem 3.
Let A =d/dx — A, with A eEnd(n;C{x}[x‘J]), be a germ of meromorphic
differential operator at the origin of the complex plane C.
The operator A admits a formal fundamental solution:
F(x) = H(x) xLUeQ(1) with: R
uV= x (for some v e N*), Le End(n,;C), in Jordan form, He GL(n,'C[[x]][x‘]]), 0 a
diagonal matrix with entries in ulClu], Galois invariant, unique up to permutations of
the diagonal entries, and U € End(n,;C) a "universal” matrix (depending only on Q)
[BJL 1], [J] (v is choosen minimal).
Let IQ[ = U2y, We have:
Fretimy = fipx) LU B eQewn(2imvitn) = Fx) W, and
eOlexp(2imviiu) — {11 QM) {1 And [IO[V,Q] -0

Theorem 7.
Let A = didx — A, with A €eEnd(n;C{x}x1]), be a germ of meromorphic
differential operator at the origin of the complex plane C.
We denote by k; > ky > ... > k, the positive (non zero) slopes of the Newton polygon
of the (rank n?) differential operator
A End A = didx —[A,.].
Let F be a formal fundamental solution of A as above. Then there exists a "natural
decomposition” ( Lﬁ(’liquﬁ ug to "r/r‘zeromorphi/c" transforms” [Ra 4])
H = H;H, ..H, , where H; e GL( n;C[[x]][x‘]]), is k;-summable for
i =1,..,r, and such that
- A A A A
(i) Fi(x) = Hy(x)H;,1(x)...H.(x) x£U 2(1/%) s qa formal
Jundamental solution of a meromorphic differential operator Al = didx — A%, with

A €End(n; C{x}x71)), for i=1,.,r;
A A A
(ii) If X(F) = XH) = S EHY, Hia= Sgea HiGor i=1,.7)
and
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/\Hd = Hypg4Hy.y...Hy .y,
then, for d ¢ 3(H), and every determination of Log x (u = elLog IV gpg L = ol Log x).
F4(x) = Hyx) LU 201 is an actual analytic fundamental solution of
the operator A in a sector bisected by d (d €(R,0) "above" d corresponds to the given
branch of Logarithm).

Moreover }/}i admits a (Q,k;_j)-block-structure (i=2,...,r) and Al admits a ( Q.k;)-
block-structure (i=1,...,r).

We define Fiy(x) = HigHii1.q...He g xL U eQ(11w) ; Fiyrx) is an actual analytic
fundamental solution of the operator Al in a sector bisected by d (i=1,...,r), and admits
a (Q,k;_1)-block-structure (i=2,...,r).

We have:

Fiy =H;  F*1, (i=1,.,r-1), and we set (i=],...,r):
Hi; d+ Fi+]d+ - Hi; i Fitl d+ Si,-d .

We have Si,'d eGL(n;C) (i=1,...,r) and Std= Sr;d Sr—];d “‘S],'d‘

Lemma 13.
Let q=1{q;, q,..., q,} € E, and, after an ordering, let Q be the diagonal matrix

Q = Diag{q;, q3...., q,}. Let CeEnd(n;C), and d a fixed direction
(d e (R,0)):
(i) The following conditions are equivalent:
(a) €€ Ce =1+ @ with @ infinitely flat on d.
(b) Ce A(Q;d).
(ii) The following conditions are equivalent:
(a) 2 Ce 2 =1+ with @ exponentially flat of order >k on d.
(b) Ce AZK(Q.d).
(iii) The following conditions are equivalent:
(@) 2 Ce Q=1+ & with @ exponentially flat of order exactly k on

(b) Ce AKQ;d).
(iv) The following conditions are equivalent:
(a) 2 Ce L =1+ with @ exponentially flat of order >k on an open
sector with opening nl/k, bisected by d.
() LCeC =]+, with @ exponentially flat of order exactly k on
an open sector with opening ik, bisected by d.
(c) Ce Stok(Q;d).

Theorem 8.
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Let A = didx — A, with A € End(n;C{x}[x1]), be a germ of meromorphic
differential operator at the origin of the complex plane C.
We denote by k; > ky, > ... > k, the positive (non zero) slopes of the Newton
polygon of the differential operator
End A= didx - [A,.].
Let F (x) = H(x) xL U eQ” /”) be a formal fundamental solution of A as above, and
A=h ]Hz H, , a decomposition like in theorem 7.
Let S;.q €GL(n;C) (i=1,...,r) defined as above. Then:
(i) Si.q€ Stoki(Q.d) (i=1,...r).
(ii) Sge Sto(Q;d) and Stg= S,.q Sy_j.q ~-Si.q is the unique decomposition of
Sy corresponding to MQ;d) = A(Q;d) x Ak-1(Q.d) & ... sx AKI(Q;d).

Assertion (i) is a consequence of lemma 13 (iv):

We have (H,-’.d‘)‘l Hi.g" =1+ ‘Y, with ¥ exponentially flat of order 2k; on an
open sector, with opening nlk, bisected by d (H; is k;-summable). We set

Gi=Hj1.q.-Hpyg xLU; it s clear that G; and G, are analytic on an open sector,
with opening w/k;,; ( wk;,; > nik;), bisected by d, and admit a moderate growth at the
origin on this sector. Then €& Si-d e = G;(I+¥G;!=I+® where @ is
exponentially flat of order 2k; on an open sector, with opening ik, bisected by d.
Assertion (ii) follows from (i) and lemma 12.

The Stokes matrices S;.; are a priori defined in a transcendental way. Theorem 8
says that we can get them by an algebraic algorithm, from the knowledge of S; and Q.

We will give later an "infinitysimal version” of this computation.

Lemma 14.
Let k'j>k'y>..>k'y>k'>0. Let d=R". Then:
_1ixk _ =1/x¥
e = Lya Apykgid Ak, kevid Bie, (€717,

From this lemma and theorem 8, we get

Theorem 9.
Let A =dldx — A, with A eEnd(n;C{x}[x‘]]), be a germ of meromorphic
differential operator at the origin of the complex plane C.
We denote by k; > ky > ... > k, the positive (non zero) slopes of the Newton
polygon of the differential operator
End A= didx - [A,.].
Let F (x) = H(x) xLU eQ(] ) be a formal fundamental solution of A as above, and
= H ]HZ H, , a decomposition like in theorem 7.
Let S;.4€GL(n,C) (i=1,...,r) defined as above.
Let €= (g}, &,...&), and € = (€, €,....,), with € ,€;€{l,—-1}(i=1,..r).
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Then, for every direction d €(R,0):
(i) ?I is (kj.kp,....k,)-summable along the paths (d;€) and (d€').
(i) If Sk, ky.... kpid F= SE 1k Fosee,
St;5€eGL(n,C), and, if €= (——,..,—) = — then
Sty&€= €(S;.q) €(Sy_1.q) E(Sy.q), with
€(Siq)=Siq if €=+, and €(S;q)=1if €=~
(iii) If €= (=~,...,—) and € = (——,...,+,..,—), witha + only at the index i, then
Sty&¢= S;.4, and S; isin the representation in GL(n;C) of
the differential Galois group Galg (A) given by the fundamental formal solution I4
(i=1,...,r).

We will write S;.4= Sty ..

Our aim now is to use the preceding results and considerations to give a "purely
combinatorial” description of the category of germs of meromorphic
connections at the origin of the complex plane, as simple as possible. In "down to earth
terms" a germ of meromorphic connection is a germ of differential system up to
meromorphic equivalence [De 1], [Ma 4], [MR 2]; so the searched combinatorial
description is equivalent to a meromorphic classification of germs of differential systems.

Such a result is well known for the regular singular case; it is given by the Riemann-
Hilbert correspondence [De 1], [Ka 2],[MR 2]:

Germs of Fuchsian connections ——— Finite dimensional linear representations

at the origin of C. of the local fundamental group!.

Germ of meromorphic fuchsian ——— Monodromy M(A) "around 0" up
differential operator A, up to to conjugation

meromorphic equivalence.

This map is bijective, moreover it is an equivalence of Tannakian categories [Saa ],
[De Mi ], [De 2]. The result is false if we suppress the fuchsian hypothesis.

