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Elementary acceleration and multisummability 

E L E M E N T A R Y ACCELERATION AND MULTISUMMABILITY I 1 

Jean Martinety Jean-Pierre Ramis 

Lorsqu'il suit le bon rayon vers la périphérie, le promeneur peut découvrir... 

André HARDELLKT;Tériphénon. 

This paper 2 is extracted from the contents of a forthcoming book by the same authors 

[MR 3]. Parts / to 3 joined to chapter 2 of [MR 2] form a more or less self-contained set: 

We recall basic definitions about B or el-summability (Borel [Bo 1], [Bo2]), and its 

natural generalization k-summability (Leroy [Le], Nevanlinna [Ne] , Ramis [Ra 1]). 

We describe the "elementary acceleration" introduced by Ecalle [E 4] and different 

summability operators related to it. If one compares to [E 4], our description is slightly 

modified in order to fit with our "geometric" interpretations [MR 2], [MR 3]. In part 4, as 

an example of application, we give a "natural"y simple and general, definition of Stokes 
multipliers3, using a result 4 of Ramis [Ra 3] (Cf. also [Ra 2]), and derive a new proof 

of a theorem of Ramis [Ra 4], [Ra 5], about the computation of the differential Galois 
group of a linear differential equation. As a byproduct we get also the description of the 

meromorphic classification of meromorphic linear differential equations on 

a Riemann surface by the finite dimensional linear representations of a "wild 
fundamental group" (that is a natural generalization of the Riemann-Hilbert 
correspondence). Part 6 is very sketchy, we describe "infinitesimal neighborhoods" of 

the analytic geometry (following an idea of Deligne [De 4]), sheaves of "analytic 
functions" on these neighborhoods (weakly analytic and wild analytic functions); then 

we are able to give a "geometric interpretation" of the notions of acceleration, 
summability and Stokes phenomena5 and various generalizations (the sum of a 

formal power series being now a wild analytic function). 

1 Part I of this paper contains paragraphs / to 4; paragraphs 5 and 6 will appear in Elementary 
acceleration and multisummability II. The second author has exposed a part of this paper at 1989 R.C.P. 
25 meeting dedicated to R. Thorn. 
2 A preliminary manuscript version of parts 1 to 4 of this paper has been distributed during a Luminy 
Conference (September 1989). 
3 Compare with the program of [Me]. Relations between our description of Stokes phenomenon and the 
cohomological approach [Ma 3], [Ma 4] , [Si], [De 3], [J], [BJL], [BV], will be explained in 4. 
4 The main steps of the proof of this result, using Gevrey asymptotic expansions technics, are detailed in 
5. 
5 Partially based upon a cohomological version of Phragmén-Lindelôf theorem due to Lin [Li] (Cf. 
also H'Yashenko's lectures at Luminy Conference). 
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1. Borel summability, Borel and Laplace transforms. 

We denote by Bd the Borel transform in the direction d. 

Bd№ = M) = IfM (eZ/xdx/x2). 
2IK y 

This formula makes sense with"good" hypothesis o n / [MR 2]. We will omit d and 
write Bf if Bd f is independent of d (up to analytic continuation). 

If $ is a convergent power series ((p e C{%}), we will denote by = S (p(^) its sum 

on a "small disc" centered at zero. 

If / is an analytic function in a "small disc" centered at zero, or, more generally, in a 
"small sector" bisected by the direction d, we will denote by f its analytic continuation 
(if it exists) along d. In the following, when we write •d f , we will always suppose that 
•d f is defined on a sector bisected by d with infinite radius. 

Operators S and are clearly infective homomorphisms of differential algebras (laws 
being addition and multiplication, and derivation being dldt; or EfdldE) or of "convolution^ 
differential algebras" (laws being addition and convolution, and derivation being 
multiplication by £). 

If X > 0 and/ft) = xx, we get 
Bd f(fy = Bf(£) = r(X) ; in particular, for X=n e N*,f(x)=xn 

(neN) : 
BM)= $n-1/r(n)=?-1/(n-l)!. 

If we introduce 
Bd f= Bd f(d£ ; then for f(x)=l, we get as a natural generalization: 
Bd / = S (Dirac distribution). 

We can now define a 'formalBorel transform" B : 

FovfeC[[x]]J(x)= JZanxn 

n>l 

1 The convolution law is defined by 0*y/ = J <K0v(&-t)dt in the analytic case and $*y)is deduced, in 

tn-1 zm+n-1 
the formal case, from the identities — r * TTTT- = TT: . 

r(m) r(n) r(m + n) 
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f(£) = Bf(%) = 2 an ^n_1/ (n-l)l. This definition can be extended, 
n>l 

replacing N as a set of indices for the expansion / by a more general semi-group 
(contained in R+): A*=A-{0}, 

f(x)= ^ axx\Bfe)= ^ axp-t/ra) 

We will also use later formal expansions indexed by X e a + N (a e C), and the 

corresponding asymptotic expansions (named asymptotic expansions at the origin in the 

following). 

Lemma 1. 
We have an isomorphism of differential algebras: 

B 
Differential algebra C{x} of convergent > Convolution differential algebra of 

power series. entire functions of order < 1. 

Let / be holomorphic with exponential growth of order < 1 in a "small" sector 

bisected by the direction d (or, more generally, infinitely differentiable on d], with an 

exponential growth of order <1) We can define its Laplace transform along d: 

f(x)= Ldf(x) = j f(£) (e-frdS) 
d 

If f e C{x} (resp. / entire of order <1 ): 

LBf = f and BLf =f. 

With "good hypothesis": 
LdBd = id and BdLd = id [MR2]. 

Example: For f(£) = ^ (ji> -1), we have L f(x) = T^i+l)^1 

A A 

Let / be a formal power series, of Gevrey order 2 1 (fe CffxJJ^.Thtn 
A A A A 
Bf — f G C{g}. If / = S / can be analytically extended along 

A 

some direction d in a fonction / = *d Sf which is analytic with exponential growth 

of order <1 on a small sector bisected by d, we can define: 
A A A 

fd(x) = Ld *d S / = Ld •d S Bf. By definition fd is the "Borel 
A A 

sum" of / in the direction d if is Borel-summable in the direction d). 
Clearly if fe C{xj, SB =B and fd(x) = Sf(x). So = Ld *d S B extends 

the operator S. 

1 A function "infinitely differentiable on d" is infinitely differentiable on the right at zero, by 
convention. 
2 For definitions and notations see [MR 1]. 
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Lemma 2. 
The operator is an infective morphism of differential algebras: 

Differential algebra of Borel > Differential algebra of germs of 
summable series in the direction d. holomorphic functions on sectors bisected by d. 

So Borel-summability is "natural" (i.e. "Galois"). 

Let R > 0 and d a direction. 

Let DR;d = {teCI \ Argt -Arg A < j and Re (eiAr8dt '*) > 1/R}. 

We denote y& the boundary of D R J oriented in the positive sense. 

Let Bd № = M) = -L- J f(x) (e^dx/x2), 

if f{x) = o(x2), and 
Bd№)= lMf(x)=x.Wtgtt Bdf for f(x)= o(x). 

Later we will need the "well known" 

Lemma 3. 
The operator 

L 
Convolution differential algebra > Differential algebra of functions 
of functions infinitely differentiable analytic on open discs D R ; ^ 
on d,with exponential growth (R > 0 arbitrary ) , with 
of order < 1 at infinity. asymptotic expansion 1 (without 

constant term) at zero. 
is an isomorphism of differential algebras. 

Let / be analytic on the open Borel-disc D&;d, with an asymptotic expansion 

(without constant term at zero). Then, using Fubini's theorem, and the formula 

L(e-l)(0 = , we get easily LBf = f(sco [Bo 2]). 

Let / be infinitely differentiable on d} with an exponential growth of order < 1. If 
Lf = 0, then / = 0 (using inversion of Fourier transform ) . 

Now, from L(BLf)=LB(Lf) = Lf,we deduce BLf = / . That ends the proof 
of lemma 3. 

1 Uniform on closed subdiscs T>R;d (R'> R). 

file:///
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2. k-summability, k-Borel and k-Laplace transforms. 

Using Bd, Ld, , S and ramification operators (k> 0) it is easy to build new 
A 

operators Bk;d and (and the formal operator corresponding to B^j ): 

We will use the notation (k > 0) : Pkf(x) =f(x1/k) (x is varying on the Riemann 

surface of Logarithm); p^ = p^1 . 

If dk corresponds to d by the ramification p^, we will set: 
Bk;d = Pk'1 Bdk Pk and 
Lk;d = Pk1 Ldk Pk . 

We have (in general we will simplify our notations: -f} ^ = 

Bk;d Mk) =fk(Sk) = 1 fM (k e&/xkdx/xk+1) 
2IK 7 K 

Lk;d fk(S) =№ = J fkith) (k e~^/xk tf-tdh) 

The operator can be applied to functions holomorphic with exponential growth 

of order <k on a small sector bisected by d, and an asymptotic expansion at the origin 

(indexed by - k + N) . These functions form a k-convolution differential algebra: 

the ^-convolution is defined by: 

fk *kSk = Pk"1 ((Pk fk) * (Pk Sk)) = Pk"1 (f*g). 
Operations are: + , *^, and derivation = B^ (x2 dldx)L^ (d^ will be explicitely 

described later; dj is multiplication by x). 

Lemma 4. 
We have an isomorphism of differential algebras: 

*k 
Differential algebra C{x} of convergent > k-convolution differential algebra of 

power series . entire functions of order <k 

We will use the following notations: 

C[[x]]uk is the differential algebra of formal power series of Gevrey 

order Ilk (Gevrey level k)]; 

C{xil/k;d i s t h e differential algebra of formal power series k-

summable in the direction d (definition is given just below); 

1 Notations of [MR 2]. (Be careful, these notations differ from those of [Ra 1], [Ra 2], [Ra 7].) 
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CM Ilk i s t h e differential algebra of ^-summable series (that is of 

formal power series fc-summable in every direction but perhaps a finite number). 

Let fe C[[x]]llk . Then fk=Bkf e C{$k}. If fk = sfk can be analytically 
A 

extended along some direction d in a function •d fk = *j S analytic with 

exponential growth of order <k on a small sector bisected by rf,we can define: 
fk;d(x) = Lk;d v SJ5k = £jw V Sfi j t / . By d e f i n i t i o n / w is the 

A A 

"£-sum" of / in the direction d (f is £-summable in the direction d). 

It is clear that Sk;d = Lk;d *d S Bk extends the operator S (defined for 

fe C{x}). 

Lemma 5. 
The operator Sk;d is an injective morphism of differential algebras: 

sk;d 
Differential algebra of > Differential algebra of germs of 

k-summable series in the direction d. holomorphic functions on sectors bisected by d. 

So ^-summability is "natural" (i.e. "Galois"). 
We have built a one parameter family (k eR, k > 0 ) of summation processes. We 

will now compare these processes for different values of the parameter k > 0 : if a formal 

power series is summable by two processes then the two sums are equal, but this is quite 

exceptional because /^-summability and A:2 - summability for kj # ^ requires in some 

sense very different conditions. More precisely: 

Proposition 1. 
A 

Let k, k' > 0 with k < k' and f eC[[x]] k-summable and k'-summable in the 

direction d . Then : 
A A 

(0 $k;d f = Sk';d f > 
A 

(ii) The power series f is k-summable in every direction d' with 
A 

arg d' e ] arg d - nlk +nlk' , arg d +Klk- idk' [ and the sums Sk;d' f glue together 

by analytic continuation; 
A 

(Hi) The power series f is k"-summable in every direction d" with 
arg d" e ]argd- nlk +K/k", arg d +nlk - nlk" I for k < k"< kf 

Moreover Sk»;d» f = S w » / . 
Proposition 2. 

A A A 

Let k, k' > 0 with k < k' and fe C[[x]]1/k>. If f is k-summabley then f is a 
convergent power series (i.e. C[[x]]1/k> n C{x}1/k = C{x}). 
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This result, announced in [Ra 2], is proved in [Ra 5] (for a particular case and 
exemple, see [RS 1]). 

From such a result it is easy to understand that summation operators (with d 

and k > 0), if very useful, are not sufficient if one wants to deal with quite simple, 

situations as "non generic" linear algebraic differential equations: 

A formal power series solution of a "generic" linear algebraic equation is k-summable 
A A 

for some k > 0 [Ra 2], [MR 2], [MR 3]. Let now fj,/2 e C[[x]], be divergent, with 
/ A A A A 
fl kj-summable, / 2 ^-summable (kj * £2). Then / = / / + / 2 is divergent 

A 
(proposition 2) and there exists no k > 0 such that / is k-summable (proposition 1 and 

A A 

2). If we suppose that there exists Dj, D2 £ C[x][d/dx] with Dj fj = 0, D2 / 2 = 0, 

then there exists 
A 

D e C[x][d/dx] such that Df=0 (for an explicit exemple see [RS 1]). 
Any formal power series solution of any analytic linear differential equation 

can be summed using a "blend" of & finite set of processes of &-summability (cf. 4, 6, 
infra). The corresponding values for k are computable using a Newton polygon [Ra 1], 

[Ra 7]. We get this way a process of summability (replacing each formal power series in 

the blend by its k-sum). This method gives an infective morphism of differential algebras 
but is purely theoretical (i.e.not explicit). This motivates the introduction of a more 

general tool, that is multisummability. Multisummability (due to Ecalle]) is effective and a 

"blend" of £-summable power series is multisummable. Here we have slightly modified 

Ecalle's presentation in order to be as near as possible of our geometric description of 

multisummability (cf. 6, infra). 

1 It is a particular case of his concept of "accelerosummability". 
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3. Acceleration and multisummability. 

We will introduce here only a very elementary acceleration (for a more general 

theory cf. Ecalle [E 4]). It is sufficient for our applications (and easy to generalize along 

the same lines [MR 3]). Following Ecalle, Acceleration operators are first defined using 

Laplace, Borel and ramification operators; afterwards we get an equivalent definition 

using an integral formula. The important fact is that this integral formula lead to a natural 
extension of the domain of the corresponding operator. 

Let a > 1. Formally the operator pa of a-acceleration is the conjugate of the 

operator pa of ramification by the Laplace transform: 

Pa = L~1PaL= B PaL 

The operator pa is an isomorphism of differential algebras, so the operator pa is 

an isomorphism of convolution differential algebras. More precisely: 

Pa = L i a Pa Ld> a n d : 

Pa 
Convolution differential algebra of > Convolution differential algebra of 
analytic functions on sectors bisected analytic functions on sectors with 
by d with exponential opening > K(a- 1), bisected 
growth of order <1 at infinity by da with exponential 
and asymptotic expansion at zero. growth of order <1 at infinity 

and "asymptotic expansion" at zero. 1 

is an isomorphism. 

As pa the operator pa moves the direction d. It is useful to introduce operators of 

"normalized acceleration" not moving d: 

Aa= Pl/aPa= Pa'1 L ' J PaL = (LPa)'JPaL= B a L • 
So Aa is the commutator of B = L"1 and pj/a = pa'J. 

The operator Aa gives an isomorphism of "convolution" differential algebras: 

A(X 

Convolution differential algebra of > a-convolution differential algebra of 
analytic functions, on sectors bisected analytic functions, on sectors, with 

a-1 
by d, with exponential opening > %l$ = K , 

a 
growth of order < 1 at infinity and bisected by d, with exponential 
asymptotic expansion at zero. growth of order < a at infinity and 

asymptotic expansion at zero. 

For the proof ot this statement see below the more general case of A^^. 
If necessary we will denote more precisely the operator Aa by Aa;d. 

1 This asymptotic expansion is in powers of xlla. 
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The operator Aa is clearly related to level 1. We need now to introduce similar 

operators for arbitrary levels k > 0 Let k' > k, a = k'/k, we will denote: 

Ak',k = PllkAaPk = (Pk)'1(Pk'lk)'lL'1 Pk'lkLPk 
Ak',k = (Pk')'1 L~! Pk'/kL Pk = (Pk'T1 L'1 Pk' (Pk)'1 L Pk 

The operator A ^ gives an isomorphism of "convolution" differential algebras 

^-convolution differential algebra of > £'-convolution differential algebra of 
analytic functions, on sectors bisected analytic functions, on sectors with 

k'-k 
by d} with exponential opening > TC/K= K—^p— , 
growth of order <k at infinity and bisected by d, with exponential 
asymptotic expansion at zero. growth of order <k' at infinity and 

asymptotic expansion at zero. 

If necessary we will denote more precisely the operator A ^ by A ^ - d . 

We have: 
Ak',k (f*k8) = Pkrl L ' ] Pk'lk L pk Pk1 ((Pk f) * (Pk 8)) 
Ak',k (f *k8) = Pk''1 L ' J Pk'lk1- ((Pk f) * (Pk8)) 
Ak',k (f *k8) = Pk''1 L ' ] Pk'lk ((L Pk f) (L Pk 8)) 
Ak',k (f *k8) = Pk''1 (L'J (Pk'lk LPkf)* (L'2 (Pk'lk Lpk 8)) 
Ak',k (f *k8) = Ak',kf *k' Ak',k 8 • 

To prove that Ak'k *s a n isomorphism it suffices to remark that Ld is an 

isomorphism between the convolution differential algebra of analytic functions on sectors 

bissected by d with exponential growth of order < 1 at infinity and asymptotic 

expansion at zero, and the differential algebra of analytic functions on sectors with 

opening > n bisected by d and with asymptotic expansion (having no constant term) at 

zero. 

It is natural to set: 

^oo,£= Lk 
Aoo,l=L. 

We have A^j = and Afcjc= id. 