The now "classical" meromorphic classification of germs of meromorphic differential
operators is given in terms of cohomology of sheaves of groups (isotropy groups of a
"normal form") on S? [Si 1, [Ma 3], [Ma 4], [De 3], [MR 1]2. We have in mind a
"better” description (adapted in particular to the computation of the Galois differential
groups), extending the Riemann-Hilbert correspondence to the irregular case, that is a

description of connections in terms of representations of groups:

Germs of connections ———— Finite dimensional linear representations

1 Generated by a loop turning "one time" around the origin and isomorphic to Z.
2 We will recall this description in part 5.
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at the origin of C. of the local "wild fundamental group”.

Germ of meromorphic —_— ?2?22?
differential operator A, up to

meromorphic equivalence.

We will call "Gevrey front” of q € E the set
Gfrq = {(dk)/d €Frq, k= &q)} C%O, universal covering of the
analytic halo HA,.
Let

Fr(q) = zL;J Frq;j (4= qi—q)),
Gfr(9)= U Gfrq;;, Xq) the projectionon S of Fr(q).
iJ

We define an action of the free group (j) generated! by ¥, on the (non abelian)
free group generated by the 7y, (de Fr(q)) by
W Ya — Yexp(-2im)d (exp(—2irm) : itis a translation of 27 in (R,0)).

We denote by Il(q) the corresponding semi-direct product IT= () x( J ;k( ) (v)
eFr(q

In I(g) wehave % ¥ %~ = Yexp(-2im)d -
We define an action of the free group (79p) generated by 7 on the (non abelian) free

group generated by the ¥,'s (ae Gfr (q)) by
W Ya — Yexp(=2imja (a=(d,k), exp(-2im)a=(exp(-2im)d k)).
We denote by GII{q) the corresponding semi-direct product

GII(q) = (1) x( - g;r(q) (%))

In GII(q) wehave % % 1~ = Yexp(-2in)a -
The groups Il(q), and GII(q) are "first approximations" of the "wild local

fundamental group".2 We can identify ITgq) to a subgroup of GIIq) by
Ya= Ya, * Ya,_p % - * Yoy (= (dk)1=1,..r)

We will obtain below a classification in terms of linear representations of these
groups>. Unfortunately there are conditions ("Stokes conditions”) on the
representations in order that they come from a connection. That is unsatisfying: we want a
"wild fundamental group” whose all finite dimensional linear representations come from
a connection, like in the Riemann-Hilbert correspondence. We will be led to the "good"
group 7y C'fO) by a "Fourier analysis' of the (Galois differential)”“unfolding” of the

1 Here ) and the 7, 7, are "labels"; later 3 and 7, will be interpreted as loops turning around
respectively 0 and a.

2 The terminology "wild 7; " (in french "m;—sauvage") was suggested to the second author by
Malgrange for the group GIT [Ma7).

3 If we consider "isoformal” families, that is if we fix the "formal form". If we leave it free, we need to
"add" a representation of the "formal fundamental group”.
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Stokes phenomena under the adjoint action of the exponential torus. Moreover
we will see that this approach gives! a very natural interpretation of Ecalle's resurgence
[E 4]. ‘

Let A =dldx — A, with A eEnd(n;C{x}[x‘I]), be a germ of meromorphic
differential operator at the origin of the complex plane C.

Let I/} (x) = I/-}(x) 1L U 20 be g formal fundamental solution of A as above. We
set

Fo(x) = xL U Q1) n

For P e GL(n; C[[x]][x‘l 1), we set AP = PAP1 4 ‘aif- P~ and

AP = dldx AP and we say that the differential operators A and AP are formally
equivalent. If P € GL(n,C 7], we w11/1\ say that /z:hf differential operators A and
AP are analytically equivalent. We have (A2 )i’ 1= APIP2,

It is easy to check [BJL 1] that Fj is a fundamental solution of a rational differential
operator Ap = dldx — Ay, with Ay € End( n,C(x)[x1], which is formally equivalent to
A (A = AgM).

We will define:

lO(F) ={CeGL(n, C)/CF FC} and

l(F )= {CeGL(n ‘C)/ there exists G eGL(n;C[[x])[x"1]) such that GF F C}

10(F ) and l(F ) are algebraic subgroups of GL(n;C)[BV], and lO(F ) l(F ).

We set:

UA) = {GeGL( n;C[[x]][x‘I ]) I there exists C e GL(n;C) such that &I/; = ;\7 Chk

1(4) 1is a subgroup of GL(n 'C[[x]][x‘JJ) It is easy to check that 1(4p) is a
subgroup of GL(n,C(x)[x™ -1 ]) containing lO(FO) It is clear that AG A is equivalent to
Ge 1(A) (K A) is independant of the choice of F ).

We leave now A, fixed, and we want to classify, up to meromorphic
equivalence, all the meromorphic differential operators A formally
equivalent to Ap. Moreover we are also interested in the classification of the "marked
pairs" (A, H) such that AH Ap

To a differential operator A formally equivalent to Ay (a fundamental solution Fy of
Ay being fixed) we can associate representations p;.(4) of the groups Il(q) and
GII(g) in GL(n;C) defined by:

A
Pirl (W ) =M, Pl A)(Yq) = Sta(A) , i {A)(Y, ) = Stgp(D)
(a=(d,k)). (We use the formulae:

1 With the tools of part 6, this approach will lead to an essentially "geometric" description of the
resurgence where Laplace transform and convolution no longer play the central characters... The second
author was led to this description in particular by Malgange’s description of a part of Ecalle’s work [Ma
8].
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N N N A
MStf AM 7= Sty 2im A), and MSty(AM™ = Sty 2im4(A).)
These representations are clearly submitted to the constraints:

PirrlAN7Yg ) € Sto(Q;d), and ;. (ANY, ) € Stok(Q,d) (a=(d k). We
will name these conditions "Stokes con/c\iitio/rzs”. These representations are defined up the
action (by conjugation) of UFy):if F = H Fyis a formal fundamental solution of A,
and/‘C an /c:,lement of/\ /;l(FO), 6 the corresponding element of 1(4), Ehen

F C= HFy C = HGF, is also a formal fundamental solution of A. They do not
ch/z‘inge if we replace A by a meromorphically equivalent operator ( I/} is then changed in
PH, with P € GL(n;C{x}), and p;,(4) depends only on the connection V associated
to A; we can set Py V) = pi{4).

Theorem 10.
Let Ay be afixed differential operator with a fundamental solution Fy = xy Q1)

We denote by V) the meromorphic connection defined by A, . We set q = q(Q), and
denote by n the rank of Ay. :

(i) The natural map
Pirr
Meromorphic connections V formally —— Representations of the group GlI(q)
equivalentto V. in GL(n,C), satisfying the
Stokes conditions, up to
the action of UFp).
V— pirr( V),
is a bijection.
(ii) The natural map
Pirr

Meromorphic connections V formally —— Representations of the group Il(q)
equivalentto V). in GL(n;C), satisfying the
Stokes conditions, up to
the action of UFy).

is a bijection.

This result is non trivial. We will deduce its proof from the (non trivial...)
classification of isoformal meromorphic connections in the form given by Malgrange and
Sibuya, [Ma 3], [Si]'. We need before to recall some definitions and results (we will
return to this topic in more details in §). In the following we will systematically consider a
function f (with values in a C-vector space), holomorphic on an open sector V as an
"object" on the open arc U correspondingto V in S! (the real analytic blow-up of the

1 The first general classification (after the work of Birkhoff for the "generic case") is in [BJL 2].

101



Elementary acceleration and multisummability

origin in C) as in [Ma 3]. We define this way on S the sheaf A of holomorphic
functions (with values in C) on sectors, admitting an asymptotic expansion at the origin
(with Taylor expansion in CJ [x]]fx~1]). We denote by Aj the subsheaf of. End(n; A) of
germs of analytic matrices asymptotic to identity; Ay 1is a sheaf of (non abelian)
groups. If F is a sheaf on S1, we will denote by ¥y, its fiber at d € St

Theorem 11.(Malgrange, Sibuya [Ma 3], [Si].)
There exists a natural isomorphism

u
GL(n; C{x}x I D\GL(n;C[[x]][x]) — HI(S;Ap).

We recall the definition of the Malgrange-Sibuya map |

Let U= {U;};c; be a finite open covering of S! by open arcs. We suppose that
U; nU N Uy = @,if ijk el are distinct.!

Let AEGL( n,ClxJIx1]). By Borel-Ritt theorem [Wa], we can "represent” A by a
collection {A;};c1 (A; being a holomorphic matrix on an open sector V; corresponding
to U;, with A as asymptotic expansion at the origin).