Let k" > k'>k> 0. When the formula makes sense, we get: 
Ak",k' Ak\k = Ak"fk • 

We will later use the above formula to extend the operator A j ^ : 
The first step is to extend the domain of the operator A ^ and the second to replace 

Ak\k in the formula by *dAk'fk;d: Ak",k';d *dAk\k;d =Ak",k'tk;d (definition). 

More generally, let kj > k2 > ... > kr > 0. When the formula makes sense, we get: 
Akj,k2 Ak2My~ Akr_2,kr

 = Akj,kr • 
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Using this formula, we will later extend the operator , using extensions of the 

operators 
Akbki+1;d (i=l,~.,r-l) and 

Akhk2;d *d Ak2,k3;d - V Akr.hkA = Akltk2,...,kr;d • (definition). 

Let k'> k, when the formula make sense we get: 

Lk' Ak',k =Lk (° r Aootk' Ak',k = Aoo,k)' 

So we can extend the operator Lk using Lk> Ak>k . Then 
id= LkBk = LK Ak<kBk 

S = Lk> Ak>k S Bk, and, more generally, for kj > k2> ...> kr : 
s = Lkj Akhk2 ~- Akr.hkr

 s $kr • 
Then it is natural to extend the domain C{x} of the summation operator S, using the 

new summation operator (along the direction d ): 
A 

Skltk2,...,kr;d = Lkj;d *dAklfk2;d - V A kr.ltkr; d *d S B k r 

(in this formula we have written Ak.jc.+1 for an extension of A k [ k u i ; ^ that we 
will define precisely below). 

The domain of definition of the operator Ak'k;^ is 
{analytic functions on sectors bisected by d with exponential growth 
of order < k at infinity and asymptotic expansion at zero}. 

We will now see that there exists a natural extension of this operator to the larger 
domain 

{analytic functions on sectors bisected by d with exponential growth 
kk' 

of order < K = — at infinity and asymptotic expansion at zero}; 
k k 

l/k'+l/K=l/k;K=k —— >k. 
k'- k 

It is clearly sufficient to understand how to extend the operator Aa;^ (a> 1) defined 

on the domain 
{analytic functions on sectors bisected by d with exponential growth 
of order <1 at infinity and asymptotic expansion at zero} 

to the domain 
{analytic functions on sectors bisected by d with exponential growth 

oc 
of order < /? = at infinity and asymptotic expansion at zero}, 

a- 1 
II a+ 1/(3=1. 

This is done using an integral formula for Aa;d discovered by Ecalle [E 4] : 
We introduce a family of "special functions" Ca (0< a < 1), the "accelerating 

functions": 
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C a ( r j = j e u ~ t u l l a du ; the path / being an Hankel contour: 

oA 

S 

It is easy to see that Ca is an entire function and to compute its analytic expansion at 
the origin: 

* . Y • n K r ( J + n , a ) * 

Ca=2i Zj sin ! -P\ 
a n>0 p r(l+ n) 

with l/a+l/p=l. 
Example: 

a = p=2 ;then C2(t) = i^K t e~t2/4. 
Functions Ca are resurgent at oo [E 4], [Ma ], [C]. If a e Q these functions are 

related to Mejer G-functions and solutions of linear differential equations (cf. below 
"Formulae about accelerating functions"). 

Lemma 6.([E 4], [MR 3] 1 . ) 
B K 

Let p>0 , and a = —-— .Let 0 < 6< — . 

Let Ve= {teCI I Arg t\< j}. Then (on Ve): 

\Ca(t)\ < K ( X (tP/2 e-(t/ca)P); with Ka>0 and 
^cos pe 

ca= p(a-l)1/a. 

Proposition 3 
Let col.Let Aa;d = (L^ap^'1 paLd and 0 an analytic function on a sector 

bisected by d and with an asymptotic expansion at zero (or, more generally an infinitely 

differentiable function on d with an exponential growth of order <1 at infinity). Then 

Aa;d №) = *~a J Ca (t/x) HO d t • 
d 

1 More precisely, using saddlepoint method, it is possible to get an asymptotic expansion of the function 
Ca on the sector V# (and even in I Arg t\ <n/2), cf. [HL], page 45, [Bak], page 84, [MR 3]. 
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Definition 1. 
Let a> 1 and 0 an infinitely differentiable function^ on a direction d. If the integral 

J Ca (tlx) (p(t) dt exists, we will say that </> is a-accelerable 
d 

in the direction d. 

The operator Aa;d = (Lda p^'1 paLd is defined on the domain 

{analytic functions on sectors bisected by d with exponential growth 

of order <1 at infinity and an asymptotic expansion at the origin}, 

but we have p> 1 and the operator (p > \ Ca (tlx) (p(t) dt is defined on 
d 

the larger domain 
{analytic functions on sectors bisected by d with exponential growth 

of order < (3 at infinity and an asymptotic expansion at the origin}, 

(More generally a function infinitely differentiable on d with exponential growth of 

order < p at infinity is a- accelerable.) 

So, proposition 3 gives the searched extension for the operator Aa;d (we will also 

denote this extension by Aa;d). 

Now using 

Ak',k;d Y(x) -^~k' J Y(0 Ca(tklxk)ktk'1dt, for yr analytic on a 

sector bisected by d with an exponential growth of order <1 at infinity, it is possible to 
extend the operator A^^;d to the larger domain 

{analytic functions on sectors bisected by d with exponential growth 
kk' 

of order < K = — at infinity and an asymptotic expansion 
k k 

at the origin}. 
We can now define the notion of (kj,k2,...,kr)-summability in a direction d and the 

corresponding summability operator S^ ^ 2 ( i n ^ e following definition, operators 
Aki,ki+1 ;d m u s t be interpreted in the extended sense, that is as integral operators). 

Definition 2. 
A 

Let kj >k2 > ...>kr > 0 and a direction d . A formal power series f e C[[x]] is 
(kj,k2,...,kr)-summable in the direction d if the following conditions are satisfied: 

(0) fe C[[x]]1/kr. 

1 A function infinitely differentiable on d is infinitely differentiable on the right at zero. 



75 

Elementary acceleration and multisummability 

A A A A 
(1) SB^f can be analytically extended along d to a function •^SB^ f analytic 

k 7 k 
on a sector bisected by d with exponential growth of order < ———— . 

A A kr_2-kr 

(2) Afc ¿.4 •d SB^f can be analytically extended along d to a function 
A A k o k 1 

•d Afc ltk ;d *d S B^ f with exponential growth of order < r . 
kr_2-kr_j 

(Î) Ak.: 

+i>kr-i+2>'d *d A kr_ltkr;d *d $ Bkrf can be analytically extended along 

d to a function 
J A A 

*d Akr_i+1,kr_i+2;d - V A kr_2,kr;d *d s Bkrf with exponential growth of 
order < k"k"+l . 

kr-i~ k-r-i+1 
A A 

(r) A/cijC2;d ... •d

 Akr.2,kr;d *d $ Bkr f can be analytically extended along d to 

afunction ^ 

*d Aklfk2;d - *d Akr.j,kr;d *d s Bkr f w i t h exponential growth of order < k2. 

A 

If a formal power series fe C[[x]] is (k],k2,..;kr)-summable in the direction d , 

then: 
A A 

Lkj;d *d Akhk2;d ••• V A kr.ltkr;d *d s Bkr f i s defined and analytic in a sector 

bisected by d 

We will set 
A 

Sklfk2,...,kr;d = Lk2;d *dAkhk2;d - *d A kr.hkr; d *d SBkr>' 
A . A 

Sk],k2,...,kr;d f *s ^ e (kj,k2,...,kr)-sum of / in the direction d . 
A 

If fe C[[x]] is (kj,k2,...,kr)-summable in the direction d, we will write it 

A 
fe C { x } 1 / k l j / k 2 t l / k r ; d . 

A 

If / e C[[x]] is (k],k2,.-.,kr)-summable in all directions, but perhaps a finite 

number,we will denote it by 
A J A 
fe C{x}1/k1jik2t_tiikr > a n d s a Y that / is (k1,k2,...,kr)-summable . 

Lemma 7. 

Let kj, k2,..., kr > 0 and d a given direction Then 

(i) C{x}1/kltnk2>..jikr;d
 a n d c{x}l/kltl/k2,...,l/kr are differential 

subalgebras of C[[x]]; 

(ii) The subalgebra of C[[x]] generated by the differential algebras 
cMl/kj;d> c(x}l/k2;d —> c{xil/kr;d >is a differential subalgebra of 



76 

Elementary acceleration and multisummability 

C{x}1/klfI/k2_j/kr;d. Moreover if 

f= jLtfitl..fUr ,with I finite and fj e C[[x]]î/kj;d (i e /, and 

j=l,...,r), then 

SkItk2...:kr;d f = Ski;d fi,l - ^kr;d fi,r / in particular the 

analytic function S k r d fj ... -d fr is indépendant of the "decomposition" 

E A A A 

fi l—fi r °f the formal power series f .1 

ie I 

Proposition 4. 
Let k' > k > 0. The operator Ak>k, interpreted in the extended sense (that is as an 

integral operator) gives an injective morphism of "convolution" differential algebras: 

Ak',k 
k-convolution differential algebra of > k'-convolution differential algebra of 
analytic functions y on sectors bisected analytic functions, on sectors with 

k'-k 
by d with exponential growth of. opening > KIK = n ^ , 

kk' 

order < K = — at infinity, and arbitrary radius bisected by d, 
k k 

and asymptotic expansion at zero. and asymptotic expansion at zero. 
Let / and g be infinitely differentiable (as functions of a real variable) on d , with 

complex values. If / and g have a growth of order < k (in particular if / and g have 

a compact support), we have 
Ak',k (f *k8) = Pk''1^1 Pk'lkL ((Pk f)*(Pk8)) 
Ak\k (f *kg) = Pkrl L'1 Pk>ik ((L pk f) (L pk g)) 
Ak\k (f *k8) = Ak',kf **' Ak\k S • 

We get the same formula when / and g only have growth < K by a density 

argument. So Ak>k is a morphism of "convolution differential algebras". 

The proof of injectivity is a little more subtle. We will need a little bit of Ecalle's 
"deceleration theory" [E 4]: 

We have (definition) A^1 = Da = (pa L)'1 L pa = L'1 p a ~ 7 L pa and 
Ak\k~1 = Dk',k= Pk1^1 Pklk'L Pk' (formally Dk<k = AkJk>). 

1 This was proved in [Ra 5] using a different method, answering a question of [Ra 2]. 
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There exist integral formulae for the operators of "normalized deceleration" Da, Dp^ 

. To get them we need a new family of "special functions" Ca (a > 1), the 

"decelerating functions": 

Ca(t)= J e~u+tul/adu 
R + 

It is easy to see that Ca is an entire function and to compute its analytic expansion at 

zero: 

£ r(l + nla) t n 

n>0 r(l + n) 

Example: 
+00 

a = (3 = 2 ; then C2(t) = 7+ ^e^14 J e~u2/4 du. This function is related to 
z -t 

+00 

"errorfunctions'^: Erfc(a)=^= J e~ y 2 dv = 1 -Erf(a). 

Functions Ca are resurgent at 00 [E 4],[Ma 8], [C]. If cceQ these functions are 

related to Mejer G-functions and solutions of linear differential equations (Cf. below 

"Formulae about decelerating functions"). 

Ecalle's functions Ca are particular cases 2 of Faxén s integrals: 

Fi(iiy;t) = i e~u+tuX uV- ]du (see [Ol], [Fa], [BHL]) 

Fi(ar1,l;t)= Ca(t). 

There is in fact a very interesting family of functions: 

Fp.+ (a;p;y) = j ep(v^±vy v^dv; with a sR, peC, PsC[w], 
7± 

and y+ a convenient path. 

There are many occurences of particular cases of these functions in the littérature; the 

main sources are arithmetic (in connection with exponential sums; cf. the Hardy -

Littlewood's paper on Waring's problem [ H L ] 3 , and more recently works of N. Katz 

[Ka 4 ] , Deligne,...), physics (Airy, Kelvin, Brillouin4,...), analysis (study of 

accelerating and decelerating functions, study of Laplace transform: cf.[Ma 5]), and 

probabilities (up to variable and function rescalings, stable densities are real parts of 

1 The function C3 is simply related to Airy function Ai and to Bessel function Kj/3 (cf. [Bak], page 

98). 
2 This was mentionned to us by A. Duval.. 
3 Cf. dXsoBakhoom [Bak]. 
4 Cf. also [AS], page 1002. 
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accelerating functions, cf.[Fe], page 548). If aeQ the function FP;±(a;p;y) is solution 

of a differential equation (obtained by a method similar to the derivation of Gauss-Manin 

connection). These functions1 would certainly deserve a thoroughful study. 

Lemma *.([E 4], [MR 3] 2 ) 

P 
Let R > 0 and B > 0 , a = — - — . 

P - 1 
Let D ^ R = (teCI \Argt\< — and Re t~P> 11R^J.Then (on D^R): 

2(5 
\Ca(t)\ < KaRP/2 (tP-1 e(t/ca)^); with Ka>0 and 

ca= p(a-l)1/a. 

This Lemma is proved using saddlepoint method. 

Definition 3. 
oc 

Let a> 1, p= , R> 0, and a direction d. 

a - 1 
Let y/ be an analytic function on the open p-Borel disc 

Dp,R;d = {teCI \Arg t-Argd\< — and Re (t e~iAr2 d)~P > II R&} , and 
2p 

continuous on the closure of D ^ R ; d . 

If we denote by the boundary of D ^ R ; d oriented in the positive sense, we will 

say that y/ is a-decelerable in the direction d if the integral 

MS) = 7T I Y(C) taCa($/0 d£/C2 exists (for £ e d, 
2m 7 r 

arbitrary). 

Proposition 5 . 
oc 

Let a > 1, p = . Let yr be an analytic function on a sector, with 
a - I 

n 

opening > — , bisected by d} with exponential growth of order < a at infinity and an 

asymptotic expansion at zero. Then \\f is a-decelerable in the direction d and: 

1 And the similar functions obtained if one replaces the Laplace transform by the Mellin transfomi in the 
definition (cf. the functions Tp studied in [Du]). 
2 More precisely it is possible, using saddlepoint method, to get an asymptotic expansion of function 
Ca on the disc D ^ R (cf. [MR 3]). 
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D a =L-J p ^ 1 L p a ¥($) = - L J V ( 0 C a C a ( $ / 0 d^2 • 
2IK 7 R 

K 

If the function y/ is analytic on a sector V, with opening >— , bisected by d , and if 

y/ is sufficiently flat at zero, that is if there exists X > 0 such that 

y/ = o(£i+ P ~ a+^) on V , then it is a-decelerable in the direction d 
and Dayr is analytic on a sector bisected by d , with exponential growth of order < p 
at infinity. 

If a function yr is analytic on D̂ g R . J and admits asymptotic expansion at zero, and if 

there exists a polynomial P such that yr = y/g + P, where % is a-decelerable in the 

direction we will flZro say that I/A is a-decelerable in the direction d and denote it by 

Da y/= Da y/g + # a P ( # a P is computed "formally"; see formulae 

at the end of the paragraph). 
The operator Da;j = L'1 p^1 L pa is defined on the domain 

K 

{analytic functions on sectors, with opening > — , bisected by d, with 
P 

exponential growth of order < a at infinity and asymptotic expansion 
at the origin}. 

The operator yr > — J y/(Q £aCa(%/Q dC,/^1 is defined on the larger 
2in Y r 

domain 
K 

{analytic functions on sectors, with opening > — , with arbitrary 

radius, bisected by d, with asymptotic expansion at the origin}. 

So, proposition 5 gives an extension for the operator Da;(i . 

Lemma 9. 
The function Ca is a-accelerable in the direction R+ and 

A a c a ( 0 = OWi-O. 

Proposition 6. 

Let a> 1, p = . 
a - 1 

(i) If a function yf is a-decelerable in the direction d}then Day/ is a-accelerable 

in the direction d and: 
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(ii) If a function (p is infinitely differentiable on d, with an exponential growth of 

order <fiat infinity, then Aa0 is a-decelerable in the direction d and: 
DaAa<t>= <P-

The proof of (%) is easy, using Fubini's theorem and lemma 9. 
To prove (ii), using lemma 3, we first prove it when y is infinitely differentiable on 

d, with exponential growth of order < i at infinity (in particular for y/ with compact 

support); then, for y/ with only an exponential growth of order < p , we conclude by a 

density argument. 

From proposition 5 (ii) we deduce the injectivity of Aa;ci. The injectivity of A^^.j 

follows. That ends the proof of proposition 4. 

The following result is essential: 

Theorem 1. 
Let kj > k2 > ... > kr> 0, and d a given direction. Then the summation operator 

^klfk2,...,kr;d 
C(x Jl/kjJ/h,.. ,l/kr;d > Differential algebra of germs of analytic 

functions on sectors bisected by d. 
is an injective morphism of differential algebras. 

Operators S and • d are isomorphisms of differential algebras and of ^-convolution 
differential algebras. Operator is an isomorphism of differential algebras between the 

differential algebra C[[x]] and the /^-convolution differential algebra C[[x]]. Operator 
Lkj is an isomorphism between the convolution differential algebra of analytic functions 

on sectors bisected by d with exponential growth of order < kj at infinity and 
asymptotic expansion at zero, and the differential algebra of analytic functions on sectors 
with opening > nlkj, bisected by d, and with asymptotic expansion (having no constant 
term) at zero. We can now end the proof of theorem 1, using proposition 4 with 
k —kj^ j , k —kj (i — r ,...,2). 

In fact it follows from this proof that the image of the operator S# ^ ,...,kr;d *s contained 

in the differential algebra of analytic functions on sectors with opening > rfkj , bisected 

by d, and with asymptotic expansion (having no constant term) at zero. 

It is possible to extend proposition 2 : 

Proposition 7. 

Let k'>k} >k2> ... >kr>0. Then : 
C[[x]]1/k, nC{x}1/klJ,k29mmmMr = C{x}. 