We consider {A;};cy as a0-cochain (with values in GL(n; A)) and we take its
coboundary -

6= {A; 1A} ;1 € ZH(UGL(n; A)). We have §e ZI(U;Ar) (A; and A; have the
same asymptotic expanszon A). We denote A;~ A Ajj.

By definition u(A) is the image of 6 in H](S1 Ap.If PeGL(n;C{x}), and
B PA we can choose A; = PA;; then ,u(B) ,u(A) In the followmg we will set

I =1[1,..p]("p+I=1"), the bijection between [ and [I,...,p] being chosen such
that U, ;47 = U, NU,4; #2(1=1,...,p), and such that the bisecting lines of the arcs
U, 1+1 turn clockwise, when 1 increases.

If £={dj,dy.., dy} =S, we will say that the covering U is "adapted” to X if

Upie1 = U AUy N2 ={d) (1=1,...p).

Let k; >ky > ... >k >0.Let AeGL(n,C{x}1p, 1/k,.... 10k, X71]).

If2 ¥= X(ﬁ) = {d}, dj..., dp}, we can built a covering U = {U,},c, adapted to Z,
with U, NU,,; bisected by d, with opening <nl/k; (1=1,...,p); such a covering is said
kj-adapted to X. We can choose

Ay = Sk, ko kid A (d € U, , arbitrary® between d, and d,,;;
1=1,...,p). Then the 1-cocycle

1 We will make this hypothesis for all the coverings in the following.

2 More generally we can also take X(A) < X finite.
3 The values of A; obtained for the different d glue together by analytic continuation in an analytic
matrix always denoted A;.
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St(U,'z) = {A,,;7IA },c; is well defined ; the image of St(U;//l‘) in
HI(SL;A;p) is clearly p(A). We will denote by St(A) the 1-cocycle St(UA) up to the
choice of U (satisfying our hypothesis), and identify it to the set of groups
{(Al,l+])dl hel -
If U is an open covering of S!,and F a sheaf of groups on S!,we denote by
iy: ZL (U A)—> HI(SLF) the natural injection.
Let & > 0. We denote by Ak the subsheaf of A; of germs [ + @ with @
exponentially flat of order = k.

Definition 4.

Let k> 0.Let 2={d;, dj..., dp} cS1, and an open covering U "adapted” to X. A
I-cochain &€ CI(U;Ap is said "k-summable”, if & = {A, 11 e » with
Apis1 € U, 1 1:A%K), and if each A, .1 can be (uniquely of course) "analytically”
extended in an element of IV, 1, A%%) where Vi1+1 s anopenarc of (R,0) with
opening mk "containing” U, .1 (1=1,...,p).

We will denote by H1:2%(S1;A%) = HI(SY;A[) the subset of the images of the k-

summable 1-cocycles.

Theorem 12.(Martinet-Ramis [MR 1], I-6.)
Let k> 0.
(i) The Malgrange-Sibuya isomorphism

i)
GL(n; C{x}x~ID\GL(n;C[[x]][x]) — H!(SL;Ap).

induces an isomorphism

]
GL(n; C{x}x I D\GL(n;C{x}plx']) —— HIZ(S1A%).

(i) If 8 e Z(U.AZ*) is a k-summable 1-cocycle, then St( U;u‘l if8) = 6.

Let now A be a differential operator; we denote by A(4p) the sheaf (on Sy of
solutions of End A and AfA) the subsheaf of solutions of End A asymptotic to
identity; Al(4p) is a subsheaf of Aj.

Let now Ay be a differential operator with a fundamental solution F = xLy L),
we denote by V) the meromorphic connection defined by 4 , g = ¢(Q),

NZX(g) = {k;, kp,..., k,} the set of values taken by &(¢;— q;) (q; # q;), and n the
rank of Ap.Let End Ap = dldx —[Ayp,.].
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Let d € (R,0), be a direction and d € st its projection. To the choice of d € (R,0)
is associated a "branch” of Logarithm and a "sum” Fp g4 of Fy = xLU (114, analytic

on an open sector bisected by d.

The map

Aq: GL(n;,C) —> A(Ap)y

Ag: C — FpaC(Fpa™
is an isomorphism of groups.
Let

A(Ap:d;Fy) = Ag(NQ;d))

A Agd;Fp) = A NK(Q;d))
AK(Bp;d;Fp) = Ag(AK(Q;d))
AK(Ayid;Fp) = Ag(AHQ;d)).

It is easy to see that A(Ay;d;Fg), A*(Ay;d;F), AZ(Ap;d;Fp), and A¥(Ap;d;Fp)
does not depend on the choice of Fy and d; moreover A(Ap;d;Fp) = AfAp)y. We can
set: |

AK(Ag:dFy) = A(Ag)y, AKAp:diFg) = AK(Ag)y, AHMApid;Fo) = A%(4g)y.

All these groups! are subgroups of A(Ap),, and, when the direction d varies, we get
subsheaves AK(Ap), AZ¥(Ap) , and A<K(Ap) of AfAp). (When d moves the groups
remain "in general" the "same"”. They can "jump” only for a finite set of values of d, the
"Stokes lines".)

Let

Sto(Ay;d;Fp) = Ag(Sto(Q;d))
StoM(89;d;F ) = Ag(St04(Q,d))
Sto2(Ap;d;Fg) = A4(StoX(Q,d))
Stok(Ap;d:Fp) = A4(Sto¥(Q,d)).

It is easy to see that Sto(Ap,d;Fyp), Stok(Ao;d;FO), Sto>(Ap;d;Fp), and
Sto<*(Ag;d;Fp) does not depend on the choice of Fp and d. We can set:

Sto(Ag;d;Fp) = Sto(Ap)y , StoF(Ag;d;F ) = Stok(Ap)y , Sto™*(Ap;d;Fp) = Sto>(Ay)4,
Sto<k(A0;d;F0) = Sto<k(A0)d. If de X(Ap), Sto(Ap)g is reduced to identity.

From proposition 10 and lemma 12, we get

Proposition 11.

Let de S and k> 0. Let Ap be a given differential operator with a fixed
fundamental solution F, = Ly Q1) We set q = q(Q), and NX(q) ={k;, k»..., k,}
(k; > ky > ... > k). Then:

(i) The four sequences

1 1t is possible to give a "direct" definition of these groups, using Deligne I-filtered structures (or Stokes
structures) [Ma 4], [De 3], [De 4].
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{id}—— AK(Ay); — AAg); — AKAy); —{id},

{id}—— AKAY; —— AK(Ap)y — AK(Ay)y —{id},

{id}—— Sto*(Ay)y — Sto(Ag)g — StoK(Ag)y —{id},

{id}—— Stok(Ap)y —— Sto K (Ap)y — StoHK(Ap)y — {id},
are exact sequences of groups and split.

(ii) Aldglg = Ao(Ag)y b Ab-1(Ag)y b ... s A¥I(Ag)4.

Theorem 13.(Malgrange, Sibuya, Babbitt-Varadarajan [Ma 3], [Si], [BV].)

Let A; be a meromorphic differential operator. We denote by V; the meromorphic
connection defined by A;.Let Ay be a differential operator with a fixed fundamental
solution Fy = Ly eQ(110) We denote by Vo the meromorphic connection defined by
Ao Then:

(i) There is a natural isomorphism (v = vy,):

v

Marked pairs (V ,£), where V isa —  HISYL A4))
meromorphic connections formally

equivalentto V;.and & an
isomorphism between V and V.

(ii) If V; =V}, the natural isomorphism v induces an isomorphism:
1%
Meromorphic connections V formally —— ’L(AO)\H] (Sl A(4p))
equivalentto V.
(The group UAp) is acting by conjugation on A(4p).)

Definition 5.

Let Ay be a given differential operator with a fixed fundamental solution Fy = v
eQ1) We set q = q(Q), NX(q) = {kj, kp...., k,}, and denote by X(q) ={d}, d;..., dp}
the projection of Fr(q) on Sl Ler U= {U, e > be an open covering kj-adapted to
2{q). Then, a 1-cochain

e ClLUA( Ap)) = zl U, A(Ap)) is said a "Stokes cochain'', if

0= {Ays1hert (I={1,..p}), with (A1 )q, €Sto(Ag)y, (1=1,...p).