Proposition 8. 
Let k'j, k'2,..., k'r> >0 and kn

lf k"2,..., k"r» > 0 . If 
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{kh k2,..., kr}= {k'h k'2,..., k\>} n {k"j, k"2,..., k"r»}, with 

kj > k2> ... > kr> 0.(r < r', r"), then : 
C(x}l/k'1Jlk,

2,...JIk'r> r)C(x}l/k"hllk"2,...,llk"r = C{x}l/kllllk2,...,llkr' 

A 
If fe C[[x]] is f/: ,7,/:2,...,/:V ,J-summable, the smallest set {kj, k2,..., kr } (with 

A 

kj > k2 > ... > kr > 0 ), such that / is (kj,k2,...,kr)~summab\e, is a subset of {k'j, 
A 

k'2,..., k'r>} and depends only on / . The numbers kj, k2,..., kr are the singular 

levels of / : 
J A 

{kj, k2,..., kr } = NI(f) c ]0,+ oo[ (definition). 
A 

The situation is very different if / e C[[x]], is (k'iyk'2,...}k'r')-summable in a 
A # 

direction d. It is easy to prove then that there exists e > 0, such that / is 
(k'i - e',k'2 - £',...,k'r> - £>summable in the direction d for every e' e[0,e]. 

We will identify the real analytic blow-up of the origin in the complex plane 1 with the 

circle S 1 . Then we introduce the "analytic halorr of the origin in the complex plane: 

HH0= ]0,+oo]x Sl = {(k,d)/k<=]0,+oo],de S1}. 

The complex plane with an analytic halo at zero is: 

CH0 ={0}uHH0uC*= (({"0"} u"]0,+oo]") u]0,+oo[) x Sl)/R; 

& being the identification of "{0}" x S 1 with a point "{0}". 

On the set {"0"} u "]0,+oo]") u ]0,+oo[) we put the ordering relation: 

Ordinary ordering relation on ]0, + oo[ and "]0, + oo]", p > 0 > k, if p e ]0, + oo[, 

ke"]Oy+oc]". ("+oo" is identified with 0 ). We endow {"0"} u HR0 u C * with the 

corresponding topology (quotient of the product topology). We will consider 

"{"0"}xSl as the "real blow up" of 0 in CHq (that is the set of directions starting 

from 0 mCH0). 
1 ^ The universal covering of ( S \ 7 ) is (R,0). We will interpret HH0 = ]0,+oo]x 

(R,0) as the "universal covering of HH0 pointed on the direction "R+"e{"0"}xSl". 

, A 

Let U c S 1 be an open arc Let kj > k2 > ...> kr > 0. If fe C[[x]] is 

(kj,k2,...,kr)-summable in every direction del], then the sums fkltk2,...,kr;d §^ue 

together in a function / analytic on a "sector" with opening equal to 

(opening of U + Tr/kj). 

If now U c S 1 is an open arc bisected by d, let 

U + = {d+ e U / Arg d+ > Arg d}} and 

I T = {d~eU/ Arg dr < Arg dj. 
A 

If feC[[x]] is (ki,k2,...,kr)-summable in every direction d' e U -{dj, we denote 

1 If we use polar coordinates for the points of C* : 
C* = {(p,Q)l p>0, 6s S1} = ]0t+oo [xSl

t this set corresponds to {0}xSl. 
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A 

fk*Jk2,...,kr:d = S£ltk2,...,kr:d f a n d 

fklk2,...tkr;d = Sk1Jt2....Jcr;d f t h e s u m s o f / f o r ^ + e U + a n d 

d~~eU~ respectively. They are in particular defined on a common "sector" bisected by d, 

with opening equal to 7C/kj . 
If feC[[x]] is f ^ .^V.^ r J - summable , then S£hk2,„.,kr:d / a n d 

jt r;d / are defined for every direction d e S 1 . 

We can along the same lines define operators L ^ . j and Af ^ > f ° r £ e {1>~1}-

Using decelerating operators, we get easily the very important: 

Lemma 10. 
A 

Let kj > Ic2 > ... > kr > 0 and d a given direction Then if f e C[[x]], is 
(ki,k2,...,kr)-summable in every direction of \J -{d}, the following conditions are 
equivalent: 

A 

(i) f is (kj,k2,...,kr)-summable in the direction d; 

(ii) §£hk2,...,kr:d f = Skltk2,...,kr;d f on a sector bisected by d. 

Moreover if these conditions are satisfied, then 
A _ A A 

$khk2t...,kr:d f =Skltk2f...tkr;d /= Skltk2,...,kr;d f 

If the conditions of lemma 10 are not satisfied, we will say that d is a singular 
direction for the formal power series / , and we will write d e L(f); the "singular 

A A A A 

support" 1(f) of / is clearly finite, and 1(f) = 0 is equivalent to fe C{x} . We will 

see below that the "jump" from 
A _ A 

Sjcj,k2,...,kr;d f t 0 ^kj,k2t...,kr;d f is a natural generalisation of the classical 

"Stokes phenomenon" for solutions of linear differential equations. 
We will give below (cf5) a very natural interpretation of multisummability: 

A 
A formal power series fe C[[x]] is multisummable in the direction d (that is there 

A 

exist kj > k2 > ... > kr> 0 such that / is (kj,k2,...,kr)-summable in the direction d ) 

if and only if it is "analytic" {"wild analytic") in an "infinitysimal disc" 1 and can be 

"extended analytically" along d, across the "infinitysimal neighborhood" 2 in a wild 

analytic function on a sector bisected by d, with a "non infinitysimal" radius R > 0. 

Then, just like one can give a direct (that is without using Borel and Laplace 

transforms) definition of Borel-summability and k-summability using Gevrey 

estimates [Ra 2], [MR 1], [MR 2], [MR 3], it is also possible to give a direct (that is 

without any use of Ecalle's acceleration operators) definition of multisummability using 

the wild Cauchy theory recently introduced by the authors [MR 3]. This "geometric" 

definition is easier to check in the usual applications . Converserly the "analytic" 

1 The corresponding punctured disc has a radius > k>0 in the analytic halo at zero. 
2 This infinitesimal neighborhood is the union of zero and the analytic halo at zero. 
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definition gives an "explicit" way for the computation of the sum (for instance if one has 

in mind numerical computations ) . 
1 A 

Let U c S 1 be an open arc bisected by d. Let kj > k2 > ... > kr> 0 and l e t / e 

C[[x]]f be (kj,k2,...,kr)-summable in every direction d' e U - {d}. There is a natural 

way to generalize the sums §£hk2,...tkr;d f a n d sk]tk2,...,kr;d f : 

Let € = (ej, £2,...,£r), with £i e{l,-l} (i = l,...,r). We will say that (d;e) defines a 

"path". 3 We can now introduce the notion of (kj,k2,...,kr)-summablility along the path 

(d;e): 

Definition 3. 
Let U c S 1 be an open arc bisected by d. Let kj > k2 > ... > kr> 0 and l e t / e 

C[[x]], be (kj,k2,...,kr)-summable in every direction d' e U -{d}. Let e = (ej, 
A 

£2,...,er), with £ie{l,-l} (i = l,...,r). We will say that f is (k],k2,...,kr)-summable 

along the path (d;£) if 
Skhk2,...,kr;d f = LVhk2;d *de* Ak)9k2;d - A\r

r.hkr;d *d*$Bkrf 
£ A A 

exists. Then §k1,k2,...,kr:d f *s ^ e s u m °f f a^onS Ihe path (d;e). 

Theorem 2. 

Let kj > k2> ... > kr> 0,.a direction d and £ = (£j, £2,...,£r), with 
£l e{l,-l} (i = l,...,r). Then the summation operator 

Sk],k2>...,kr;d 
(/c],k2,...,kr)-summable > Differential algebra of germs of 

A 

power series f e C[[x]] analytic functions on sectors 
along the path (d;e). bisected by d. 
is an injective morphism of differential algebras. 

£ ^ £ ' A 

Comparison between §ki,k2,...,kr;d f anc* ^kj,k2,...,kr;d f for different £, e 'wi l l 

give birth to a "generalized Stokes phenomenon". 

We will finish this paragraph with a small list of useful formulae: 

Let k, k', X, jii> 0. Then: 

B k (xx) = t x~ kir(Xlk) L k ( t = r(l + jMk) x 

3 Later we will see that such a (d;e) corresponds to a wild homotopy class of paths in the analytic halo 
of the origin, avoiding "singularities" of / in this halo. 
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' a ' 

D a ( x V ) = m ± } ^ L t v - 1 + a 
r(v+a) 

Dk'k(xv)= ~ ^ — t v + k - k 

IK*?) 

dk(xx) = (X+k) r(l+ AJk)xx+1/r(Zy-+l) 

r(l+k(X+p)) 

When k varies from 1 to + 00, the k-convolution *£ varies from the ordinary 

convolution * to the ordinary product • . 
Formulae about accelerating and decelerating functions. 

The following results were obtained recently (January 1990) by A. Duval: 

C3(t) = i<~3 G^2°((t/3)3\ / , i f 2 £ ) ; 
C2(t) = ^ QH ( ( t / 2 ) 2 \ 0 % i ) = L ^ l j a ; i 2 l 4 ) ; 

G is a Mejer G-function [Lu]. 

( 0 1 

C^t) = 1s ds (Hankel type contour around / f + ) , 
J F(-s/a) 

+00 

( 0 1 

Ca(t) = j - \ T(-s) r(l+sla)) (-t) s ds . 
+00 

If a = plq, withp and q positive integers, q >p > 0, (p,q) = 1 : 
(01 

, f 11 r(-s+]lq) 
Cqip(t) = II ipq(2njfl^> lsl,rft~' (Pp(tlq)Vs ds 

. 11 H-s+j/p) 
J j=i,...,p-l 

cqlp(t) = hkI ipqdnr? g # - £ 7 I 

( 0 1 

a'P(t)=-i^pq/(27t)ff+P f n H-s+j/q) U r(s+l/p-j/p) (pP(-t/q)Vs ds 

J J=0,...,q-1 j=0,...,p-l 
+ CO 
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Accelerating functions Cq/p are solutions of the differential operators (respectively of 

order q-1 and q): 

q 11 (8 -j) -(-iyi-Ppfl n (Z-S + j) (8=td/dt), 
j=l,...,q-l j=l,...,p-l 4 

and 

D4 - ( - 1 )<1-P II (2-tD+j) (D = d/dt). 
j=l,...,p 4 

We get in particular, for q - n, p - 1: 

Bn + Hyi(LtD + l). 

Decelerating functions CqlP are solutions of differential operators 

D«- II (Z-tD+j). 
j=l,..,p 9 

If p - q is even, we get the same differential equation fot the accelerating and 

decelerating functions. 

We get in particular, for q - n, p - 1: 

Dn-(-tD + l). 
n 
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4. Stokes multipliers. 

Let A = dldx -A, with A e End(n;C {x}[x~J ]), be a germ of meromorphic 

differential operator at the origin of the complex plane C. 

It is well known [Ma 2] that A admits a formal fundamental solution^: 

F(x) = fi(u) uvL
 eQ(1/u), with: 

uv = x (for some v e N* ) , L e End(n;C), (i e GL(n;C[[u]][u~} ])f and £ a diagonal 

matrix with entries in u^Cfu"1], invariant, up to permutations of the diagonal entries, 

by the transformation corresponding to u > e2l7llvu (x > e2lKx) and satisfying 

[e2invL,Q] = 0 (and [L,Q] = 0, if v = 1); L can be supposed in Jordan form. 

If Q = Diag{qj, q2>..., qrJ> then the ser f ;̂, <72>---> i s a subset of u~lC[u~l] 

which is independent of the choice of the fundamental solution F (v is choosen 

minimal). 
We will set {qlf q2>..., qn} = q(Q) = the set q(A) is clearly a formal 

invariant of A (invariant by the transformation q(A)(u) > q(A)(e2iKlvu)). 

Proposition 9. 
Let kj > k2 > ... > kr > 0, and v e N*. Let d be a fixed direction. Let aj, CC2>~" 

am eC, and qj, q2>.-> qn

 € x 1 / v C[xllv]. Then the summation operator 

Skj,k2,...,kr;d 
C(x }l/k1,l/k2f...,l/kr;d > Differential algebra of germs of analytic 

functions on sectors bisected by d. 

can be uniquely extended to a summation operator (still denoted by Sk],k2,...,kr;d ) 

C(x}l/kj,l/k2,...J/kr;d <xai,eqJ,Log x> > Differential algebra of germs of analytic 

(i=l,...,m;j=l,...,n) functions on sectors bisected by d . 

such that (a "branch" of Log x being fixed2): 
skj,k2 kr;d(xCCi) = eaiLo8*y Skltk2>tlCr;d(eqj) = eqJ, and Sk1Jk2,...Jkr;dLo& x)=Log x. 

This operator is an infective morphism of differential algebras. 

It is easy to extend the definition of the operator = $kltk2,...tkr;d t 0 ^ e elements of 

C{x}l/klfllk2f...J/kr;d<x0Ci>Log x> (i=l,...,m). Then, using asymptotic expansions (the 

inverse of S d , restricted to Im Sd, is the asymptotic expansion operator in the classical 

sense), we get 

C{x}<eqJ> nC{x}1/klJ/k29mmmj,kr;d <xCCi,Logx> = C{x} (7=7,...,m;j=l,...,n). The 

result follows. 

1 Cf. infra for a more precise description of F when v>2 ("ramified case"). 
2 Log x is "formal" in the "left expression", and an actual function in the "right expression". 
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Theorem 3. 
Let A = dldx - A, with A e End(n;C {x}[x~] ]), be a germ of meromorphic 

differential operator at the origin of the complex plane C. 
We denote by kj > k2 > ... > kr the positive (non zero) slopes of the Newton 

polygon of the (rank n2) differential operator 
End A = dldx - [Ay J. 

A 

Let F be a formal fundamental solution of A. Then there exists a "natural 

decomposition" 1 

A A A A A _7 

H = HjH2 ...Hr , where Hf eGL(n;C[[u]][u *]) is k-summable as a 
"function" of x (i. e. vkfsummable as a "function" of u)yfor i = l,...,r, and such that 

(i) Fl(uv) = Hi(u)Hi + 1(u)...Hr(u) uvLeQ(1/u> is a formal 
fundamental solution of a meromorphic differential operator Aj= dldx-Ay}, 
with 

A} eEnd(n; Cfujfu'1 ]),for i = l,...,r; 2 

(ii) If 1(F) = 1(H) = .U r XiHj) , Hi;d = S M Hi (for i = l,...,r) 
and 

Hd= H1;dH2;d...Hr;d, 
then, for d <£ 1(H), and every determination of Log x(u = e(Lo% x^lv and uL = e1 Lo% u): 

Fd(x) = Hd(u) uvL eQ(llu) is an actual analytic fundamental solution of 
the operator A on a sector bisected by d. 

From this result (using proposition 9) it is easy to deduce the 

Theorem 4. 
Let A - dldx - A, with A e End(n;C {x}[x~J ]), be a germ of meromorphic 

A 

differential operator at the origin of the complex plane C. Let F be a formal 
fundamental solution of A. If we denote by C{x}[x 1]<F> 

_j A A 

the differential field generated, on C{x}[x l], by the entries of F, then, for d <£ 1(F), 

the map 
-J A -7 

C{x}[x 2]<F> > Differential field generated, on C{x}[x l], by the analytic 
solutions of the operator A in a germ of sector bisected by d. 

defined by "identity" on C{x}[x l] and F >Fd, 

1 Unique up to "natural" analytic transformations (see [Ra 4]); in particular, the matrices Hi are well 
defined up to analytic (in u) conjugation. 
2 Moreover the matrices A v

l and have a common "blockstructure" and A v

l can be reduced by a 

transform "Y = Exp(Qi) Z" to a differential operator whose Katz's invariant [De 1] is ki+j ; Qi being a 
diagonal matrix whose entries are monomials in u (fixed for each block)of degree vkt [J] , [Ra 6] . 
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is an isomorphism of differential fields. 

We will first admit theorem 3, and will go back in 5 to some indications about its 

proof, after some applications. It is very easy to deduce theorem 4 from theorem 3, using 

multisummability (other ways to do that are explained in [Ra 5], [Ra 6], and [De 4 ] 1 ) : 

From theorem 3 and lemma 7 we get 

Theorem 5. 
Let A = dldx - A, with A eEnd(n;C{x}[x~]]), be a germ of meromorphic 

A 

differential operator at the origin of the complex plane C. Let F be a formal 

fundamental solution of A. We denote by kj > k2 > ... > kr the positive (non zero) 

slopes of the Newton polygon of the operator 

End A = dldx - [Ay.]. 
A 

Then F is (kj,k2>...,kr)-summable in every direction, but perhaps a finite number 
A 1 

belonging to 1(F) c S A . 

Clearly (using lemma 7) the sums (in a common non singular direction) given by 

theorems 2 and 4 are the same. 
If d£l(F)y the operator $kltk2,...,kr;d * s injective and Galois-differential. So theorem 

4 follows from theorem 5. Moreover we have got an "explicit" method of summation 
of formal solutions of linear differential equations.2 It is interesting to remark 
that kj, k2>..., kr are rational numbers, so £;/&;_7 = eQ and Ca. (i=l,...,r) is 

a solution of a linear differential equation; moreover all the functions written under J 

when we apply the successive computations of the resummation algorithm are solutions 
of linear differential equations. A consequence is that, for numerical computations, we 

can apply efficient algorithms in order to compute the successive analytic continuations 
•d (Runge-Kutta algorithm, Chudnovskys algorithm [Chu],...). 

Let now d e I(P) be a singular direction: 

Then (a "branch" of Logarithm being choosen) 
stltk2,...,kr;d $ a n d sklfk2f...,kr;d F a r e (different) actual 

fundamental solutions of A, analytic on a common sector bisected by d, with opening 

Klkj , on the Riemann surface of Logarithm. So we get 

1 The methods differs by the respective proportions of analysis and algebra used. 
2 There exists an algorithm for the explicit computation of the levels kj, k2,..., kr [Ma 2]. An effective 
computation is possible on a computer using the systems "Reduce", "Desir" and "D5" [Tou]. For the 
("generic") one-level case there are efficient numerical algorithms of summation [Th]; for the 
multilevelled case, algorithms are studied by Thomann. 
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Fd = Fd St^ , with Stj e GL(n;C). By definition Std is the 

Stokes matrix associated to the formal fundamental solution F of A, to the direction 

d, and to the choice of branch of Logarithm. 

The operator ( S ^ 2 i ^ . j T 7 ( Hhk2t...,kr;d ) = Std i s clearly a ^-automorphism of 

the differential extension C{x}[x~1]<P> (which is a Picard-Vessiot extension of 

Clxjfx'1] associated to A [Kap], [Kol]), that is an element of the Galois differential 
A 

group, clearly independent of the choice of F ). Later we will systematically write the 
operation of elements of Std, and, more generally, of differential automorphisms, on the 
right (and ask the reader to be careful with the ordering of compositions...). We will 
also denote by Std the induced automorphism (this automorphism depends on de S 1 

and on the choice of branch of Logarithm 1 , that is on de (R,0) (universal covering of 
(Sl

90 ]) "above" d) of the C-vector space of formal solutions of A (the matrix of this 
A 

automorphism in the basis formed by the columns of F is St j ) . So the Stokes matrix 
Sid is an element of the representation of "the" differential Galois group 
GalK (A) = AutK K<F> (K = C{x}[x~1]) in GL(n;C) given by the formal 

A 

fundamental solution F. 
Here one must be very careful: Stokes matrices defined by our method (very near of 

Stokes original method [Sto](cf. references and comments in [MR 2], chapter 3)) are 

"in" the Galois differential group, but this is in general completely false for "classical" 
Stokes matrices. Classical definition, starting from asymptotic expansions in Poincaré's 

sense 2 , is "unnatural" and corresponds to a misunderstanding of the original Stokes ideas 

(Stokes was working by numerical computations with in mind something like an idea of 

"exact asymptotic expansions" ) . 
Remark. 

Stokes operators Std and Stokes matrices St^ are unipotent (see infra), so we can 
define their logarithms std and st^ respectively (the idea of a systematical use of these 
logarithms seems essentially due to Ecalle in a more general context): 

Std - Exp std and St^ = Exp st^. Then 

Fd = FfyExp (—J strf ) = F^ Exp (-J- strf j , and we can choose 
A 

Fd as sum of F in the singular direction d (this idea is already in Dingle's book [Din]; 

this has been recently extended to extremely general situations by Ecalle: "sommation 
A 

mediane" ). If the differential operator A is real, if G is a real formal fundamental 

solution, and if d = then we can choose the fundamental determination of the 
1 Up to conjugation by the "formal monodromy" (Cf. infra). 

2 Asymptotic expansions in Poincaré's sense must be replaced by "transasymptotic expansions" (Ecalle's 
terminology): the transasymptotic expansion map is the inverse of the summation map). Transasymptotic 
expansions can only make "exponentially small jumps" on singular lines ("antiStokes lines"), but 
Poincaré asymptotic expansions can only make "jumps" on "Stokes lines" (consequence of 
transasymptotic expansion "jumps", in "quadrature ofphasis"). 
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Logarithm , and the "median sum" Gd is real (this can be applied to Airy equation at 

infinity, cf. [MR 2], chapter 3). Moreover std is a Galois derivation (i.e. commuting 
A 

with the derivation of the differential field) of the differential field K<G> , and 
1 ^ 

Exp ( — std) eAutKK<G> , then, when the reality conditions given above are 
satisfied, the map R{x }[x J]<G> > germs of real meromorphic functions at 

0 e ]0,+oo[ defined by 
A A _ ; 
G > Gd on G, and equal to S on R{x}[x l] is an injective 

morphism of differential fields. 

The following generalization of a Schlesinger's theorem 1 [Sch] was first proved in 

[Ra 4], [Ra 5], using a different method 2 : 

Theorem 6. 
Let K = C {x}[x~J]. Let A = dldx - Ay with A e End(n;K), be a germ of 

A 

meromorphic differential operator at the origin of the complex plane C. Let F be a 
formal fundamental solution of A. Let H be the subgroup of GL(n;C) generated 

A 

by the formal monodromy matrix M, the exponential torus T, and the Stokes 
A 

matrices of A associated to the given formal fundamental solution F. Then the 

representation of the Galois differential group Gal^(A) of A in GL(n;C)y given 

by fi, is the Zariski closure of H in GL(n;C). 

Using "Galois correspondence" [Kap], it suffices to prove that the invariant field of H 
A 

(that is the subfield of K<F> consisting of the invariant elements by H) is K. 
First we must define the "formal monodromy" and the "exponential torus" of A. 

Replacing u by u e 2 i n in F(u), we get a (in general new) fundamental solution of 
the differential operator A: 

?;*r A A A 

F(u ezi7t) = F(u) M, with MeGL(n;C). By definition M is the formal 
monodromy matrix associated to A and to the fondamental solution P. The 

A A A 

corresponding element M of Aut%K<F> is clearly indépendant of the choice of F and 
is a formal invariant of A; it is the formal monodromy of A. (We will later systematically 

A 

write the operation of M on the right.) 
We will now define the "exponential torus". 

A A i n A j 

Let K = Kv< uL-,eU> the differential field generated by Kv = C[[u][u~~J] and the 

entries of the matrices if and e@. 
Let L v = Kv<eQ>= Kv < e^, e^,..., e<*»> c K . 

1 Schlesinger's theorem is for the case of Fuchsian equations. 
2 A second proof has been given by Deligne using "Tannakian" ideas [De 4] , and, during Luminy 
conference (September 1989), I have learned from Y. WYashenko that he has also recently got another 
proof... 
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If / 1 is the dimension of the (free) abelian Z-module E(A) c:u~1C[u~1] 
A A 

generated by qj, q2>-~, qn > ^ e Galois differential group Aut^vLv - Aut^vLv is a 

torus T(Q) = TV(Q) = T(q(A)) isomorphic to (C*)V (clearly ¡1 <n). (We have set 

Kv = C{u}[u-J] and LV = KV< e&>.) 
A A r A 

We have Lvn Kv< ir> = Kv. Then T(Q) can be identified with a subgroup of 

Aut% Cleaving Kv< wL> fixed (still denoted by T(Q)). 
A A A 

We have K<F> cK,mdK and K<F> are invariant by T(Q); so T(Q) can be 
A 

identified with a subgroup of Aut^K<F> = Gal K(A). This group is clearly independent 

of the choice of By definition we call this group "the exponential torus" of A. It will 

be denoted by T(A) (it depends only on q(A) and is a formal invariant of 4 ) . Its 
A 

representation in GL(n;C) given by the fundamental solution F will be denoted by 

T = T(A) = T(Q(A)) (and still named "exponential torus"). 

Let K'v = C{u}1/vklj/vk2tmmmj/vkr. We have K < F> a K'v< u1, e@> = K'. 

Let now £ e K<P> be an invariant element by H (more precisely by the subgroup 

of Aut% K<F> corresponding to H). If x = wv, then £ is invariant by A V , that is by 

the formal monodromy "in w", so £ e A T ' V < ^ ^ > . But £ is also invariant by the 

exponential torus and £ e / T v . From the invariance of £ by the Stokes matrices we 

deduce that the (kj,k2,...,kr)-summable power series £ admits no singular direction 

(Lemma 10), so ^ is convergent and £ e . The action of the monodromy matrix 

A on £ e Kv is the same as the action of the (ordinary) Galois group Aut^ Kv 

(isomorphic to Z IvZ ), so £ is invariant by Aut% Kv and % € K (by the ordinary 

Galois correspondence). That ends the proof of Theorem 5. 

Examples. 

From fundamental systems of solutions at infinity (z = x'1; x = 0) for Airy and 

Kummer differential equations it is possible to compute formal monodromies, exponential 

torus and Stokes multipliers. From these results it is possible to compute the Galois 

differential groups of our differential equations 1. See [MR 3]). 

For a deeper study of germs of analytic linear differential equations we need now a 

little "toolbox"2 (built with elementary linear algebra). 
Let Ev = x-1/vC{x-]/v} (n e N*) and E = U Ev . If q = {qh q2,..., qn} cz Ey 

veN* 
we denote E(q) = Z qj + Z q2 + ... + Z qncz E, 

1 "Classical computation" of the Galois differential group of Airy equation is in [Kap]; the computation 
of the Galois differential group of Kummer equations is , as far as we know, new (it is possible to do the 
computations "classically", using improvements of Kovacic's algorithm [Kov], [DLR], [MR 3]). 
2 A first version ot these tools was first introduced by Balser, Jurkat, Lutz [BJL 1], [J]. In our 
presentation we have also used ideas of Deligne, Malgrange [De 3], [Ma 3], [Ma 4], Babbitt, Varadarajan 
[BV], and the systematic treatment of M. Loday-Richaud [LR.1l • 

http://LR.1l
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the sublattice of E generated by qh q2,..-, qn . The smallest integer v such that E(q) 
ax~1,v C{x~llv} is, by definition, the ramification of qy or E(q). We have: 

£= U E(q)= Urn E(q). 
* t 

We define an action of the (classical) Galois group AutK Kv « Z/vZ on a sublattice 

E' of Ev, by 
q(x~1/v) > q(e~2in,vx~llv) (corresponding to x >e~2l7tx). If E' is invariant 

by this action we will say that E' is Galois invariant. The lattice is Galois invariant 

if and only if the set q is invariant by the corresponding action (Galois invariant). 

If qeE(q), its "degree" 5(q) is the rational number m/v e ^ Q , where rn is the 

degree of q as a polynomial in x1/v. There is a natural filtration of E by the degree, 

that is by the sublattices 

£* = {qeE lS(q)<m}. 
We identify the universal covering of (S 1 ,^ ) to (R,0). By definition the "front" 

Fr(q) of q e E is the subset of (7?,0) whose elements are the "lines of maximal 
decrease" of eq (we will also call "front" the natural projection of this set on the v-

covering of (S*,7 ), identified with another copy of ( S 1 , / )); the front of q depends 

clearly only on the monomial of maximal degree S(q) of q. If d is a direction of the 

front of q (or of its projection on S 1 ), we will say that q \s"carried" by d. 
Let x = wv, Kv = C{u}[u~]], and Kv = C[[u][u~J]. 

Let Lv = £ v < e ^ , e*»> , and Lv= Kv< eqi, eqi,...y eqn> . As above we 
set Aut£ylv= AutKylv = T(q). 

To each q eE(q),v/e can associate a character of the exponentiel torus 'JfaJ, that is a 

(continuous) homomorphism of groups (denoted still by q): 

q: T(q) > C* 

<?: 0 > #(0), with 

(e?) 0 = q(6) eq (eq e Lv and 6 acts on L v ). 

Let (Pi> P2>-~> Pv) be a Z-basis of the lattice JEFA) 

We get an isomorphism 

(Pl*P2>->Pv): *(9) > (C*)V 

(Pl*P2>->Pv): e > (Pi(0),p2(0),...,pJ0)). 
In the following the exponential lattice E(q) will be identified with the lattice of 

characters on the exponential torus T(q). 
Let de(R,0) (the universal covering of ( S 1 , / )), we set 

Ed(<l) = {qeE(<l) I Q is carried by d}; Ed(q) is a semi-lattice of E(q), and depends 
clearly only on the projection d of d on the v-covering of S 1 : 
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To the set q = {qj, q2>'-» qn} c E, after the choice of an ordering, we associate 

the diagonal matrix e@, with Q = Diag{qj, q2>~>> qn}> 
We will use ordering relations associated to a direction d e(R,0): 

4 >>dci> if and only if q' - q eEd(q) (i.e. q'-q is carried by d): 
q >d q', if and only if eq~q is infinitely flat on d; 
q >d qr, if and only if eq~q is bounded on d. 
Clearly, if q»d q'> then q >d q'; and, if q >d q', then q >d q'. 

We will also use an equivalence relation on the space E associated to a rational 
number k > 0, k eQ: 

Q^kQ' if and only if S(q - q' )< k (if 5(q - q')> k, we will write 

q *k 40. 

To a rational number k> 0, we associate the partition of the set q = (qj, q2,—> qn}> 
defined by the relation =/ c . This partition is named the "k-partition". The only 

"significative" values for k are in the set {kj, k2,..., kr} = NI(q) of values taken by 

$(Qi~~ Qj) (Qi * qj)' We will always suppose in the following that we have chosen an 

ordering on qj, q2,-.., qn such that, for every k>0, k eQ, the elements of each subset 

of the ^-partition are consecutive. Then, there exists a unique block-decomposition (by 

definition the k-block-decomposition) of the matrix Q, which is invariant by 

transposition, and inducing the k-partition on the diagonal. For k = kj, k2>..., kr we 

get, by definition, the "iterated block-decomposition" (cf. [BJL 1], [J]). If a matrix A 
admits the same k-block-decomposition than Q, we will say that A admits a (Q,k)-
block-structure. Moreover, a direction d being fixed, it is possible to choose an 

indexation (called by definition a d-indexation) of the elements of q such that: 

qj <aq2 - -d qn * The corresponding ordering on q satisfies the 

above conditions; the corresponding iterated block-decomposition is named a d-iterated 
block-decomposition. 

The set q and the direction d, being fixed, and an order (perhaps depending on d) 
being chosen on q, the diagonal matrix Q is defined. To this matrix and & fixed 
direction d e(R,0), we will associate families of subgroups of GL(n;C), indexed by 

km e{kj, k2,...y krj =NZ(q) (isotropy groups, and Stokes groups). 

All these groups are unipotent. More precisely, if P is a matrix in one of this group, 

all the diagonal terms of P are 1, and / - P is nilpotent (if the order on q 
corresponds to a d-indexation, P is upper-triangular). 

Let A(Q;d) = {C= (cij) I ifi-j, c^ = I,and, if i * j , and c^^O, then q^ <d qj } ; 
A(Q;d) is a subgroup of GL(n;C), named the isotropy subgroup in the direction d. 
Let Sio(Q;d) = {C= (c^) I ifi-j, c^ = l,and, if i * j , and Cy^O, then qL «a qj } ; 
Sto(Q;d) is a subgroup of A(Q;d), named the Stokes subgroup in the direction d. 
Let be now km e (kj, k2>..., kr} = NZ(q). We set: 
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h^km(Q;d) = {C= (cy) I if i=j, cy = 7,and, if / *j, and ci} * 0, then qt <d qj and 

Qi *K Qj); 

Ak»>(Q;d) = {C= (Cy) I ifi=j, cy = hand, if i *j, and ctj # 0, then qt <d qj, qt ^ qj 

a n d Qi = V / 

k<km(Q;d) = {C= (Cij) I ifi=j, cy = Land, if i and c,y * 0, then qt <d qj and 

Qi =km Qj): 

and 

Sto-k>"(Q;d) = {C= (c^) I if i=j, ctj = Land, if i *j, and ctj * 0, then qt « d qj and 

Qi *km 4j}; 

Sto**fQ;tf) = {C= (ctj) I ifi=j, ctj = Land, if i and Cy * 0, then qt « d qj , 

Qi *km Qj and q i = k m i qj}; 

Sto<k™(Q;d) = {C- (c^) I ifi=j, ctj = Land, if i * j , and c^ * 0, then qi « d qj and 

Qi =km Qj}-
Proposition 10. 

Let Q be a diagonal matrix with entries in E, and d e(R,0) be a fixed direction. 
Then, for every k> 0, k eQ, the four sequences 

{id} >A^rn(Q;d) >A(Q;d) >A<km(Q;d) >{id}, 
{id} > Akm(Q;d) > A^(Q;d) > A<k^(Q;d) >{id}, 

{id} >Sto^(Q;d) >Sto(Q;d) >Sto<k^(Q;d) >{id}, 

{id} >$lokm(Q;d) >Sto^Q;d) >S\o<k^Q;d) >{id} 

are exact sequences of (algebraic) groups which are split. 

Maps are evident inclusions and evident "projections" (by "suppression" of some 
entries). The sequences are split by the inclusion maps A<k™(Q;d) > A(Q;d)f... 

Proposition 9 is a set of "block variations" on the 

Lemma 11. 
Let Dn be the subgroup of GL(n;C) of diagonal invertible matrices. Let Tn be the 

subgroup of GL(n;C) of upper triangular invertible matrices. Let Bn be the subgroup of 

GL(n;C) of upper triangular unipotent matrices. Then we have a split exact sequence of 

groups: 
{id} > Bn > Tn > Dn Hid}. 

The map Tn > Dn is the evident "projection" (we replace by zero the off diagonal 

entries), and the map B„ > Tn is the natural injection; the natural inclusion 

Dn > Tn gives the splitting. 

Then Tn is the semi-direct product of Bn and Dn .We will write 

Tn= DnlxBn ; 
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A(Q;d) is the semi-direct product of A^m(Q;d) and A<k™(Q;d)y we will write 

A(Q;d) = K<km(Q;d)b< A*4Q;d),... 

Lemma 12. 
If (к1> k2,..., kr} = (8(qrqj)l i,j = l,...,n and q r q ^ 0 } 

(kj > &2 > . . .> kr > 0), we have: 

A(Q;d) = Akr(Q;d)lx Akr-i(Q;d)tx ...tx Ak4Q;d). 

If С e A(Q;d), there exists a unique decomposition: 

C = Cr Cr_j ...Cj , with Q e Ak'iQ;d). 