Let d € Fr(q), d its projection on S, and let p be arepresentation of Il(q) in
GL(n,;C). It is easy to check that A4(p(ys) € A(4p)4 depends only on d € sl

Lemma 15.
Let Ay be afixed differential operator with a fundamental solution Fy = xhy Q01
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We set q=q(Q), NX(q)={k}, ky,..., k. } (k; > kp > ... > k), and we denote by 3(q)
the projection of Fr(q) on Sl Let U={U el be an open covering kj-adapted to

2(q).

The natural map
u

Representations of II(q) in GL(n;C) —— {Stokes cocycles of zl U A(Ap))}
Zy

p — "{Agp(v)}" (d € Hq))

is a bijection.

Theorem 14.

Let Ay be a given differential operator with a fixed fundamental solution Fy = LU
eQIM) We set q=q(Q), NX(q)= {k}, kp,..., k. } (k; > ky > ... > k), and denote by
2(q) ={d}, dy..., dp} the projection of Fr(q) on Sl.Let U= {U },c1,be an open
covering ky-adapted to 2(q). Then:

(i) Let!: A AL A A I
H = H;H, ..H,, where H; e GL(n;C[[x]][x™"]) is k;-summable for
i =1,..r. We suppose that ?7 = I/}xLUeQ(J ) is a formal fundamental solution of a
meromorphic differential operator A. Then the 1-cocycle St(U;H) is a Stokes
cocycle.

(ii) Let 8 Cl(U, A(Ap)) = ZI(U A(Ap)) be a Stokes cocycle. Then,
Aldg) c Ap, e Z! (UAI) andzf H u- zu(6)

(a)H H]HZ ﬁ, , where H eGL(n, C[[x]][x‘l]) is k;-summable
for i=1,..,r;

(b) ?‘ = I/}xLUeQ(““) is a formal fundamental solution of a
meromorphic differential operator A, formally equivalent to Ay .

Moreover:

§=St(UH) =StUuli (9)), and, if V is the meromorphic connection associated
to A, (V) =1iyd).

(iii) Let o EHI(S];A(Ao)), then there exists one and only one Stokes cocycle
5e Z (WL A(Ay) suchthar o= i) (that is representing )2

We will first prove assertion (i).

1 1t is important to notice that this definition is stated in such a way that it is not necessary to know
theorem 5 or theorem 7 to apply it (see footnote below). Of course one can also apply it in the situation
of theorem 5 or theorem 7...

2 Assertion (iii) is due to M. Loday-Richaud [LR 1]. Her proof is completely different: she gives an
explicit algebraic algorithm in order to compute explicitely 6, from a. She uses Malgrange-Sibuya
theory but not Gevrey asymptotics and multisummability; so it is possible, using her result and noting
that assertions (i) and (i) are proved here without any use of theorem 5 or theorem 7, to get a new
proof of theorem 7 [LR 1]. Cf. also [BV].
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Using the construction of theorem 10, we can associate to 1'} = HF o arepresentation
p(H) of Il(q) in GL(n;C), satisfying Stokes conditions. We have

StYWH) =zy( p(H)), and SY{( U,'H) is a Stokes cocycle.

We will admit assertion (ii), for a moment.

Assertion (iii) follows easily from assertions (ii) and (iii):

Let ae H! (SLA( Ap)). From theorem 13, we get a meromorphic connection
V = vI(a), formally equivalent to Vp . We choose a dlfferenual operator A
representmg V, then there exists a fundamental solution F HF o of A, with
H eGL(n,C|, [x]][x‘l J). From theorem 7 we get a decomposition

H HIHZ H, , where H eGL(n, C[[x]][x‘]]) is k;-summable for

i=1,..,r. A a

We have p(H) = p;,( V). Let zy(p(H)) = b € ZL(hA(Ap)). We have iy(8) = ¢, and
6 is a Stokes cocycle representing a.

It remains to prove unicity. Let 8 e Z!( UL A(Ap)), with iy(6) = a. From assertion (ii)
we get §=St(UuTiy(8) = St(U:u(a), but St(U;u~!(e)) depends only on o
unicity of & follows.

Before the proof of assertion (ii), we will give some consequences of theorem 14.

Proposition 12.

Let Ay be a given differential operator with a fixed fundamental solution Fp = Ly
eQUIW)_ We set g=q(Q), NX(q) = {k;, kp,...k, } (k; > kp > ... > k,), and denote by
Xq) ={d;, dy..., dp} the projection of Fr(q) on Sl. Let U= {U, e be an open
covering kj-adapted to X(q). Then the natural map

Representations of the group Illq) —— H](SI;A(A]))
in GL(n;C), satisfying the
Stokes conditions
p — zi9)

is a bijection commuting with the action of (UFg); UAp)).

Theorem 10 follows from theorem 13 and proposition 12.

It remains now to prove assertion (ii) of theorem 14.

Let Ap be a given differential operator with a fixed fundamental solution Fp = xy
Q) We set g=q(0), NX(q)={k;, ko,..., kp} (k; > k3 > ... > k, ), and denote by
2(q)={d;, dy..., dy} the projection of Fr(g) on Sl.Let U= {U et (I={1,...p}),
be an open covering kj-adapted to 2(q).
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Let 5 Cl(U; A(Ap) = ZI(U;A(Ay)) be a Stokes cocycle. Then, A(Ag) < Aj,
e ZL(U; Ajp). Let H U lu(5) We will prove that & is a Stokes cocycle by a
descending recurrenceon i=r,r-1I,., 1.

Our recurrence hypothesis is:

(Hyp i) Let & = {A 1+1hel € CI(U;A(Ao)) = Z](U;A(Ao)) be a Stokes cocycle
satisfying:

(Ayi41 )a, € Stki(Ag)y (1=1,...p; Sto=ki = Swo<ki-1 if i> 1, and
Sto=k1 = Sto).

Then, if Hi= —11 &)

(ay B = Bf,; A, where T, eGL(n;CIxIIE]) is k-
summable for j=1i,..,r. A

(b;) F‘ HixLueQUW) is a formal fundamental solution of a
meromorphic differential operator AL, formally equivalent to 4y .

Moreover: A

§ =St(U;H) = St(U,',u‘IiU(&')), and, if Vi is the meromorphic connection
associated to A, V') =i &)

Assertion (ii) is (Hyp 1).

We will first prove (Hyp r).

Let & = {A 1 1her € Cl(IEA(Ay)) = ZL(U;A(Ay)) be a Stokes cocycle with:

(Ayia1 ), € Stohr(2g)y,

We have (for d, € (R,0), "above” d,)

AaAye1)d, = Cayr s Of (Aye)d, = Foa, Cayr (Fog, )75 if Ve is the open
arc of (R,0) bisected by d,, with opening 7k, , Cy ., € Stok7(Q;d)), and

Foa,Ca;r (Fog, )~! is the germ of a function of I Vil ;A%r)_Then the I-cocycle
& is k,-summable. It follows from theorem 12 that ;1’ = fl, is k,-summable, and (a,)
is proved; (b,) follows from theorem 13.

We suppose now that (Hyp j) is true for r 2j i >1, and will prove (Hyp i—1).
Let &1 = fa- L+l hel € CUUA(A) = ZI (I A(Ag)) be a Stokes cocycle with:
(A 11 )a, € Sto=-1(Ag)y,
Let {C"‘Idl} =zy~1(81). We have Ci‘ldl e StoSki-1(Q;d)), and, from the
decomposition (Lemma 12):

Ai-1(Q:d) = AR(Q;d) k A%r-1(Q;d) i ... ¢ Aki-i(Q;d),
we get, for Ci1 d, € Akisl( Q.d), a decomposition:

C g = Cayr Cayrt -Cayizg » With Cy j € AKi(Q,d)

(j=r,...i—1).
We have ci- d,=C4,Cai1»
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with Cly € A(Q;d), and Cy ;g € N-1(Q;d).

Whe have (Ai1,1+1)dl = )“dl (Cidl) (it is independant of the choice of d, € (R,0),
"above" dy),and & = {Al, 1 1 het € ZI(UA(Ap). If fi = plig(&); then & =
St(U; Hi).

If we set:

Skikiv 1 rid, Iji = Hy*,and

Skokizgokyid, H = H'g, we get:

(Hig = )7THYy * = (A 14 1)g, = Ag,(C'g), or Hy* Foq = Hy Fog Cl .

We set (Buisla, =Hig* Ag (Cq.-1) (Hg ).