We can now go back to Zmear differential equations. We need a more precise version 

of theorem 3. 

Let A = d/dbc - A, with A eEnd(n;C{xjlx1•]), be a germ of meromorphic 

differential operator at the origin of the complex plane C. 

The operator A admits & formal fundamental solution: 

F(x) = H(x)xLUeQ(1/u\ with: 

w v= л: (for some v e JV*), LeEnd(n;C)} in Jordan form, HeGL(n;C[[x]][x *]), Q a 

diagonal matrix with entries in u^Cfu'1], Galois invariant, unique up to permutations of 

the diagonal entries, and U e End(n;C) a "universal" matrix (depending only on Q) 

[BJL 1], [J] (v is choosen minimal). 

Let M = U-}^i7jLU. We have: 
F(e2inx) = H(x) xLU M eQ(exp(~2i7t/v)/u) = F ( x ) M ? a n d  

eQ(exp(-2iKlv)lu) = ^ - 7 ^ / w j ^ . And [M v ,(7| = 0. 

Theorem 7. 

Let A = dldx - A, with A e End(n;C {x}[x~J]), be a germ of meromorphic 

differential operator at the origin of the complex plane C. 

We denote by kj > k2 > ... > kr the positive (non zero) slopes of the Newton polygon 

of the (rank n2) differential operator 
End A = dldx - [A,.]. 

A 

Let F be a formal fundamental solution of A as above. Then there exists a "natural 

decomposition" (unique up to "meromorphic transforms" [Ra 4]) 
A A A A A -

H = # 7 # 2 . . . # r , where #; eGL(n;C[[x]][x 2]), is ki~summable for 

i = l,...,r, and such that 

(i) Fl(x) = Ht(x)Hi + 1(x)...Hr(x) xLU eQ(llu> is a formal 

fundamental solution of a meromorphic differential operator A1 = dldx - A1, with 
A1 eEnd(n; C{x}[x~]]),for i = l,...,r; 
(ii) If 1(F) = ДН) = .U r ДНО , Hi;d = Ski;d (for i = l,...,r) 

and 



96 

Elementary acceleration and multisummability 

Hd= Hl;dH2;d-Hr;d> 
then, for d £ 1(H), and every determination of Log x(u = e ^ x ) l v and xL = £ Lo% x): 

F^x) = Hd(x) xLU e®(1/u) is an actual analytic fundamental solution of 

the operator A in a sector bisected by d(de(R,0) "above" d corresponds to the given 

branch of Logarithm). 
Moreover Hl admits a (Q,ki_i)-block-structure (i=2,...,r) and A1 admits a (Q,k$-

block-structure (i=l,...,r). 
We define Fi

d(x) = Hi;d H M ; d ... Hr;d xL U e&llu); Fl

d(x) is an actual analytic 

fundamental solution of the operator A1 in a sector bisected by d (i=l,...,r), and admits 

a (Q,ki_j)-block-structure (i=2,...,r). 

We have: 

Fl

d = Hi;dFi+1

d (i=l,...,r-l), and we set (i=l,...,r): 

"iv/^ + V =Hi;d-FMd+ S W . 

We have Si;d eGL(n;C) (i=l,...,r) and St^= S r ; ^ Sr-l;d —Sl;d-

Lemma 13. 

Let q = {qj, q2>-~, qn} <^ E, and, after an ordering, let Q be the diagonal matrix 
Q = Diag{qj, q2>-..> qn}- Let CeEnd(n;C), and d a fixed direction 
(de(R,0)): 

(i) The following conditions are equivalent: 
(a) eQ C e~Q = 7 + 0 , with 0 infinitely flat on d. 
(b) Ce A(Q;d). 

(ii) The following conditions are equivalent: 
(a) e® C e~Q = 7 + 0 , with 0 exponentially flat of order >k on d. 
(b) Ce A^k(Q;d). 

(Hi) The following conditions are equivalent: 
(a) e@ C e~Q = I + 0, with 0 exponentially flat of order exactly k on 

d. 
(b) Ce Ak(Q;d). 

(iv) The following conditions are equivalent: 
(a) e@ C e~Q = I + 0, with 0 exponentially flat of order >k on an open 

sector with opening nlk, bisected by d. 
(b) e@ C e~Q - i + 0f with 0 exponentially flat of order exactly k on 

an open sector with opening nlk, bisected by d. 

(c) Ce Stok(Q;d). 

Theorem 8. 
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Let A = dldx - A, with A e End(n;C {x}[x~J ]), be a germ of meromorphic 

differential operator at the origin of the complex plane C. 

We denote by kj > k2 > ... > kr the positive (non zero) slopes of the Newton 

polygon of the differential operator 
End A = dldx - [A,.]. 

Let F(x) = H(x) xL U e ^ 1 , u \ be a formal fundamental solution of A as above, and 
A A A A 

H = HjH2 ...Hr ,a decomposition like in theorem 7. 
Let Sj.</ eGL(n;C) (i=l,...,r) defined as above. Then: 
(i) Si;d e Stoki(Q;d) (i=l,...,r). 
(ii) Sde Sto(Q;d) and Std = Sr;d $r-l;d Sl;d is the unique decomposition of 

Sd corresponding to A(Q;d) = Akr(Q;d)tx Kkr-i(Q;&) tx ...tx AkHQ;d). 

Assertion (i) is a consequence of lemma 13 (iv): 
We have (Hi;d')~1 Hi;d = / + % with exponentially flat of order >k± on an 

open sector, with opening nlk, bisected by d (H^ is k^summable). We set 

G/ = Hi+j;d ... Hr;d x^U; it is clear that Gz- and Gf1 are analytic on an open sector, 

with opening Klki+i ( nlk^i > nlkj), bisected by d, and admit a moderate growth at the 

origin on this sector. Then e& Si;d e~® = G; (I + x¥)Gi~1 =1 + <P, where 0 is 

exponentially flat of order > k± on an open sector, with opening nlk, bisected by d. 

Assertion (ii) follows from (i) and lemma 12. 

The Stokes matrices Si;d are a priori defined in a transcendental way. Theorem 8 

says that we can get them by an algebraic algorithm, from the knowledge of Sd and Q. 

We will give later an "infinitysimal version" of this computation. 

Lemma 14. 
Let k'j > k'2 > ... > k'f >k'>0. Let d = R+. Then: 
e~llxk = L V i ; d Ak>hk>2;d ... A k>r_ltk>r;d Bk'r> (e~llxk). 

From this lemma and theorem 8, we get 

Theorem 9. 

Let A = dldx - A, with A e End(n;C {x}[x~2]), be a germ of meromorphic 

differential operator at the origin of the complex plane C. 

We denote by kj > k2 > ... > kr the positive (non zero) slopes of the Newton 

polygon of the differential operator 
End A = dldx - [A,.]. 

Let F(x) = H(x) xLU e&llu\ be a formal fundamental solution of A as above, and 
A A A A 

H = HjH2 ...Hr ,a decomposition like in theorem 7. 

Let Si;d eGL(n;C) (i=l,...,r) defined as above. 

Let e = (£], e2,...,er), and e' = (e'j, s'2,...,e'r), with £ ; , e) e{l,-l} (i = l,...,r). 
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Then, for every direction de(R,0): 
(i) H is (kj,k2,.;kr)-summable along the paths (d;e) and (d;e'). 

(H) V Skj,k2,...,kr;d ? = Sklk2,..,kr;d F S t / ' * ' , 
S t / ' 6 ' eGL(n ;C) , and, if e = (-,-...-) = -: then 

St/>e'= e'(Sr:d)e'(Sr_1;d) ...e(S1:d), with 
e'(Si;d) = Si;d if e'i = +, and e?(Si;d) = I if e\ = -. 

(7n) 7/ e = (-,-,...,-) and e' = (--,...,+,...-)> w/r/z a + on/y at the index i, then 

Std

e>e'= Si;d, and Si;d is in the representation in GL(n;C) of 

the differential Galois group GalK (A) given by the fundamental formal solution 

(i=l,...,r). 

We will write Si;d = S t ^ . 

Our aim now is to use the preceding results and considerations to give a "purely 
combinatorial" description of the category of germs of meromorphic 
connections at the origin of the complex plane, as simple as possible. In "down to earth 

terms" a germ of meromorphic connection is a germ of differential system up to 
meromorphic equivalence [De 1], [Ma 4], [MR 2]; so the searched combinatorial 

description is equivalent to a meromorphic classification of germs of differential systems. 

Such a result is well known for the regular singular case; it is given by the Riemann-
Hilbert correspondence [De 1], [Ka 2],[MR 2] : 

Germs ofFuchsian connections > Finite dimensional linear representations 

at the origin of C. of the local fundamental group1. 

Germ of meromorphic fuchsian > Monodromy M(A) "around 0" up 
differential operator A, up to to conjugation 

meromorphic equivalence. 

This map is bijective, moreover it is an equivalence ofTannakian categories [Saa ], 

[De Mi ], [De 2]. The result is false if we suppress the fuchsian hypothesis. 

The now "classical" meromorphic classification of germs of meromorphic differential 

operators is given in terms of cohomology of sheaves of groups (isotropy groups of a 

"normal form") on S1 [Si ] , [Ma 3], [Ma 4] , [De 3], [MR l ] 2 . We have in mind a 

"better" description (adapted in particular to the computation of the Galois differential 

groups), extending the Riemann-Hilbert correspondence to the irregular case, that is a 

description of connections in terms of representations of groups: 

Germs of connections > Finite dimensional linear representations 

1 Generated by a loop turning "one time" around the origin and isomorphic to Z. 
2 We will recall this description in part 5. 



Elementary acceleration and multisummability 

at the origin of C. of the local "wild fundamental group". 

Germ of meromorphic > ? ? ? ? 
differential operator Ay up to 

meromorphic equivalence. 

We will call "Gevrey front" of q eE the set 

Gfr q = {(dyk)ld eFr qy k = 8(q)} c: HRq, universal covering of the 

analytic halo HRq . 
Let 

Fr(q)= U Fr qtj (qt: = qt - q;)y 

Gfr (q) = LJ Gfr qi;, I(q) the projection on S 1 of Fr (q). 
ij 

We define an action of the free group (yg) generated 1 by Jq on the (non abelian) 

free group generated by the yd (de Fr(q)) by 
Jo •' Yd > Yexp(-2in)d (exp(-2in): it is a translation of - 2 K in (R,0)). 

We denote by Tl{q) the corresponding semi-direct product n= (Jq) x ( * (y^j) 
deFr(q) 

In ll(q) we have y0 yd 7 0 " 7 = yeXp(-2m)d^ 
We define an action of the free group (yg) generated by yg on the (non abelian) free 

group generated by the ya's (ae Gfr (q)) by 
Yo •' Ya > Yexp(-2in)a (a=(d,k), exp(-2ix)a=(exp(-2i7r)d,k)). 

We denote by GYl(q) the corresponding semi-direct product 

Gn(q) = (y0)x( *(7a)) 
aeGfr(q) 

In GYI{q) we have y0 ya yo'1 = Yexp(-2in)a> 
The groups TI(q)y and GYl(q) are "first approximations" of the "wild local 

fundamental group". 2 We can identify TI(q) to a subgroup of GTI{q) by 

Yd = Yar * Ja^ * - * Jaj (ai = 1 = 7—r>>-

We will obtain below a classification in terms of linear representations of these 
g r o u p s 3 . Unfortunately there are conditions ("Stokes conditions") on the 
representations in order that they come from a connection. That is unsatisfying: we want a 
"wild fundamental group" whose all finite dimensional linear representations come from 
a connection, like in the Riemann-Hilbert correspondence. We will be led to the "good" 
group 7tjJ(fy0) by a "Fourier analysis" of the (Galois differential)"unfolding" of the 

1 Here yo and the ya are "labels"; later yo and ya will be interpreted as loops turning around 
respectively 0 and a. 
2 The terminology "wild tt; " (in french "^-sauvage") was suggested to the second author by 
Malgrange for the group GTI [Ma 7]. 
3 If we consider "isoformal" families, that is if we fix the "formal form". If we leave it free, we need to 
"add" a representation of the "formal fundamental group". 
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Stokes phenomena under the adjoint action of the exponential torus. Moreover 

we will see that this approach gives 1 a very natural interpretation of Ecalle's resurgence 

[E 4]. 

Let A = dldx - A, with A e End(n;C {x}[x~2 ]), be a germ of meromorphic 

differential operator at the origin of the complex plane C. 

Let F(x) = H(x) xL U e ^ l l u \ be a formal fundamental solution of A as above. We 

set 

F0(x)= xLUe&1/uK A 

* 1 D / A 7 dP A
 1 

For P s GLimCUxmx-1]), we set Ap = PAP'1 + ^ P~* and 
A A A 

Ap = dldx -Ap, and we say that the differential operators A and Ap art formally 

equivalent. If P e GL^CixJlx'1]), we will say that the differential operators A and 
A A A A 

Ap are analytically equivalent. We have (Ap2)pi = Apip2. 

It is easy to check [BJL 1] that F0 is a fundamental solution of a rational differential 

operator Aq = dldx -Aq, with A0 eEnd(n;C(x)[x~1]i which is formally equivalent to 

A (A = A0Û). 
We will define: 

lQ(F) ={CeGL(n;C)l C F = F C}, and 

1(F) ={CeGL(n;C)l there exists & GGL^CIMUX'1]) such that GF = FC}; 
A A A A 

'Iq(P) a n d MF) are algebraic subgroups of GL(n;C) [BV], and 'Iq(F) œ'1(F). 

We set: 

2(4) = {GeGLfmCtfxJJfx-1]) I there exists C eGL(n;C) such that GF = F C}; 

'l(A) is a subgroup of GL(n;C[[x]][x~]]). It is easy to check that l(An) is a 
A 

subgroup of GLimCWlx'1]) containing 'Iq(Fq). It is clear that AG = A is equivalent to 
A A 

Ge '1(A) ('1(A) is indépendant of the choice of F). 

We leave now A^ fixed, and we want to classify, up to meromorphic 

equivalence, all the meromorphic differential operators A formally 

equivalent to An. Moreover we are also interested in the classification of the "marked 
A A 

pairs" (A,H) such that AH = Aq . 

To a differential operator A formally equivalent to Aq (a fundamental solution F0 of 

Aq being fixed) we can associate representations Pirr(A) of the groups TI(q) and 

GYl(q) in GL(n;C) defined by: 

Pirr(A)(70 ) = M, Pjr/A)(ïd ) = S t / 4 > , P; r/4><% >> = S t ^ 4 > 

(a=(dyk)). (We use the formulae: 
1 With the tools of part 6, this approach will lead to an essentially "geometric" description of the 
resurgence where Laplace transform and convolution no longer play the central characters...The second 
author was led to this description in particular by Malgange's description of a part of Ecalle's work [Ma 
8]. 
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M S t ^ M " 7 = StEXP(_2I7T)D(A), and MStJAjM-^ StEXP(_2IN)A(A).) 

These representations are clearly submitted to the constraints: 

pIRR(A)(yd) e StofQ;d), and pIRR(A)(ya) e Stok(Q;d) (a=(d,k)). We 

will name these conditions "Stokes conditions". These representations are defined up the 
A A 

action (by conjugation) of 1(Fq): if F = H Fq is a formal fundamental solution of A, 
and C an element of '1(Fq),G the corresponding element of ' I ^ ^ . t h e n 

A A A A 

F C= HFq C = HGFq, is also a formal fundamental solution of A. They do not 
A 

change if we replace A by a meromorphically equivalent operator (H is then changed in 
A 

PH, with P € GL(n;C{x}), and PiRR{A) depends only on the connection V associated 

to A; we can set PiRR(V) = PiRR(A). 

Theorem 10. 
Let Aq be a fixed differential operator with a fundamental solution Fq = JC% e ^ 1 / u K 

We denote by Vq the meromorphic connection defined by A q . We set q = q(Q)9 and 

denote by n the rank of A q . 

(i) The natural map 

Pirr 
Meromorphic connections V formally > Representations of the group GTl(q) 

equivalent to Vq. in GL(n;C)F satisfying the 

Stokes conditions, up to 
the action of 1(Fq). 

V > Pirr(V)> 
is a bijection. 

(ii) The natural map 

Pirr 
Meromorphic connections V formally > Representations of the group TI(q) 

equivalent to Vq . in GL(n;C)Y satisfying the 

Stokes conditions, up to 
the action of 1(Fq). 

is a bijection. 

This result is non trivial. We will deduce its proof from the (non trivial...) 

classification ofisoformal meromorphic connections in the form given by Malgrange and 

Sibuya, [Ma 3], [S i ] 1 . We need before to recall some definitions and results (we will 

return to this topic in more details in 5). In the following we will systematically consider a 

function / (with values in a C-vector space), holomorphic on an open sector V as an 

"object" on the open arc U corresponding to V in S 1 (the real analytic blow-up of the 

1 The first general classification (after the work of Birkhoff for the "generic case") is in [BJL 2]. 
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origin in C) as in [Ma 3]. We define this way on S 1 the sheaf A of holomorphic 

functions (with values in C) on sectors, admitting an asymptotic expansion at the origin 

(with Taylor expansion in CffxJJfx'1 J). We denote by Aj the subsheaf of. End(n; A) of 

germs of analytic matrices asymptotic to identity; Aj is a sheaf of (non abelian) 

groups. If T is a sheaf on S 1 , we will denote by Td its fiber at d e Sl. 

Theorem ll.(Malgrange, Sibuya [Ma 3], [Si].) 

There exists a natural isomorphism 

GL(n; C{x}[x~1]) \ GLfmCHxMx-1]) > H^S^Aj). 

We recall the definition of the Malgrange-Sibuya map \x: 

Let U = {Ui)iE i be a finite open covering of S 1 by open arcs. We suppose that 

Ui n Uj n Uk = 0 , if ij,k e I are distinct. 1 

A i ^ 
Let AeGL(n;C[[x]][x~2]). By Borel-Ritt theorem [Wa], we can "represent' A by a 

collection {AJiG / (A; being a holomorphic matrix on an open sector V,- corresponding 

to U(, with 4 as asymptotic expansion at the origin). 

We consider {A;7/e/ a s a 0-cochain (with values in GL(n; A)) and we take its 

coboundary 

8 = {Aj^AJijei e Z](U;GL(n; A)). We have SeZ^UtAj) (At and Aj have the 

same asymptotic expansion A). We denote Af-^Ai = A q . 

By definition ¡1(1) is the image of 8 in H1(Sl;Aj). If P eGL(n;C{x}), and 
A A A /\ 

B = PA, we can choose Aj = PA/; then p,(B) = fi(A). In the following we will set 

/ = [l,...,p] ("p+l=l"), the bijection between / and [l,...,p] being chosen such 

that Uxtl+j = Ux nUl+j # 0 (i=l,...,p), and such that the bisecting lines of the arcs 

Ulfl+j turn clockwise, when i increases. 

If Z = {dj, d2..., dp} c r S 1 , we will say that the covering U is "adapted" to Z if 

ifi+7 = ^1 n ^ i + 7 nZ={dJ (i=l,.,.,p). 

Let kj>k2> ... > * r > 0. Let AeGL(n;C{x}1/klJ/k2 i^ix'1]). 

If2 X = Ĵ fAj = /¿/7, d2..-> * y , we can built a covering {/ = {UJlE / , adapted to Z, 

with UiDUl+i bisected by d, with opening <nlkj (i=l,...,/?); such a covering is said 

kj-adapted to L. We can choose 

^ 1 = $kltk2,...,kr;d A (d e Ut , arbitrary5 between dt and dt+j; 

1=1,...,p). Then the 1-cocycle 

1 We will make this hypothesis for all the coverings in the following. 
2 More generally we can also take 1(A) a L finite. 
3 The values of A,- obtained for the different d glue together by analytic continuation in an analytic 
matrix always denoted A/. 
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A 7 A 

S\(U;A) = {At+j'^AJtei is well defined ; the image of $t(U;A) in 

H^S^Aj) is clearly /u(A). We will denote by St(A) the 1-cocycle St(U;A) up to the 

choice of U (satisfying our hypothesis), and identify it to the set of groups 

{(Ai,i+l)dl}iel • 

If U is an open covering of S 1 , and T a sheaf of groups on S^we denote by 
/[/: Z^HA) >H1(Sl;Jr) the natural injection. 

Let k > 0. We denote by A-k the subsheaf of Aj of germs 1+0 with & 

exponentially flat of order >k. 

Definition 4. 
Let k > 0. Let Z = {dj, d2-.., dp} C R S 1 , and an open covering U "adapted" to Z. A 

1-cochain 8e C^iUiAj) is said "k-summable", if 8 = {Attl+]}le / , with 
Atl+i G r(Ull+j;A-k), and if each A l l + 1 can be (uniquely of course) "analytically" 
extended in an element of r(VTL+1;A*k) where V l f l + 7 is an open arc of (R,0) with 
opening nlk "containing" Ultl+j (i=l,...,p). 

We will denote by H1;kk(Sl\A^k) cH^ShAj) the subset of the images of the k-

summable 1-cocycles. 

Theorem 12.(Martinet-Ramis [MR 1], 1-6.) 

Let k> 0. 
(i) The Malgrange-Sibuya isomorphism 

GL(n; CfrHx-tnWLfmCHxMx-1]) > H^S^Aj). 

induces an isomorphism 

GL(n;C{x}[x-1])\GL(n;C{x}1/k[x-1]) > H1;^k(Sl;A^k). 

(ii) If 8GZHU\A^) is a k-summable 1-cocycle, then %\(U;p Jiu(8)) = 8. 

Let now A be a differential operator; we denote by A(Aq) the sheaf (on S 1 ) of 

solutions of End A a n d A / z l j the subsheaf of solutions of End A asymptotic to 
identity; Aj(Aq) is a subsheaf of Aj. 

Let now Aq be a differential operator with a fundamental solution Fq - x^V e ^ l l u \ 
we denote by Vq the meromorphic connection defined by Aq ,q = q(Q), 
NI(q) = {kj, k2,..., kr} the set of values taken by 8(qj- qj) (q± * qj), and n the 

rank of Aq . Let End Aq = dldx -[Aq,.]. 
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Let d e (R,0), be a direction and d e Sl its projection. To the choice of d e (R,0) 

is associated a "branch" of Logarithm and a "sum" F0d of F0 = xLUeQ(1/u), analytic 

on an open sector bisected by d. 

The map 
Xd: GL(n;C) > A(An)d 

Xd: C > FojCfFnj)-1 

is an isomorphism of groups. 

Let 

A(Ao;d;F0) = X^A(Q;d)) 

Ak(A0;d;F0)^X^Ak(Q;d)) 

A^(A0;d;F0) = Xd(A^(Q;d)) 

A^(Ao;d;F0) = X^A^Qid)). 

It is easy to see that A(A0;d;F0), Ak(A0;d;F0), A^Aq&Fo), and A^Ao&Fq) 

does not depend on the choice of F0 and d; moreover A(Ao;d;Fo) = A^Ag)d . We can 

set: 

Ak(A0;d;F0) = Ak(A0)d, A^(A0;d;F0) = A^(A0)d, A*(Ao;d;F0) = A<k(A0)d. 

All these groups] are subgroups of A(An)d, and, when the direction d varies, we get 

subsheaves Ak(A0) , A-k(An) , and A<k(A0) of Aj(Aq). (When d moves the groups 

remain "in general" the "same". They can "jump" only for a finite set of values of d, the 

"Stokes lines".) 

Let 

Sto(Ao;d;F0) = Xd(Slo(Q;d)) 
Stok(Ao;d;F0) = Xd(Stok(Q;d)) 
Sto^(A0;d;F0) = Xd(Sto^(Q;d)) 
Sto<k(A0;d;F0) = X^Sto^ (Q;d)). 

It is easy to see that Sto(Ao;d;Fn), Stok(Ao;d;Fo), Sto-k(Ao;d;Fn), and 
Sto^iAQidiFo) does not depend on the choice of Fq and d. We can set: 

Sto(A0;d;F0) = Sto(A0)d, Stok(A0;d;F0) = Stok(A0)d, Sto^(A0;d;F0) = Sto^k(A0)d, 

Sto^Ao&Fo) = Sto<k(A0)d .If d£ I(A0), Sto(A0)d is reduced to identity. 

From proposition 10 and lemma 12, we get 

Proposition 11. 

Let d e S 1 and k > 0. Let Aq be a given differential operator with a fixed 

fundamental solution F0 = xLV e^1,uK We set q = q(Q), and NI(q) ={kj, k2-.., krJ 
(kj > k2> ... > kr). Then: 

(i) The four sequences 

1 It is possible to give a "direct" definition of these groups, using Deligne I filtered structures (or Stokes 
structures) [Ma 4], [De 3], [De 4]. 
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{ i d } >A^(A0)d >A(A0)d >A<k(A0)d Hid}, 

{ i d } > A k ( A ( ) ) d >A^(A0)d >A<k(A0)d >{id}, 

{id} >Sto^(A0)d >Sto(A0)d >Sto<k(A0)d >{id}, 

{ i d } > Stok(A0)d >Sto*k(A0)d >Sto<k(A0)d >{id}, 

are exact sequences of groups and split. 
(ii) A(A0)d = Akr(Ao)d tx Akr-i(A0)d tx ... k Aki(A0)d . 

Theorem 13.(Malgrange, Sibuya, Babbitt-Varadarajan [Ma 3], [Si], [BV].) 

Let A] be a meromorphic differential operator. We denote by Vj the meromorphic 

connection defined by Aj . Let Aq be a differential operator with a fixed fundamental 

solution Fq = xLV e@(1/uK We denote by Vq the meromorphic connection defined by 

Aq Then: 
(i) There is a natural isomorphism (v = vy): 

v 
Marked pairs (V where Visa > H1(Sl\A(A)) 
meromorphic connections formally 
equivalent to Vj .and £ an 
isomorphism between V and Vj . 

(ii) If Vj =Vq , the natural isomorphism v induces an isomorphism: 

v 

Meromorphic connections V formally > '1(Aq)\H1(S1; A(Aq)) 

equivalent to Vq . 

(The group %(Aq) is acting by conjugation on A(Aq).) 

Definition 5. 

Let Aq be a given differential operator with a fixed fundamental solution Fq = 

eQ(Hu)t W e s e t q = q ( Q ) i\Z(q) = {kh k2,..., kr}y and denote by E(q) ={dj, d2..., dp} 
the projection of Fr (q) on S 1 . Let U = {UT}LE / , be an open covering kj-adapted to 
I(q). Then, a 1-cochain 

8e CHU\A(A0)) = Zl(U\A(A0)) is said a "Stokes cochain", if 
8= {Alti+i}iei(l={l,...,p}),with (All+1 )dieSto(A0)di (l=l,...,p). 

Let d e Fr (q)y d its projection on S 1 , and let p be a representation of U(q) in 

GL(n;C). It is easy to check that ^d(P(7d)) e M&o)d depends only on d e S 1 . 

Lemma 15. 
Let Aq be a fixed differential operator with a fundamental solution Fq = xty e^1,uK 
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We set q=q(Q), NZ(q)={kj, k2,..., kr} (kj > k2 > ... > kr), and we denote by Z(q) 
the projection of Fr (q) on S 1 . Let U = {UJl£i, be an open covering kradapted to 

Z(q). 
The natural map 

ZU 
Representations of TI(q) in GL(n;C) > {Stokes cocycles of Z J '(U;A(A 0))} 

ZU 
p > "{ld(p(yd))}"(de I(q)) 

is a bijection. 

Theorem 14. 

Let A q be a given differential operator with a fixed fundamental solution Fq = y^U 

eQ(l/u). we set q=q(Q), NZ(q)= {kj, k2,..., kr} (kj > k2 > ... > kr), and denote by 

I(q) ={dj, d2..., dp} the projection of Fr (q) on S 1 . Let U = {UJiei, be an open 

covering kj-adapted to I(q).Then: 
(i) Let^: 

H = HjH2 ...Hr , where Hi eGL(n;C[[x]][x *]) is ki-summable for 

i = l,...,r. We suppose that F = HxLUe^llu^ is a formal fundamental solution of a 

meromorphic differential operator A. Then the 1-cocycle %\(U;H) is a Stokes 
cocycle. 

(ii) Let Se C1 (U;A(A0)) = Z1 (U;A(A0)) be a Stokes cocycle. Then, 

A(A0) cA^de Z^UiAj), and if H = ^iufS): 

(a) H = H]H2 ..Mr y where Ht eGL(n;C[[x]][x l]) is ki-summable 

for i = 7,...,r; 

(b) F = HxLUeQ(llu) is a formal fundamental solution of a 
meromorphic differential operator A, formally equivalent to A q . 

Moreover: 
8 = $t(U;H) = St(Unu^ii/S)), and, if V is the meromorphic connection associated 

to A,v(V) = iu(S). 

(Hi) Let a eH^S^iAfAQ)), then there exists one and only one Stokes cocycle 
Se Z](U\A(Aq)) such that a= iy(8) (that is representing a)2. 

We will first prove assertion (i). 

1 It is important to notice that this definition is stated in such a way that it is not necessary to know 
theorem 5 or theorem 7 to apply it (see footnote below). Of course one can also apply it in the situation 
of theorem 5 or theorem 7... 
2 Assertion (Hi) is due to M. Loday-Richaud [LR 1]. Her proof is completely different: she gives an 
explicit algebraic algorithm in order to compute explicitly 8, from a. She uses Malgrange-Sibuya 
theory but not Gevrey asymptotics and multisummability; so it is possible, using her result and noting 
that assertions (i) and (ii) are proved here without any use of theorem 5 or theorem 7, to get a new 
proof of theorem 7 [LR 1]. Cf. also [BV]. 
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A A 

Using the construction of theorem 10, we can associate to F = HFQ a representation 

p(H) of ll(q) in GL(n;C), satisfying Stokes conditions. We have 

St(U;H) = zu(p(H)), and St( U;H) is a Stokes cocycle. 
We will admit assertion (ii),for a moment. 

Assertion (Hi) follows easily from assertions (ii) and (Hi): 

Let a e H1(S1\A(AQ)). From theorem 13, we get a meromorphic connection 

V = v~1(a), formally equivalent to VQ . We choose a differential operator A 

representing V; then there exists a fundamental solution F = HFQ of A , with 
A _j 
H eGL(n;C[[x]][x J]). From theorem 7 we get a decomposition 

A A A A A _7 

H = HjH2 ...Hr , where /// eGL(n;C[[x]][x 2]) is kj-summable for 

i = lf...yr. ^ ^ 

We have p(H) = pirr(V). Let z^p(H)) = Se Zl(U\A(A0)). We have itf8) = a, and 

8 is a Stokes cocycle representing a. 

It remains to prove unicity. Let 5 e Z1(U\A(AQ)), with /j/<5») = a. From assertion (ii) 

we get 5 = St(tf;^~7/(/(<5)) = S t f ( / ; ^~ 7 fa j j , but St(U;/j.~1(a)) depends ^n/y on a ; 

unicity of 5 follows. 
Before the proof of assertion (ii), we will give some consequences of theorem 14. 

Proposition 12. 

Let A 0 be a given differential operator with a fixed fundamental solution FQ = JC% 

EQ(Uu)^ we set q=q(Q), NE(q) = {kj, k2,...,krj (kj > k2 > ... > kr), and denote by 

l(q) -{dj, ¿ 2 " . , dp} the projection of Fr (q) on S 1 . Let U = {UJLE / be an open 

covering kj-adapted to I(q). Then the natural map 

Representations of the group Tl(q) > H^S1; A(A])) 

in GL(n;C), satisfying the 

Stokes conditions 

P > zrfS) 

is a bijection commuting with the action of (1{FQ);'1(AQ)). 

Theorem 1 0 follows from theorem 1 3 and proposition 12. 

It remains now to prove assertion (ii) of theorem 14. 

Let AQ be a given differential operator with a fixed fundamental solution FQ = x^H 

eQ(l/u)t w e set q=q(Q), NZ(q)={klf k2,..., krj (kj > k2 > ... > kr ) , and denote by 

Ziq^idi, d2..., dp} the projection of Fr (q) on S 1 . Let U={UJlEi (l={l,...,p}), 

be an open covering kj-adapted to I(q). 
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Let 8 e C^U-MAq)) = Z1 (U;A(A0)) be a Stokes cocycle. Then, A(A0)cAj, 

8 e Z^UiAj). Let H = fi'H^S). We will prove that 8 is a Stokes cocycle by a 

descending recurrence on i - r , r -I,..., 1. 

Our recurrence hypothesis is: 

(Hyp i) Let 9 = {All+1}lei e cHU-MAQ)) = Z^U-^AQ)) be a Stokes cocycle 

satisfying: 
)dl e StoKL(A0)DI (i=l,...,p; Sto&t = S to<*« , if i > 1, and 

Sto-ki = Sto). 
Then, if Hi = ir1irf&):^ a a 

(aA № = fiiHi+j ...Hr , where Hj eGL(n;C[[x]][x-J]) is kj-

summable for j = i,...,r. 
(bi) fa = HixLUeQ(llu) is a formal fundamental solution of a 

meromorphic differential operator A*, formally equivalent to AQ . 

Moreover: 

& = SXfUiFP) = S\(U;fi~1iu(8'))y and, if V1 is the meromorphic connection 

associated to A ^ v(V) = 

Assertion (ii) is (Hyp 1). 

We will first prove (Hyp r). 
Let & = {ALL+1 }lGi e C^UiAfAg)) = Z1(U\A(A0)) be a Stokes cocycle with: 

G W >dl

 e Stokr(A0)DI 

We have (for dt e (R,0), "above" dj 

V ^ w + i ^ I = Cdltr > or (Altl+1)di = F 0 4 I Cdi;r (FQ^)-1; if VlMl is the open 

arc of (R,0) bisected by dv with opening nlkr, CdiT e Stokr(Q;d)), and 

Fo,dt Crf r (Fo,dt * s * e SQTm °f a function of r(Vltl+j \A^r)m Then the i-cocycle 

<x is kr summable. It follows from theorem 12 that Hr = Hr is £ r-summable, and fa rJ 

is proved; (7?r) follows from theorem 13. 

We suppose now that /) is true/or r >j >i>l, and will prove ). 

LER = {A^u+j}le, € CHU'MAQ)) = Z^UiAfAo)) be a Stokes cocycle with: 

( ^ W U + 7 M * Sto*^(Ao)di . 

Let {C1'1^} = zu~1(8i-1). We have C w

r f [ e S t o ^ w f Q ; ^ , and, from the 

decomposition (Lemma 12): 

A^(Q;d) = Akr(Q;d) k Akr-i(Q;d) t<... FCR Aki-i(Q;d), 
we get, for Cl~]

di e A^M(Q;d), a decomposition: 

V-'dt = Crf.r C d l , T -7 . . .C^-w , with C ^ - e AkJ(Q;d) 

(j=r,...,i-l). 
We have C ^ = C ^ C ^ _ 7 , 
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with Odi e A^i(Q;d), and C r f ( f . w e Ak^(Q;d). 

Whe have (A\l+j)d = kd (Ci

di ) (it is indépendant of the choice of dt e (R,0), 

"above" dt), and <? = {A\tl+1}lél e Z1 (U;A(A0)). If № = ц~Нц(^); then & = 

If we set: ^ 

Sjfc^v, . . . ,^ , H* = Hid~> w e S e t : 

(Н1

а-)-]Н^ + = (A* ' l > l + i ) d t = Xdi(Odi), or H ' d t

+ = rfd-F04i C d t . 