Let Vil’H ;7 and vi-l 11+1 be the open arcs of (R,0) bisected by d, with respective
openings m/k; and =w/k;_; (V"“Il,H] is contained in Vil,H_]). Then the germ
Aa,(Cq,;i-1) is the germ at d; of a function B" ;7 of rvi-1 Lit+] : AZki-1) (this
follows from Cy .;_; € AKi-1(Q:d)). The germ Hidl+ is the germ at d; of a function H't
of T(V%, .} ;A) asymptotic to #i on Vi, 141 (and, a fortiori, on Vi1, | /). We
conclude that the germ (B, ,,1)g, is the germ at d; of a function By, ; of IV~
]l,l+] S AZKi-1),

We have built a k;_j-summable cochain = {B; 1} . We check easily that

B e Z(UA(AY)).

Then it follows from theo;em 12 that H;_; = pli B is k;_j-summable, and, from
theorem 13 (i), that (AY)Hi-1 = A1 (definition of Al ) is a meromorphic
differential operator. We set

Al A DA A
H™ =H; jH'=H; ;H; .H,.

_ A ALA A A A
Then A = (At = (A Hi-t = AT = AOH‘—I, and
%i'] = Hi- 1y Q1) jg a formal fundamental solution of the meromorphic
differential operator A fom'z‘ally equivalent to Ay . A
Let Hy ;1" = SE_,,. k:a, Hicp and Hg ;7= S§_,  k.a Hio1-
We find:
Hyirt H'g Fog,= Hasim H'a” Foa,Ca, Cayicg
Hy 1" Hg Fog = Haiopm H'g Foa, C 74,
Hi—1d1+ Foa = Hi-1 " Foa, ci-1 a -
Then &1 = §t( U;?I"‘] ) =5t U;;u‘] iy &71)). We have got (Hyp i—I) and assertion

(ii) of theorem 14 is proved by recurrence. That concludes the proof of theorem 14.

Examples.
As an illustration of the preceding constructions, it is possible to compute the "wild

groups" and their representations for Airy equation and Kummer equations. This is a
simple reformulation of computations of [MR 3], chapter 3.
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Remark.
For d € (R,0), y; €I(q) will later (see 6, infra) correspond to a loop pointed at

"R*"="{0}"xR*e"{0}"x S! ("R*" is a point of the universal covering of the real
blow-up of the origin in the analytic halo).

We start from "R*" and go (on "{0}"x(R,0))to "0"xd € "{0}"'x (R,0); then we
turn clockwise around "]0,+co]” x {d} in the universal covering of C* with an analytic
halo at zero and go back to "0"x d; after that we return to "R*" (on "{0}"x (R,0)).

So the groups Il(q) and GII(q) are "wild fundamental groups pointed at
"R*"e"{0}"x Sl".

Stokes operator Styg(Ag) corresponds to the "wild monodromy” along the loop 7y
for the vector space of "ge}‘ms of solutions of the differential operator A (formally
equivalentto Ap: A= AOH) at "R*"", modulo the isomorphism between this vector
space and the vector space of formal solutions of A, (given by the "analyticity” of H
near O in the analytic halo and the choice of the principal determination of Logarithm).

The "wild connections” induced by V) and V ina "small” sector of the universal
covering of the analytic halo, bisected by R*, are the same (H is a wild analytic function
in such a sector), so, the representation p( V), up to conjugation, can be interpreted as a
representation of the "wild fundamental group” Il(q) into the group of linear
permutations of the germs of horizontal sections of V "at"R*"e"{0}"x S1" (identified
with the formal solutions of Ap like above). Finally we have got a "wild monodromy”.
This "wild monodromy" express the "difference” between V and V). In fact we want
to understand V' independantly of V). In order to do that we will first translate V) in

terms of representation.

Let

E=U E(q)= Lim E(q).
q 7
Let T(q) be the exponential torus associated to q= {q;, q2,..., g} <E (T(q)=

Autg L,). To natural injections
E(q) —> F

correspond natural projections
Tg)—>T.

We set

T= L(Lm T(q). By definition T is the exponential torus; itis a
q
commutative group. The algebraic torus 7T{q) are endowed with the Zariski topology,

and T is endowed with the corresponding direct limit topology.
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Lemma 16.

(i) Let x: T—— C* be a continuous homomorphism of groups. Then there exists
q € E, uniquely determined, such that x is equal to the composition of the natural
projection T —— T(q) (9={q}) and of the character q: T(q)—— C* . (We will
identify x and q.)

(ii) Let F be a finitely dimensional C-vector space (n = dim¢ F), and
6: T —— GL(F) be a continuous homomorphism of groups . Let G = 6(T).

Then there exists a basis of F such that the subgroup G of GL(F), identified by the
choice of this basis to GL(n;C), is diagonal. If ¢;, ¢o,..., ¢, : G —— C* are the
corresponding homomorphisrhs of groups (if g € G, ¢;(g) is the first entry of g on the
diagonal...), and if q; is associated to K; = ¢;0, like in (i) it is possible to associate to
K the set q = {q;, q2,..., qn} C E, independent of the choice of the basis of F, and
@ is the composition of the natural projection T —— T(q) and of
(41, 92, qn) — GL(n;C) = GL(F).

For 1€ T, 8(7) = Diag (41(7), 42(7),..., 4n(7))

In the situation of lemma 16 (ii), we will set ¢ = gy . From a given
g=1{q;, q92..... g, }c E we get a representation 6: T —— GL(n,;C), uniquely
determined up to conjugation, such that g = qg.

Let V be a formal connection. There exists a representation!

8: T —— GL(n,;C), uniquely determined up to conjugation, such that ¢(V) = qg.
More precisely:

Let Fy(x) = KLU with uV= x, be a formal fundamental solution of the formal
connection V (q(V) is the set of the diagonal entries of O = Diag (q;, q2,--., qn))-

Let () be the free group generated by 7. We define an action of the group (yp)
on the lattice E by

qy (W) = q( e—2in Vu), and an action of the group () on the exponential torus T by

Y 7q) = Hqy), for te T and q € E arbitrary.

By definition the wild formal fundamental group 7 s ((C*,0),"R*") of (C,0)
pointed at "R*" is the semi-direct product

(1) &x T built from the action of (y) on T.
Let M = U2y be the Aformal monodromy matrix associated to F. We set
PV () =M,and, for 7€ T,
p(V)(7) = Diag (q(7), q2(7),..., 4u(7)).
Wehave  M1Q(1/u) M = Q(e 2™V
QI“IDiag (91, 42, qn) M= (41% » 92%0 5+ 9n¥0 )
M~1Diag (g;(1), 42(¥),--, an(®) $1= (@19 (D), 0270 (T)recr 4 (7))

1 In the following all the representations are supposed continuous.
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PV)0 ) P(V)(D) p(Vi1) = M p(V)(9) R = p(V(p 9.
So we have defined a linear representation
p(V): 7y o ((C*,0),"R*") = (yp) Ix T — GL(n,C),
associated to the formal connection V. (This representation is, up to conjugation,
independant of the order of the Jordan blocks of L on the diagonal.)
We will see now that, given a linear representation
P1: Ty 5f ((C*,0),"R*") — GL(n,;C),
there exists a unique formal connection V, such that p; = p( V). Moreover, the
formal connection V depends only of the class of pj up to equivalenceby the adjoint
action of GL(n,C) |
We set p;(1p) =Mand pj(T) =T;.Weset g =qg, 6 being the restriction of p;
to 7, q is Galois invariant (it is invariant by the action of M). We can choose a basis of
GL(n;C) in such a way that T; is a diagonal group: T; = {Q(7) = Diag
(91(7),92(7),....qn(7)) T€ T}(q = {qy, q2,.-, 4}, and Q = Diag (q;, 42,.-., 4u))-
Using a method of [BJL], [J], we can suppose moreover that we have chosen our basis
such that U 1(\/[U‘1 is in Jordan form. Then let L be such that e2i#Ll= U IOIU‘] (L is
defined up to multiplication on the right by a diagonal matrix Diag (x™I, x™2,...,x"n),
m; € Z). Then Fy=xL U e€ is a fundamental solution of a rational differential operator
Ay and the corresponding connection V) is independant of the choice of the basis and of
the integers m; , and invariant by conjugation on p; . We have clearly p(V) = p; .

So we get

Theorem 15.
The natural map

P

Formal meromorphic connections ——> Finite dimensional linear representations
of the group ; o ((C*,0);"R*"),
up to conjugation.
V— o(V)

is an isomorphism.

This isomorphism is compatible with sums, duality, tensor products,... It is an
isomorphism of Tannakian categories.

If now V is a germ of meromorphic connection, we get from V two linear
representatons:
ov): ﬂl,sf((C*,O);"R*") —— GL(n,;C), and
P(V)iry: GIlg) — GL(n;C).
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The respective restrictions of these representations p(V) and p(V);, to the
respective subgroups (¥p) of Ty sf ((C*,0),"R*") and GII(q) are clearly equal.
Conversely, two linear representations

pr: ﬂ]’sf((c*,O),"'R+") —— GL(n,C), and
py : GIllg) — GL(n;C),,
admitting equal restrictions to the subgroups

() © 71,4 ((C*,0);"R*") and (y) € GII(g),
being given, it is in general impossible to find a germ of meromorphic connection V
such that p(V):= p; and p(V);,,= py : p; and p, must satisty a "Stokes condition’
(cf. theorem 10). |

!

Proposition 13.

The natural map
p
Germs of meromorphic connections V. —— Pairs of representations of the groups
formally equivalent to V) . 7 sf ((C*,0);"R*") and GIl(q) in

GL(n;C) coincident on the two subgroups
corresponding to (), and satisfying
the Stokes conditions.

V— (p(V).0ir V),
is a bijection.

The next step now is to build a new group ;¢ ((C*,0);"R*"), the wild fundamental
group of (C,0), pointed at "R*", satisfying the following properties:
(i) The wild fundamental group is a semi-direct product
7y 5 ((C*,0),"R*") = ﬂlysf((C*,O),"'R“)lx.‘R,
1,5 ((C*,0);"R™") = (pp)&x T) X R,
where R (the resurgent group) is the "exponential” of a free Lie algebra Lie R (the
resurgent Lie algebra), with infinitely many generators.
(ii) To each germ V of rank n meromorphic connection, we can associate a linear
representation’
p(V) : 75 ((C*,0);"R*") — GL(n,C),
such that the restriction of p(V) to ] .of ((C*,0),"R*") is p(V), and such that, p(V)
being known, the knowledge of the restriction of p(V) to the resurgent group R is
equivalent to the knowledge of the representation
P(V)irr: GI(g) —> GL(n;C) (q = 4(V).
(iii) If a finite dimensional representation' of the wild fundamental group
Po: 715 ((C*0),"R*") — GL(n,C), is given

1 The restriction to T of such a representation will be allway supposed continuous in the following.
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we denote by p; the restriction of py to 77 ¢ ((C*,0),"R*"), and

P2 - GII{q) —— GL(n;C) the representation corresponding to the
restriction of py to the resurgent group R (and the knowledge of pj ...), with
g = qp, -Then the pair (p;,p,) satisfies the "Stokes conditions”, there exists (Proposition 13)
an uniquely determined germ of meromorphic connection V' such that

(p(V).p(V)ir,) = (p1.p2), and (p(V),p(V);,,) comes from the
representation

p(V): =y ((C*0),"R*") — GL(n,C)
defined by V by the construction of (ii).

Let ¢ = {q;, 43,..., q,} C E, and, after ordering, I et Q be the diagonal matrix Q =
Diag{q;, q3,---» q,} Let T(q) be the exponential torus associated to ¢, and let T(Q) be

its representation in GL(n;C) given by Q.
Let te T(Q). It is represented by the matrix

Q(t) = Diag (q1(7).q2(7),....q,(7)) € T(Q)c GL(n,C).

Lemma 17.
Let q = {qy, q3,-.., q,) € E, and, after ordering, let Q be the diagonal matrix Q =
Diag(qy, q2,..., 4, }- Let CeEnd(n;C), C = (cij) (4;j=4q; —q)) Then:
(i) tCr1 = 0(7) C (1) = (¢; 4 (7))-
(ii)Let q € E, q #0 and
Cqg=(a;), with a;;=0if qi—qj#q,and a;;=c;; if q;j=4.
Then:
1C,r =0(1) C, 097 = q(7) C, .
(iii) Let Dia(C) be the diagonal matrix with the same diagonal entries than C:

1Ct~! = Dig(C) + ; q; {(7) qu.J. (with Cq7 =0 if q=0), and such
a decomposition is uniquely determined: if

1 _ pj . -
tCtv™* = Dia(C) + g: q; (7) Aqid., then Aq,’.,' =C
(iv) Let d € (R,0).If C e Sto(Q;d), then:

qij°

tCrl=1+ E q(t) Cy , the sum being extended to q = q; j» With

qi <<d94j,
Crl=I+ X 7)C,.
9€Ex(q) 407 G
(v)Let d e (R0).If C e Lie Sto(Q,d) (Lie algebra of Sto(Q,d)) , then:

1Crl = Z q(t) C, , the sum being extended to q = dijy with
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qi <<d 94j,

rorl = q%{q} a1 Cy.

The only non trivial point is unicity in (iii).

Let (p}, py,..., py) be a Z-basis of the lattice E(q)

We have an isomorphism

(P1, P2o DY) T(@) — (CF)Y
(1, P2ses DY) T —=> (p1(7T), p2(T),..., PAT)).

We set pi(1) = 7 (k=1,...,v). Then each g; J( T) is a monomial in the variables T
e C* and the distincts q; J( 1) are independant on C.

The decomposition (iii) appears as a ""Fourier decomposition' of the "unfolding”
7Ct of the matrix C by the adjoint action of the exponential torus T(q).

Let A =d/dx — A, where A eEnd(n 'C{x}[x‘1]) be a germ of meromorphic
dlfferennal operator at the origin of the complex plane C.

Let F (x) = H(x) xL U €2(1) be a formal fundamental solution of A as above We
set

Fo(x) = xL U €2, g = g(Q), and denote n the rank of A.

Let de Fr(q) and Sty(A) the corresponding Stokes matrix. For every 7€ T, the
;natnx TSta(A)T ~1 belongs to the representation of Galg (4) in GL(n,C). associated to
F, the matrix Sty(A) is unipotent and 1 (Log Sta(A)T™ ~1 belongs to the representation of
Lie Galg (A) Aln End(n;C) associated to F , that is corresponds to a Galois derivation of
the field K<F>. Then it follows from Lemma 17 (Sty(A) € Sto(Q,d)) that we have a

uniquely determined decomposition

T(Log Std(A))T“J = Z q(7) Log Std(A)q , the sum being extended to
q =g, with q; <<qq;,or

7(Log Sty(A))t = %( ) q(1) Log Stg(4), ,

with each Log Sty(4), belonging to the representation of Lie Galg (4) in End(n,C).
associated to F, that is corresponding to a Galois derivation of the field K <ﬁ >, We
have performed a "Fourier analysis of the infinitysimal Stokes phenomena''.

Theorem 16.

Let A = didx — A, where A €End(n;C{x}[x71]), be a germ of meromorphic
differential operator at the origin of the complex plane C. We set q = q(4), and denote
by n the rank of A.Then, for each d € Fr(q), T(Log Sty(A) )r! belongs to Lie Galg
(4), and we have an uniquely determined decomposition
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T (Log Std(A))r‘I = Z q(t) Log Stg(4)4, the sum being extended to
q =q;j with q; <<q4;,or

Log Sttt = 2 1) Log Sty(4), ,
T(Log St4(4)) = q(7) Log Stg(A)4
with each Log Std(A)q belonging to Lie Galg (4).
Moreover 7 (Log Stg{A)g)t™ = q(1) Log Stg(4)4 and

A
MStd(A)qﬁ/\I‘I = Stexp(—2ima(d)q  forevery q € E.

It is now natural to introduce the free complex Lie algebra Lie R generated by

all the ”letters”A;,d where (q,d) is chosen suchthat g€ E and d € Frq (ie.
such that €4 is . "maximally decaying” on d). We will name it resurgent Lie algebra’.
In the situation of theorem 16 we get a linear representation

Lie Py - Lie R —> End (n,C)

Lie pres(A) : Ayq  —>Sty(4), if d € Fr(q), and

Lie pyeg(A) 0 Agq —— 0, if de Fr(q).
We define an action of the wild formal fundamental group

71 £ ((C*,0),"R*") = () x T on the resurgent Lie algebra Lie R by

Yo 444 Yo' = Ayexp2ima - and

T Ay vl = qr) Ay
If we denote by p(A) the representation
p(4A): T} of ((C*,0),"R*") —— GL (n;C) associated to the formal
connection defined by the differential operator A, the above action is "compatible” with
the pair of representations (p(4) , Lie p,.s) (theorem 16 ).