We set 0 W « f , = V C 4 . v M > (Wtfr1. 

Let V * ; andV'" 7 

i,i+7 be the open arcs of (R,0) bisected by dt with respective 
openings Klki and Klk^j ( V 1 ' 1

l f t + j is contained in V\tl+j). Then the germ 
^dJC-dtU-l) is Ле germ at d t of a function B'tl+j of r(Vl~2

ltl+j (this 
follows from C j 7 _ 7 e A^(<2;d)).The germ Hl

d

 + is the germ at dt of a function # ' + 

of r(Vl

ll+] \A) asymptotic to Hl on Vl

ll+j (and, a fortiori, on V* 1 ,1+ 7 ) - W e 

conclude that the germ (Btl+j)di is the germ at dx of a function Bll+j of Г(У1~ 
•^-ki-1)-

We have built a ki_j-summable cochain ¡3 = {Bll+j } i e / . We check easily that 

Then it follows from theorem 12 that # ;_7 = fi 2ii/p) is k-summable, and, from 

theorem 13 (i), that (A*)1**-* = ^ ' _ J ? (definition of <4*~~̂  ) is a meromorphic 

differential operator. We set 
Л . j Л / \ А А A 

Then 4 W = (Alfii-i = (A^wfii-i = A^i-i™ = 4 / ^ , and 

= Н^хЦ] e&(llu) is a formal fundamental solution of the meromorphic 
differential operator A^1, formally equivalent to Aq . 

Let = S £ w kr;dxiii-l and Я ^ ; / _ 7 - = S ^ , . . . , ^ H i - i • 

We find: 
H d l ; i - l r Hld* F04i = H d l ; i - r H l d l ~ F 0 , d i C ' r f t

 C r f t ; / - i 

^ l f - w + " V = " d ^ i - r ^ - F Q ^ o-'dt: 

H ^ d î F04, = H t " W F 0 A C l W

r f l ; • 
Then = StfU;^-1) = SlfU^i^1)). We have got (tfyp / - i j and assertion 

(ii) of theorem 14 is proved by recurrence. That concludes the proof of theorem 14. 

Examples. 
As an illustration of the preceding constructions, it is possible to compute the "wild 

groups" and their representations for Airy equation mdKummer equations. This is a 
simple reformulation of computations of [MR 3], chapter 3. 
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Remark. 
For d e (R,0), yd <=Il(q) will later (see 6, infra) correspond to a loop pointed at 

"{0}"xR+e"{0}"x S 1 ( " # + " is a point of the universal covering of the real 

blow-up of the origin in the analytic halo). 
We start from " # + " and go (on "{0}"x(R,0)) to "0"xd e"{0}"x(R,0); then we 

turn clockwise around "]0,+oo]" x{d} in the universal covering of C* with an analytic 

halo at zero and go back to "0"xd; after that we return to " # + " (on "{0}"x(R,0)). 
So the groups Il(q) and GTI(q) are "wild fundamental groups pointed at 

"R+"e"{0}"x S 1 " . 

Stokes operator Std(Ao) corresponds to the "wild monodromy" along the loop yd 

for the vector space of "germs of solutions of the differential operator A (formally 
A 

equivalent to A0 : A = A Q H ) at " / ? + M " , modulo the isomorphism between this vector 

space and the vector space of formal solutions of AQ (given by the "analyticity" of H 

near 0 in the analytic halo and the choice of the principal determination of Logarithm). 

The "wild connections" induced by V0 and V in a "small" sector of the universal 
covering of the analytic halo, bisected by / ? + , are the same (H is a wild analytic function 

in such a sector), so, the representation p( V), up to conjugation, can be interpreted as a 

representation of the "wild fundamental group" TI(q) into the group of linear 
permutations of the germs of horizontal sections of V "at "R+"e"{0}"x S 1 " (identified 

with the formal solutions of AQ like above). Finally we have got a "wild monodromy". 
This "wild monodromy" express the "difference" between V and V0 . In fact we want 

to understand V independantly of V0 . In order to do that we will first translate VQ in 

terms of representation. 

Let 

E = U E(q)= Lim E(q). 
q f 

Let T(q) be the exponential torus associated to q- {qj, q2,...y qnj czE (T(q) = 
AutKyLv). To natural injections 

E(q) > E 

correspond natural projections 
T(q) > T. 

We set 
T = Lim T(q). By definition J is the exponential torus; it is a 

q 
commutative group. The algebraic torus T(q) are endowed with the Zariski topology, 
and T is endowed with the corresponding direct limit topology. 
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Lemma 16. 
(i) Let K : 7 > C* be a continuous homomorphism ofgroups. Then there exists 

q e E, uniquely determined, such that K is equal to the composition of the natural 
projection T > T(q) (q={q}) and of the character q: T(q) > C* . (We will 
identify K and q.) 

(ii)Let F be a finitely dimensional C-vector space (n = dime F), and 
6: T > GL(F) be a continuous homomorphism of groups . Let G = 6( J). 

Then there exists a basis of F such that the subgroup G of GL(F), identified by the 
choice of this basis to GL(n;C), is diagonal. If $1, fo,—, $n

 : G > a r e ^ e 

corresponding homomorphisms of groups (if g e G, (f>i(g) is the first entry of g on the 
diagonal...), and if qi is associated to KT = fyO, like in (i) it is possible to associate to 
K the set q = {qj, q2,..., qn} independent of the choice of the basis of F, and 
6 is the composition of the natural projection X > T(q) and of 

(Ql> Q2>-> Qn) > GL(n;C) = GL(F). 
For xe T, 9(x)=Diag (q2(x), q2(x),..., qn(r)) 

In the situation of lemma 16 (ii), we will set q = qg . From a given 

Q-(Qh Q2>—> Qn}^^ w e § e t a representation 6: T > GL(n;C), uniquely 
determined up to conjugation, such that q = qd . 

Let V be a formal connection. There exists a representation1 

6: T > GL(n;C), uniquely determined up to conjugation, such that q( V) = qg . 

More precisely: 
Let FQ(X) = j£Ue&lluK with uv= x, be a formal fundamental solution of the formal 

connection V (q(V) is the set of the diagonal entries of Q = Diag (qj, q2,..., Qn))-

Let (YQ) be the free group generated by Yo . We define an action of the group (Yo) 

on the lattice E by 

qjQ (u) = q(e~2inlvu), and an action of the group (Yo) on the exponential torus T by 

y0 x(q) = x(qJo), for xe T and qeE arbitrary. 

By definition the wild formal fundamental group 7ijsf ((C*,0);"R + ") of (C,0) 

pointed at "l?+ff is the semi-direct product 
(Yo)txT built from the action of (Yo) on T. 

Let M = IT^^U be the formal monodromy matrix associated to FQ. We set 
A 

p( V)(Yo) = M > a n c*> for x e T, 
p(V)(x) = Diag (qj(x), q2(x),..., qn(x)). 

We have fo^Qfl/u) M = Q(e~2iK,vu) 
fa^Diag (qj, q2,...f qn) M = (qjYo , Q270 >-> QnYo ) 
M~JDiag (qj(x), q2(x),..., qn(x)) A = (qjYo (r), Q27o (*)>-> QnYo N) 

1 In the following all the representations are supposed continuous. 
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p( V)(r0 rlp( V)(r) p( V)(y0 ) = M-Jp( V)(T) M = p( V)(r0 *). 
So we have defined a linear representation 

P(V): *ittf((CW;"R+") = (Y0)lxT > GL(n;C), 

associated to the formal connection V. (This representation is, up to conjugation, 

indépendant of the order of the Jordan blocks of L on the diagonal.) 

We will see now that, given a linear representation 
Pi' nifSf((C*,0);"R+") >GL(n;C), 

there exists a unique formal connection V, such that pj = p(V). Moreover, the 

formal connection V depends only of the class of pj up to equivalenceby the adjoint 

action of GL(n;C) 

We set pj(Yo) = M and pi('T) = Tj . We set q = qg; 0 being the restriction of pj 

to X, q is Galois invariant (it is invariant by the action of M). We can choose a basis of 

GL(n;C) in such a way that Tj is a diagonal group: Tj = {Q(t) = Diag 

((llWmW'-Anii))1 re T}(q= {qh q2>..., qn}> and Q = Diag (qh q2,..., qn)). 

Using a method of [BJL], [J], we can suppose moreover that we have chosen our basis 

such that U MU"1 is in Jordan form. Then let L be such that e2i7lL= U MU-1 (L is 

defined up to multiplication on the right by a diagonal matrix Diag (xm], xm2,...,xmn)} 

mi e Z). Then FQ = X l U e® is a fundamental solution of a rational differential operator 

AQ and the corresponding connection VQ is indépendant of the choice of the basis and of 

the integers mi, and invariant by conjugation on pj . We have clearly p( V) = pj . 
So we get 

Theorem 15. 

The natural map 

P 
Formal meromorphic connections > Finite dimensional linear representations 

of the group JCltsf((C*,0);"R+"), 

up to conjugation. 
V > p(V) 

is an isomorphism. 

This isomorphism is compatible with sums, duality, tensor products,... It is an 

isomorphism ofTannakian categories. 

If now I 7 is a germ of meromorphic connection, we get from V two linear 

representatons: 

P(V): 7tltSf((C*,0)rR+") > GL(n;C), and 
p( V)irr: GU(q) > GL(n;C). 
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The respective restrictions of these representations p( V) and p( V)irr to the 

respective subgroups (JQ) of 7Clsf((C*,0);"R + ") and GTI(q) are clearly equal. 

Conversely, two linear representations 
Pi • ni,sf((C*,0);"R+") >GL(n;C),and 
p2 : GU(q) > GL(n;C)„ 

admitting equal restrictions to the subgroups 

(Y0)<=nitf((C^0);"R+") and (y0) aGIl(q), 

being given, it is in general impossible to find a germ of meromorphic connection V 

such that p(V):= pj and p(V)irr= p2 : pj and p2 must satisfy a"Stokes condition" 

(cf. theorem 10). 

Proposition 13. 

The natural map 

P 
Germs of meromorphic connections V > Pairs of representations of the groups 

formally equivalent to V0 . KltSf((C*,0);"R+") andGTl(q) in 

GL(n;C) coincident on the two subgroups 
corresponding to ( JQ), and satisfying 

the Stokes conditions. 
V > (p(V),pirr(V)), 

is a bijection. 

The next step now is to build a new group Kjs ((C*,0);"R+"), the wild fundamental 

group of (C,0), pointed at ' 7 f + " , satisfying the following properties: 

(i) The wild fundamental group is a semi-direct product 

*l,s ((C*,0);"R+") = 7tltSf((C*,0)rR+")/xR 

*U((C*,0);"R+") = ((Y0)lxT)lxJl, 

where J£ (the resurgent group) is the "exponential" of a free Lie algebra Lie '& (the 

resurgent Lie algebra), with infinitely many generators. 

(ii) To each germ V of rank n meromorphic connection, we can associate a linear 

representation" 

p(V): 7tlfS ((C*,0);"R+") > GL(n;C), 

such that the restriction of p(V) to Klsf((C*,0);"R+") is p(V), and such that, p(V) 

being known, the knowledge of the restriction of p( V) to the resurgent group '& is 

equivalent to the knowledge of the representation 

p(V)irr: GYl(q) > GL(n;C) (q = q(V)). 

(Hi) If a finite dimensional representation1 of the wild fundamental group 

PO : *u ((C*>0);"R+") > GL(n;C), is given 

1 The restriction to J of such a representation will be allway supposed continuous in the following. 
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we denote by pj the restriction of p0 to TCJ sf((C*,0);"R+"), and 
p 2 : GTI(q) > GL(n;C) the representation corresponding to the 

restriction of pg to the resurgent group R (and the knowledge of pj ...), with 
q = q .Then the pair (Pi>P2) satisfies the "Stokes conditions", there exists (Proposition IV 

an uniquely determined germ of meromorphic connection V such that 

(p(V),p(V)irr) = (PI>P2>>> a n d (P(V)>P(v)irr) c o m e s f r o m t h e 

representation 
p(V): 7CltS((C*,0);"R+") >GL(n;C) 

defined by V by the construction of (ii). 

Let q = {qj, q2,..., qn} crT, and, after ordering, I -et Q be the diagonal matrix Q = 

Diag{qj, q2>—> qn}- Let T(q) be the exponential torus associated to q, and let T ( 0 be 

its representation in GL(n;C) given by Q. 
Let r e J ( 0 . It is represented by the matrix 

Q(%) = Diag (q1(T),q2(*),...,qn(*)) * T ( 0 C : GL^/CJ . 

Lemma 17. 
Let q = {#7, #2>-"> a / ^ r ordering, let Q be the diagonal matrix Q = 

Diag(qh q2,..., qn}. Let CeEnd(n;C), C = (citj) (qtj = qt-qj). Then: 
(i) x C T - 1 = Q(r) C Q(xy1 = (CiJ qIXJ(T)). 

(ii)Let q e Eyq^0 and 
c q = (ai,j)> w i t h aiJ = 0 if qt - qj * q, and atj = Cq if qitj = q. 

Then: 
x C^1 = Q(r) Cq Q(r)-1 = q(x) Cq. 

(Hi) Let Dia(C) be the diagonal matrix with the same diagonal entries than C: 

T C T ~ 7 = Dia(C) + 2 qip) Cq.. (with Cq = 0 if q = 0 ; , and such 

a decomposition is uniquely determined: if 

iCt-'=Dia(C)+ Z Qi^^.then Aq.. = Q , . . 

(iv) Let d e (R,0). If C e Sto(Q;d), then: 

T C T ~ ] = /+ 2 q(r)Cq,the sum being extended to q = q^, with 

ai«d<lj> 

tCir1=I+ T, a(T)Cq. 
qeE^q) * 

(v) Lef e (R,0). If C e Lie Stoft2;<0 ( l ie A / ^ r a 0 / Stofl2/DW , then: 

<7(R) Cq , f/ze .YWM fomg extended to q- q^, with 
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Qi «d Qj > 

T C H = E q(r)Cq. 

The only non trivial point is unicity in (Hi). 

Let (pj, P2>~->Pv) be a Z-basis of the lattice E(q) 

We have an isomorphism 

(Pl>P2>->Pv): T(q) > r C * j v 

(PhP2>->Pv): x > (Pl(*),P2(*)>->Pv(*))-
We set p^fTJ = (k=l,...,v). Then each tf/jfT) is & monomial in the variables 

£ C* and the distincts qij%) are indépendant on C. 

The decomposition (Hi) appears as a "Fourier decomposition" of the "unfolding" 

T Cr~ 7 of the matrix C by the adjoint action of the exponential torus T(q). 

Let 4 = dldx - A , where A eEnd(n;C{xjfx"1 ]), be a germ of meromorphic 

differential operator at the origin of the complex plane C. 

Let F(x) = //(je) JC^ £/ e^1,u^ be a formal fundamental solution of A as above. We 

set 

FQ(X) = x1 U e@,q = <?(0, and denote n the rank of A. 

Let de Fr(q) and St^fAJ the corresponding Stokes matrix. For every xe 7, the 

matrix r S t / A J T - 7 belongs to the representation of GalK(A) in GL(n;C). associated to 
A 7 

F, the matrix St^fAJ is unipotent and T(X<9g St^AJJr i belongs to the representation of 

LieGal%(A) in End(n;C) associated to F, that is corresponds to a Galois derivation of 
A 

the field K<F>. Then it follows from Lemma 17 (Std(A) e Sto(Q;d)) that we have a 

uniquely determined decomposition 

T (X<9g St^AJJr" 7 = E <7(T) L^g St^fAj^ , r/ze swm &emg extended to 

q = w/r/z « r f qj , or 

T fL^St^AjJT" 7 = ^ r j L ^ S t / A ^ , 

with each L<?g St^fA^ belonging to the representation of Lie Galj( (A) in End(n;C). 

associated to F, that is corresponding to a Galois derivation of the field K<F>. We 

have performed a "Fourier analysis of the infinitysimal Stokes phenomena". 

Theorem 16. 

Let A = dldx - A, where A e End(n;C {x}[x~J]), be a germ of meromorphic 

differential operator at the origin of the complex plane C. We set q = q(A), and denote 

by n the rank of A. Then, for each d e Fr (q), % (Log Std(A))t~1 belongs to Lie Galg 

(A), and we have an uniquely determined decomposition 
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T (Log St^A))?'1 = X q(x) Log Std(A)q , the sum being extended to 

q = qWy with qt « d qj , or 

%(LogStd(A))*Cl = q(T)LogStd(A)q , 

w/r/z eadz Log STRFFA)̂  belonging to Lie GalK (A). 

Moreover r (Log St^j(A)q)f1 = <?(T) Log Std(A)q and 

M S t / 4 > ^ ~ 7 = Stexrt-liM&iq > for every q e E. 

It is now natural to introduce the / re£ complex Lie algebra Lie & generated by 

all the "letters" Aqd where is chosen such that qeE and d e Fr q (Lt. 

such that is "maximally decaying" on *f). We will name it resurgent Lie algebra1. 

In the situation of theorem 16 we get a /wear representation 

Lie pres(A): Lie Jl > End (n;C) 

Lie pres(A) : Aqd > Std(A)q if d e Fr (q)} and 

Lie pres(A) : Aq,d > °> X d e Fr (q). 
We define an action of the wild formal fundamental group 

Xl,sf((C*>0)>'"R*") = (7o>)TX'T on the resurgent Lie algebra Lie Jl by 

70 \ A Y o ' 1 = \,exp(-2in)d > a n d 

T T ~ 7 = ^ T J Aqd 

If we denote by p(A) the representation 

p(A): 7Cltsf((C*,0);"R+") > GL (n;C) associated to the formal 

connection defined by the differential operator A, the above action is "compatible" with 

the pair of representations (p(A) , Lie pres) (theorem 16). 