Proposition 14.

The natural map
Pairs of representations (p;, Lp) of —— Pairs of representations of the groups
the group Ty g ((C*,0),"R*") in 7y of ((C*,0),"R™") and Gll(gp,) in
GL(n;C) and of the Lie algebra GL(n;C), coincident on the two subgroups
Lie R in End(n;C) "compatible” corresponding to (), and satisfying
with the action of mj g ((C,0);,"R*") . the Stokes conditions,
on LieR. up to conjugation.

(P Lp) — (p1.p2)

1 Because it contains all Ecalle’s resurgent algebras.
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with Log py (Ya) = 24 a(t)Lp(&yg),  forevery de Fr(g,).

is a bijection.

From Propositions 13 and 14, we get a first version of the ""wild Riemann Hilbert

correspondence'':

Theorem 17.
The natural map
Germs of meromorphic connections ———>  Pairs of representations of
at the origin . the group T; o ((C*,0);"R*") in

GL(n,;C) and of the Lie algebra
Lie R in End(n,C) "compatible'
with the action of 7y g ((C*,0),"R*")
on Lie R, up to conjugation..
V.—— (p(V), Lie ppes(4))

is a bijection.

In order to get the searched result, that is the classification of germs of meromorphic
connections in terms of representations of group, it only remains to replace the resurgent
Lie algebra Lie R by a group, the resurgent group R (the "exponential” of Lie R),
and the action of the wild formal fundamental group =y ((C*,0);,"R*") on the Lie
algebra Lie R by an action of the same group on the group R. Then we will get a pair
of representations (p(V), p,es(4)), respectively of the groups Ty f ((C*,0),"R*") and
R in GL(n;C), compatible with the action of the first group in the second, that is a

representation of the semidirect product (defined by the same action)
g ((C*,0);"R*") < R in GL(n,C).

Let X be a set. We denote [S](LA 4.10) by Ly the free complex Lie algebra on X,
by /L‘,X its completion, by Assy the complex associative algebra on X, by A?sx its
completion, by My the ideal generated in Afv\sx by X, by A: Af'vsX —_ Afv‘sX ®
Aiv\sX the diagonal map, and by 6X the setof Bel+ fI.X with A = B ®p.

There is a natural ison/z\orphism

exp: My — I+ My

We can identify ﬁX with the set of primitive elements of Afv\sx. Then we get by

restriction of the expone/r\ltial an ison/t\orphism
exp: Ly — Gyx. y
By the Campbell-Hausdor(f formula we get a group structure on Gy.
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If X is the set of "letters" A'q’d ,with (q,d) such that ¢ge E and d e Frq,

we denote
N~ A AN AN ) .
Lie R = Ly , UR= Assy , UR= Assy , MR= My , R= Gx . We get isomorphisms

A N
exp: MR —> I+ MR
VA A
exp: LieR — R.
A
We denote by R the subgroup of R generated by the image of Lie R by exp; by

definition R 1is the resurgent group.

Lemma 16 .
We consider the action of the wild formal fundamental group m; o (( C*,0) "R*")

on the free Lie algebra Lie R defined by

Yo dga Yo ! = Agexpr2imd
t Ayg vl = q(v) A°q,d

This action can be extended naturally to UR and we get (by restriction) an action on
R, leaving R invariant, such that

Yo exp( A.q,d )70 -1 = exp( A;,exp(—Zin:)d)

v exp( g )7l = exp(q(t) Aga ).

The wild fundamental group of the germ of C* at the origin, pointed at "R*",
is by definition the semi-direct product
my s ((C*,0),"R*") = ir]’sf((C*,O);"R*") xR
77 f((C*,0),"R*") = (1) k T) xR
defined by the action of ;s ((C*,0);"R*") on R introduced in lemma 16.

A
Let o, &,..., &, € Lie R independant on Z. Then the subgroup of R generated
by exp o, exp ay,..., and exp a,, is isomorphic to the free group generated by the m
"letters” exp o, exp 0y,..., exp o, . We get:

Lemma 17 .

If (pj, Lpy) is a pair of representations of the group 1 sf ((C*,0);,"R*") in
GL(n;C) and of the Lie algebra Lie R in End(n,C*) "compatible” with the action of
7y s (( C,0);"R*™) on Lie R, then there exists a unique representation

p2 : R——> GL(n,C) such that
pa(exp o) = exp Lpy(a) for every ae Lie R. This representation is
compatible with the action of 71 ¢ ((C,0),"R™") on R defined in lemma 6.
We get the "wild Riemann-Hilbert correspondence'':
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Theorem 18.
The natural map

: Ps
Germs of meromorphic connections V —— Finite dimensional linear

at the origin. representations' of the
wild fundamental group
77 s((C*,0),"R™"), up to

conjugation.

V— ps( V)

is a bijection.
The wild Riemann-Hilbert correspondence is an equivalence of Tannakian categories.

Remarks.
1. There are extensions of the wild Riemann-Hilbert correspondence to non-linear
situations in relation with problems of analytic classification (germs of non linear

analytic differential equations, germs of analytic diffeomorphisms, germs of analytic
vector fields...) [MR 1], [E]. In these generalisations one gets statements similar to

theorem 17. In the case of differential equations, C" is replaced by an analytic manifold,
End (n;C) by an analytic vector field, and GL (n;C) by the analytic pseudogroup of
automorphisms of the manifold. Theorem 18 takes a quite technical form...

2. In such situations Ecalle introduces "hidden variables” ("variables cachées"). We
can easily describe (and extends?) his viewpoint using our technics:

Let V be a germ of meromorphic connection and let py(V) be the corresponding
representation got from the wild Riemann-Hilbert correspondence. Let X(V) be the set

of "letters" defined by
X(V) ={pV)( A'q’d ) qge E and d € Fr q}. There are at

most a finite number of values of (q,d) such that the matrix pg( V)ﬂq., d) is not

zero. If this matrix is zero, we suppress the co'fesponding letter. It remains a finite
subset. X'(V). We set Assyyy) = UR(V).
If f is a horizontal section of V, we consider

X(Vif) = {ps(V)(44a )f)qeE and de Frq}
and the set of "letters” X'(V, f) corresponding to X'(V). We set AssX(V = UR(V).
The idea is to interpret HR( Vf) as a "formal function” on UR "extending” f. This

"function" depends on new (non commutative) variables, the "coordinates” of the

1 'We recall that we suppose all the representations continuous on T,
2 Ecalle uses only particular "one-levelled” lattices.
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elements of L/l\R. These "hidden variables” belongs to the dual of LfR. We will be more
precise in part 6 below, and interpret LfR( V.f) as giving birth to a "formal function” on a
principal bundle with structure group .'ﬁ, corresponding to an actual function
extending f defined on a principal bundle with structure group R. Moreover there
are natural actions of 1; o (C*,0);,"R*") on all these objects.

3. The "Lie-algebra" Lie m; ¢ ((C,0),"R™") of the wild fundamental group is the
semi-direct product of Lie-algebras (Lie 7j  ( (C,0);"R*")=T)

Lie T ix Lie R,

associated to the action of the commutative algebra ("Cartan algebra”) Lie T on the
resurgent algebra Lie R defined by

[H, Dq 1=qH) 44
H e Lie T, where
q: Lie T— C
is the infinitesimal map associated to
qg: T—>C*
From the wild monodromy representation p; we get a representation
Lie pg : Lie m; 5 ((C,0),"R*") —> End (n,C).
The restriction of this representation to Lie R is the map Lie p,,, of theorem 17.1t

corresponds to Ecalle’s "bridge equation' ("équation du pont”).

We will explain now how to change the "base point” "R*" of the wild fundamental
group 77 ((C*,0);"R*").

We will replace "R*" by "d" e {"0"} x S} (("0" ,d) = "d") or d € {"+0o" }x S}
(that we can identify with S1, the real analytic blow up of the origin in C).

We fix "d” € {"0"} x S1.Let “c” be an homotopy class of continuous paths on
{"0"} x S with origin "d" and extremity "R*" (corresponding to an homotopy class
of pathsc on Sl). We set

7y §((C*,0);"d") = {"c”" b"c” 1ipe mp ((C*,0);"R*") }, and put on
this set the evident structure of group; 77 ((C*,0),"d") is independant of the choice of ¢
in a sense that we leave to the reader to explicit.