Proposition 14. 
The natural map 

Pairs of representations (pj,Lp) of > Pairs of representations of the groups 
the group n14((C*,0);"R+") in K14((C*,0);"R+") andGTl(qpi) in 

GL(n;C) and of the Lie algebra GL(n;C)} coincident on the two subgroups 

LieU in End(n;C) "compatible" corresponding to (Yo),and satisfying 

with the action of Klsf((C,0);"R+") . the Stokes conditions, 

on Lie Jl. up to conjugation. 

(phLp) > (PhP2) 

1 Because it contains all Ecalle's resurgent algebras. 
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with Log p2 (Yd) = E q(r) Lp(Aqd)y for every de Fr(qp]). 

is a bijection. 

From Propositions 13 and 14, we get a first version of the "wild Niemann Hilbert 

correspondence ": 

Theorem 17. 

The natural map 

Germs of meromorphic connections > Pairs of representations of 

at the origin. the group 7t]sf((C*,0);"R+") in 

GL(n;C) and of the Lie algebra 

Lie R in End(n;C) "compatible" 

with the action of 7C1>sf((C*,0);"R+") 

on Lie ft, up to conjugation., 

y > (p(V),Liepres(A)) 

is a bijection. 

In order to get the searched result, that is the classification of germs of meromorphic 

connections in terms of representations of group, it only remains to replace the resurgent 

Lie algebra Lie i i by a group, the resurgent group & (the "exponential" of Lie J£), 

and the action of the wild formal fundamental group 7ijsf((C*,0);"R+") on the Lie 

algebra Lie & by an action of the same group on the group Ti. Then we will get a pair 

of representations (p(V), pres(A)), respectively of the groups Kjsf((C*,0);"R+") and 

Ti in GL(n;C), compatible with the action of the first group in the second, that is a 

representation of the semidirect product (defined by the same action) 

KlySf((C*,0);"R+")fx& in GL(n;C). 

Let X be a set. We denote [S](LA 4.10) by Lx the free complex Lie algebra on X, 

by Lx its completion, by Assx the complex associative algebra on X, by Assx its 

completion, by 'Hx the ideal generated in Assx by X, by A : Assx > Assx ® 
A /V A 

Assx the diagonal map, and by Gx the set of p e I + Hx with A p = [5 ®/£ 

There is a natural isomorphism 
A A 

exp: Hx > / + Hx. 
A A 

We can identify Lx with the set of primitive elements of Assx. Then we get by 
restriction of the exponential an isomorphism 

A / \ 
exp: Lx > Gx . ^ 

By the Campbell-Hausdorjf formula we get a group structure on Gx. 
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If X is the set of "letters" Aqd , with (q,d) such that qe E and d e Fr q, 

we denote 
A a A A A A 

Lie R = LX, UJl= ASSX , UJl= Assx, MJl= Hx >&=GX. We get isomorphisms 
A A 

exp: n & > I + fill 
A A 

exp: Lie Jl > Jl. 
A 

We denote by Jl the subgroup of Ti generated by the image of Lie Jl by exp; by 

definition Jl is the resurgent group. 

Lemma 16 . 

We consider the action of the wild formal fundamental group xIsf((C*,0) "J? + "j 

on the free Lie algebra Lie Jl defined by 

70 Aq,d YO = Aqtexp(-2iK)d 

This action can be extended naturally to UJl and we get (by restriction) an action on 

Jl, leaving Jl invariant, such that 

YO exp(Aq4 )Yo~1 = exp( Am

q>exp(_2i7c)d) 

T exp( Aqd )x~l = exp(q(x) Aq4 ) . 

The wild fundamental group of the germ of C* at the origin, pointed at " / î + " , 

is by definition the semi-direct product 

ni* ((C*>0);"R+") = nirf((C*,0);"R+") K& 

defined by the action of 7tjsf((C*,0);"R+") on Jl introduced in lemma 16. 

A 

Let ccj, (X2>-> am e Lie Jl indépendant on Z. Then the subgroup of Jl generated 

by exp aj, exp CC2,..., and exp am is isomorphic to the free group generated by the m 

"letters" exp ocj, exp a,2,..., exp am . We get: 

Lemma 17 . 

If (pj,Lp2) is a pair of representations of the group njtSf ((C*,0);"R + ") in 

GL(n;C) and of the Lie algebra Lie Jl in End(n;C*) "compatible" with the action of 
Kl ,sf ((C,0);"R+") on Lie Jl, then there exists a unique representation 

p2 : Jl > GL(n;C) such that 

p2(exp a) = exp Lp2(a) for every ae Lie Jl. This representation is 

compatible with the action of 7tlsf((C,0);"R+") on Jl defined in lemma 16. 

We get the "wild Riemann-Hilbert correspondence9': 
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Theorem 18. 
The natural map 

Ps 
Germs of meromorphic connections V > Finite dimensional linear 

at the origin. representations1 of the 

wild fundamental group 
njJ(C*,0);"R+"), up to 

conjugation. 

v—> Ps(W 

is a bijection. 

The wild Riemann-Hilbert correspondence is an equivalence ofTannakian categories. 

Remarks. 

1. There are extensions of the wild Riemann-Hilbert correspondence to non-linear 
situations in relation with problems of analytic classification (germs of non linear 
analytic differential equations, germs of analytic diffeomorphisms, germs of analytic 
vector fields...) [MR 1], [E]. In these generalisations one gets statements similar to 

theorem 17. la the case of differential equations, Cn is replaced by an analytic manifold, 
End (n;C) by an analytic vector field, and GL (n;C) by the analytic pseudogroup of 

automorphisms of the manifold. Theorem 18 takes a quite technical form... 

2. In such situations Ecalle introduces "hidden variables" ("variables cachees"). We 

can easily describe (and extends 2) his viewpoint using our technics: 

Let V be a germ of meromorphic connection and let ps( V) be the corresponding 

representation got from the wild Riemann-Hilbert correspondence. Let X( V) be the set 

of "letters" defined by 
X( V) = {ps( V)( Aqd )l q E E and d e Fr q}. There are at 

most a finite number of values of (q,d) such that the matrix ps(V)@qd) is not 

zero. If this matrix is zero, we suppress the coresponding letter. It remains a finite 

subset. X'(V). We set Assx>(V) = UJl(V). 
If / is a horizontal section of V, we consider 

X(V,f) = {ps(V)(Aq4 )(f)lqeE md deFrq} 

and the set of "letters" X'(V;f) corresponding to X ' f ^ . W e s e t AssX

f(V;f) = URJ(V$). 

The idea is to interpret UJl(V;f) as a "formalfunction" on U'R "extending" f. This 

"function" depends on new (non commutative) variables, the "coordinates" of the 

1 We recall that we suppose all the representations continuous on T. 
2 Ecalle uses only particular "one-levelled" lattices. 
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A A 

elements of U&. These "hidden variables" belongs to the dual of UTi. We will be more 
precise in part 6 below, and interpret MJl( V;f) as giving birth to a "formal function" on a 

A 

principal bundle with structure group corresponding to an actual function 
extending f defined on a principal bundle with structure group R. Moreover there 

art natural actions of ;rj ^ (C* ,0 ) ; "# + M ) on all these objects. 

3. The "Lie-algebra" Lie njs ((C,0);"R+") of the wild fundamental group is the 

semi-direct product of Lie-algebras (Lie Kis ((C,0);"R+") = T) 

Lie T tx Lie H9 

associated to the action of the commutative algebra ("Cartan algebra") Lie J on the 

resurgent algebra Lie Ti defined by 

[H, \ d ] = q(H) Aq4 , 

H e Lie Jy where 
q: Lie J > C 

is the infinitesimal map associated to 
q: T > C*. 

From the wild monodromy representation ps we get a representation 

Lie ps : Lie n l s ((C,0);"R+") > End (n;C). 

The restriction of this representation to Lie ft is the map Lie pres of theorem 17. It 

corresponds to Ecalle's "bridge equation" ("équation du pont"). 

We will explain now how to change the "base point" "J?+tl of the wild fundamental 
group 7CjJ(C*,0);"R+"). 

We will replace "J?+" by "d" e {"0"} x S 1 (("0" ,d) = "d") or d e {"+oo"}x S 1 

(that we can identify with S 1 , the real analytic blow up of the origin in C). 

We fix "d" e {"0"} x S 1 . Let "c" be an homotopy class of continuous paths on 

{'W'JxS1 with origin "d" and extremity lfJ?+!t (corresponding to an homotopy class 

of paths c on S 1 ) . We set 

ni/(C*>0);"d") = {"c" b"c" -1/ b e K]J(C*,0);"R+")}9 and put on 

this set the evident structure of group; 7tjJ(C*,0);"d") is indépendant of the choice of c 

in a sense that we leave to the reader to explicit. 

Let now d e {"+oo"} x S we set 

*lJ(C*,0);d) = {(Ya-)-1 bYd'Ibe KLs((C*,0);"d"))}, where the 

symbol Yd corresponds to the multisummation operator Sd~~ in "the" direction dr (Sd~ 

is interpreted as an analytic continuation along y d " ) . We put on Kls((C*,0);d) the 

evident structure of group. 

We can also set 

KlJ(C*,0);d) = {(Yd")-1 b Yd" I be K1>s((C*,0);"d"))}: 

there is a natural isomorphism between the two groups on the right side of our equalities. 
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We can now replace 7Cls((C*,0);"R+") by Kls((C*,0);"d") or KjJ(C*,0);d) in 

theorem 18 (by definition ps(V)("c") is the analytic isomorphism of solutions spaces 

given by the analytic continuation of a fundamental solution FQ of "the" formal normal 

form corresponding to V along c, ps( V)(yd~) is the isomorphism of spaces of solutions 

given by S ( f) . Elements of Kjs((C*,0);d) are represented by linear permutations of 

actual solutions in a germ of sector bisected by d. 

It is possible now to give a global version of our wild fundamental group. 

Let X be a connected Riemann surface. Let .S = {aj,a2 ,—Am} be a finite subset of 

X, let XQ be a base point in X -S, and, for each i=l,...,m, let be a fixed direction 

"starting from af. We choose homotopy classes of paths C; ("in" X - 5) with origin 

XQ and extremity a^, "arriving at a,- tf/ong r/ze direction di "(i=l,...,m). We built, like 

above, groups 

Gi = {cibcf1! b e 7iifS((C*,0);di)}, i=l,...,m (these groups are 

indépendant of the choice of q in a sense that we leave to the reader to explicit). 

By definition1 the wild fundamental group "of X - S, pointed at XQ, is 

71] JX - S,S;xo) = Gj * ... * Gm (free product of groups), 

and the wild fundamental group of X is 
%l S(X - ...;.) = Lim Ttj S(X - S;S;.) 

(There are some trouble with base points in the limit: we get rid of it as in the ordinary 

case...) 

It is easy to prove the following results (we define ps(V)(ci) a s the analytic 

isomorphism of solutions spaces given by the analytic continuation along c/): 

We have a wild global Riemann-Hilbert correspondence: 

Theorem 19. 
Let X be a connected Riemann surface. 
The natural map 

Ps 

Meromorphic connections > Finite dimensional linear 

on X. representations2 of the 

wild fundamental group 

up to conjugation. 
V > ps(V) 

is a bijection. 

1 Be careful: the group depends on X and S, not only on X - S. 
2 We recall that we suppose all the representations continuous on T. 
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The wild global Riemann-Hilbert correspondence is an equivalence of Tannakian 

categories. 
We will call the map ps( V) wild monodromy representation of the connection V. 

Let pm(V) be the (classical) monodromy representation of the connnection V 

(local or global case). It is possible to get 1 the actual monodromy representation pm( V) 

from the wild monodromy representation ps(V). If X is a connected Riemann surface, 

we will denote 

Kj(X - ...;.) = Lim 7ij(X - S;.) (S finite subset of X). 

Proposition 14. 

(i) Let d e S 1 be a fixed direction. There exists a "natural" functor D from the tensor 

category of finite dimensional linear representations of xjs((C*,0);d) to the tensor 

category of finite dimensional linear representations of Xj((C*,0);d) such that 

r>(ps(V)) = pm(V) 

for every germ of meromorphic connection V at the origin. 

This functor is defined by 

D(P) = Pi(Ydj) - Pl(Ydp)Pl > w h e r e (Pl> Pi) i s the pair of 

representations in GL(n;C) respectively from 7C]sf((C*,0);d) and Gn(qpi) (pointed at 

d) associated to p(q-qpi, and dj,...,dp are the directions of Fr (q) contained in the 

interval [0y 2k[ a(Ry0)y ordered with the ordering relation induced by R). 

(ii) Let X be a connected Riemann surface. There exists a "natural" functor D from 

the tensor category of finite dimensional linear representations of Kj JX — ) to the 

tensor category of finite dimensional linear representations of kj(X -...;.) , such that 
D(Ps(V)) = Pm(V)f 

for every meromorphic connection V. 

We can reformulate theorem 6 in a more "geometric form" (and extend it to the global 

case), replacing the actual monodromy representation by the wild monodromy 

representation in Schlesinger's theorem:: 

Theorem 20. 

Let K = C{x}[x~1]. Let V be a germ of meromorphic connection at the origin. We 

fix a C-basis of the space of horizontal sections on a germ of sector bisected by a given 

1 In some sense Ttj is contained in a "completion" of Ttj s and ps can be extended to this completion 
"by continuity". Then pm is the restriction to Ttj of this extension. 
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direction d and identify the Galois differential group Gal^( V) with its corresponding 

representation in GL(n;C). 
Then Gal^(V) is the Zariski closure of the image in GL(n;C) of the wild 

monodromy representation 

Ps(v): niJ(C*,0);d) > GL(n;C). 

Theorem 21. 
Let X be a connected Riemann surface. Let Kx be the differential vector field of 

meromorphic functions on X. Let V be a meromorphic connection on X, and XQ a 

point of X regular for V. We fix a C-basis of the space of horizontal sections of Von a 

germ of small "disc" centered at XQ and identify the Galois differential group Gal%x( V) 

with its corresponding representation in GL(n;C). 
Then GalKx(V) is the Zariski closure of the image in GL(n;C) of the wild 

monodromy representation 
ps(V): TCJJX;.) > GL(n;C). 

Examples and applications. 

It is possible to compute explicitely the wild monodromy representations 

for the generalized confluent hypergeometric differential equations (using 

results of [DM]). These computations use elementary functions and T-function. It is 

possible to compute the Galois differential groups of the generalized confluent 

hypergeometric differential equations from these representations. This program is partially 

achieved [DM], [Ml] , [M2]. C. Mitschi has studied in particular order seven case and 

got, after N. Katz [K3], generalized confluent hypergeometric differential equations of 

order seven admitting the exceptional group G2 as Galois differential group 

[M2]. 

It is possible to get an interesting result for the "inverse problem" in differential Galois 
theory from theorem 18 (or theorem 17) [Ra 8]: 

Theorem 22. 
Let L be a complex semi-simple Lie algebra. Let p be a finite dimensional 

representation of L. Then: 

(i) There exists a rational differential equation D on P^C), with singularities 

contained in {0,+oo},0 being regular singular and +00 irregular, such that GalQz)(D) 

is Zariski connected and such that 
Lie GalQzj(D) ~ p(L) (isomorphism of complex Lie-algebras). 

(ii) There exists a germ of meromorphic differential equation D at the origin such that 
GalK (D) is Zariski connected and such that 

Lie GalK(D) « p(L). 
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We will end this paragraph by a comparison between N. Katz's viewpoint and ours. 

Let Xan be a compact connected Riemann surface. Let S be a fixed finite subset of 

Xan. We denote by D.E.(Xan;S)) the tensor category of meromorphic connections on 

Xan with singularities contained in S. 
To each point z0 of Xan - 5 we can associate & fibre functor O(ZQ) of the tensor 

category D.E.(Xan;S)): 
CO(ZQ)( V) = {horizontal sections of V on a germ of neighbourhood of V}. 

We will denote by Kidiff(Xan- S;S;z0) the group Aufn
 (CO(ZQ)) (automorphisms of 

the fibre functor CO(ZQ)). 

There is a natural map 
nLs(Xan-S;S;z0) > Kjdiff(Xan-S;S;z0): 

each element of 7Ujs(Xan
 -S;S;ZQ) defines clearly an automorphism of the fibre functor 

co(z0). 
Let Y be a smooth connected C-scheme such that the corresponding analytic variety 

is the connected Riemann surface Xan -S = Yan. We denote by D.E.(Y/C) the tensor 

category of algebraic connections on Y. The natural map V > Van gives an 

equivalence of tensor categories between D.E.(Y/C) and D.E.(Xan;Sy 
We denote by Kjdiff(YIC;zQ) the group Aut (CO(ZQ)) (automorphisms of the fibre 

functor CO(ZQ)). 

There is a natural isomorphism between Kjdiff(Xan-S;S;zo) and Kjdiff(Y/C;z0).Wt 

get: 

Proposition 15. 

Let Y be a smooth connected C-scheme such that the corresponding analytic variety 
is the connected Riemann surface Xan - S = Yan, where Xan is a compact Riemann 
surface and S a finite subset of Xan. Then 7tidiff(YIC;z0) is an affine pro-algebraic C-
group-scheme and there exists a natural homomorphism of groups 

7CjJX™-S;S;z0) > 7rjdiff(Y/C;z0). 

This map is not onto. We ignore if it is injective. Anyway Kjdiff appears as an 

"algebraic hull" of Kj s , just like 7tjdiff appears as an algebraic hull of 7Clm in the 

fuchsian case. 
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