Letnow d € {"+00"} x S, we set

7y §((C*,0);d) = {(yd‘)‘J byy 1be my ((C*0);"d"))}, where the
symbol ;™ corresponds to the multisummation operator S;~ in "the" direction d~ (S~
is interpreted as an analytic continuation along 7,7). We put on 77 s((C*,0);d) the
evident structure of group.

We can also set

7y (C*0);d) = {7 b s+ 1 b e 7y ((C*0);7d")) -
there is a natural isomorphism between the two groups on the right side of our equalities.
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We can now replace ﬂ]’s((C*,O);"R*") by m; (((C*,0);"d”) or m; ((C*,0);d) in
theorem 18 (by definition py(V)("c”) is the analytic isomorphism of solutions spaces
given by the analytic continuation of a fundamental solution Fyy of "the" formal normal
form corresponding to V along ¢, py(V)(y;7) is the isomorphism of spaces of solutions
given by S;7). Elements of 77 (((C*,0);d) are represented by linear permutations of
actual solutions in a germ of sector bisected by d.

It is possible now to give a global version of our wild fundamental group.

Let X be a connected Riemann surface. Let S = {a;,a; ,....a,,} be a finite subset of
X, let xp be abase pointin X — S, and, for each i=1,..,m, let d; be a fixed direction
"starting from q;". We choose homotopy classes of paths ¢; ("in" X —S) with origin
xp and extremity a;, “arriving at a; along the direction d; "(i=1,...,m). We built, like
above, groups

G;= {c,-bc,-“I/ be my ((C*,0);d;)}, i=1,...,m (these groups are
independant of the choice of ¢; in a sense that we leave to the reader to explicit).

By definition! the wild fundamental group "of" X — S, pointed at xyp, is

7y (X = 8,8,x9) = Gy % ... * G, (free product of groups),
and the wild fundamental group of X is
(X —.5) = Lé_m 7y (X = S,S;.)

(There are some trouble with base points in the limit: we get rid of it as in the ordinary

case...)

It is easy to prove the following results (we define pg(V)(c;) as the analytic
isomorphism of solutions spaces given by the analytic continuation along ¢;):

We have a wild global Riemann-Hilbert correspondence:

Theorem 19.
Let X be a connected Riemann surface.
The natural map
’ Ps
Meromorphic connections  —— Finite dimensional linear
on X. representations? of the
wild fundamental group
Ty o(X;.),
up to conjugation.

V— p(V)

is a bijection.

1 Be careful: the group depends on X and S, notonlyon X - §.
2 We recall that we suppose all the representations continuous on 7.
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The wild global Riemann-Hilbert correspondence is an equivalence of Tannakian
categories. ,
We will call the map p( V) wild monodromy representation of the connection V.

Let p,,(V) be the (classical) monodromy representation of the connnection 1%
(local or global case). It is possible to get! the actual monodromy representation p,,(V)
from the wild monodromy representation py( V). If X is a connected Riemann surface,

we will denote

(X —...) = L(Lm (X = S;.) (S finite subset of X).
S

Proposition 14.

(i) Letd € S! be afixed direction. There exists a "natural” functor D from the tensor
category of finite dimensional linear representations of 77 {((C*,0);d) to the tensor
category of finite dimensional linear representations of m;((C*,0),;d) such that

D(py(V) = pm(V)
for every germ of meromorphic connection V at the origin.
This functor is defined by

D(p) = P1(Yay) - pl(ydp)pj , where (py, p3) is the pair of
representations in GL(n;C) respectively from m; o( C*,0);d) and GII dp) ( pointed at
d) associated to p (q = dp, and dj,..., dp are the directions of Fr (q) contained in the
interval [0, 2n[ c (R,0), ordered with the ordering relation induced by R).

(ii) Let X be a connected Riemann surface. There exists a "natural” functor D from

the tensor category of finite dimensional linear representations of m; (X —...;.) to the
tensor category of finite dimensional linear representations of my(X —...;.) , such that

D(ps(V)) = pm( V),

for every meromorphic connection V.

We can reformulate theorem 6 in a more "geometric form" (and extend it to the global
case), replacing the actual monodromy representation by the wild monodromy
representation in Schlesinger's theorem::

Theorem 20.
Let K=C{x }[x‘l J.Let 'V be a germ of meromorphic connection at the origin. We

fix a C-basis of the space of horizontal sections on a germ of sector bisected by a given

1 In some sense 7; is contained in a "completion” of 7y ¢ and pg can be extended to this completion
"by continuity”. Then p,, is the restriction to 7; of this extension.
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direction d and identify the Galois differential group Galg(V) with its corresponding
representation in GL(n;C).
Then Galg(V) is the Zariski closure of the image in GL(n;C) of the wild

monodromy representation
ps(V): mp ((C*,0),d) —> GL(n;C).

Theorem 21.
Let X be a connected Riemann surface. Let K, be the differential vector field of

meromorphic functions on X. Let V' be a meromorphic connection on X, and xp a
point of X regular for V. We fix a C-basis of the space of horizontal sections of Von a
germ of small "disc” centered at xy and identify the Galois differential group Galg( V)
with its corresponding representation in GL(n,C).

Then GalKX( V) is the Zariski closure of the image in GL(n;C) of the wild

monodromy representation
p(V): m (X;.) —— GL(n;C).

Examples and applications.

It is possible to compute explicitely the wild monodromy representations
for the generalized confluent hypergeometric differential equations (using
results of [DM]). These computations use elementary functions and I-function. 1t is
possible to compute the Galois differential groups of the generalized confluent
hypergeometric differential equations from these representations. This program is partially
achieved [DM], [M1], [M2]. C. Mitschi has studied in particular order seven case and

got, after N. Katz [K3], generalized confluent hypergeometric differential equations of
order seven admitting the exceptional group G, as Galois differential group
[M2].

It is possible to get an interesting result for the "inverse problem” in differential Galois
theory from theorem 18 (or theorem 17) [Ra 8]:

Theorem 22.

Let L be a complex semi-simple Lie algebra. Let p be a finite dimensional
representation of L. Then:

(i) There exists a rational differential equation D on PL(C), with singularities
contained in {0,+oo}, 0 being regular singular and +oo irregular, such that Galcy,) (D)
is Zariski connected and such that

Lie Galc(,) (D) = p(L) (isomorphism of complex Lie-algebras).

(ii) There exists a germ of meromorphic differential equation D at the origin such that

Galg (D) is Zariski connected and such that
Lie Galg (D)= p(L).
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We will end this paragraph by a comparison between N. Katz's viewpoint and ours.

Let X" be a compact connected Riemann surface. Let S be a fixed finite subset of
X9 We denote by D.E.(X%.S)) the tensor category of meromorphic connections on
X" with singularities contained in S.

To each point zp of X% —S§ we can associate a fibre functor @(zp) of the tensor
category D.E.(X%".S)):

@ zp)( V) = {horizontal sections of V on a germ of neighbourhood of V’}.

We will denote by ﬂde(X“”— S,S;zp) the group Aut® (axzp)) (automorphisms of
the fibre functor axzp)).

There is a natural map

77 (X = 8,8;20) —> m@l(Xn—S;S;2p):
each element of m; (X" —S,S,z) defines clearly an automorphism of the fibre functor
a)( Zp ) .

Let Y be a smooth connected C-scheme such that the corresponding analytic variety
is the connected Riemann surface X% —S = Y% We denote by D.E.(Y/C) the tensor
category of algebraic connections on Y. The natural map V —— V4" gives an
equivalence of tensor categories between D.E.(Y/C) and D.E.(X%.S).

We denote by ﬂ]diﬁc (Y/C;zp) the group Aut (aXzp)) (automorphisms of the fibre
functor axzp)).

There is a natural isomorphism between ;%{(X3"—$:S,2)) and m,4(YIC;z). We
get:

Proposition 15.
Let Y be a smooth connected C-scheme such that the corresponding analytic variety
is the connected Riemann surface X% —S =Y where X% is a compact Riemann

surface and S a finite subset of X**. Then ﬂ]di}? (Y/C;zp) is an affine pro-algebraic C-

group-scheme and there exists a natural homomorphism of groups
E],S(Xan -S,‘S,'Zo) — ﬂ]dlff(Y/C,'Zo).

This map is not onto. We ignore if it is injective. Anyway 7r1diff appears as an
"algebraic hull” of mj g, just like 7tﬂiff appears as an algebraic hull of m; ,, in the

fuchsian case.
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