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HYDRODYNAMIC LIMIT OF A GINZBURG-LAND AU LATTICE MQDBL 

IN A SYMMETRIC RANDCM MEDIUM 

J. FRITE , Mathematical Institute 

H-1364 Budapest, Pf· 12?, Hungary 

Abstract: The hydrodynamic behaviour of certain stochastic models 

is investigated in the présence of random conductivities. It is 

shown that this randomness of the médium averages out in such a 

way that the effective, macroscopic résistance of the médium turns 

out to be the the limiting mean value of microscopic résistances. 

This means that there in no interplay between nonlinearity of the 

évolution law and randomness of the médium; the effective conduct-

ivity does not dépend on the interaction. In the mcst transparent, 

one-dimensional case the effective conductivity is just the har­

monie mean of the microscopic conductivity. Some extensions in-

cluding multidimensional Systems in a small electric field are 

also discussed. A complète text is to appear in Commun. Math. Phys. 

+3upported in part by: Hungarian National Foundation for Scientific 

Researchι Grant No. 1815 

1· Formulation of the Problem 

Time-dépendent Ginzburg-Landau équations describe thermally homo-
geneous Systems near the critical point. In a critical situation 
the slowly varying, conservative forces, and the rapidly oscillating 
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forces separate in such a radical way that the slowly varying 
component admits a thermodynamical description, while the oscill-
ating forces are represented by a white noise in space and time. 
In a thermal equilibrium free energy is the fundamental thermo­
dynamical potential, the simplest Ginzburg-Landau free energy 
functional reads formally as 

where V dénotes the gradient of ω.Ε^-* Ε · The derivative, DH 
of H with respect to the extesive quantity ω plays the rôle of 
a chemical potential, its gradient drives the slowly varying, deter-
ministic part of the current of ω , 

where c > 0 dénotes the conductivity of the (isotropic) médium. 
The stochastic part of the current is assumed to be of type 

1/2 
dJ r a n(t,x) * [c(x)] dw t(x) , 

where dw^(x) is a vector valued standard white noise in space 
and time. Now the évolution law is specified as a single conser­
vation law: 

du>t(x) + div J d e t U ^ t ) dt = div dJ r a n(t,x) . (1) 

Stationary states of this réversible évolution are the canonical 
Gibbs states with energy H at unit température. 

Our goal is to understand the hydrodynamic behaviour of such 
models in the case of microscopically random conductivities· Un-
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fortunately, continuum models of this kind are very complicated 
from a technical point of view, see [Fu] . For example, non-equi-
librium solutions to (1) can be constructed only in the one-di-
mensional case. We are going to discuss in détails the following, 
one-dimensional lattice version of (1)· The configurations of our 
System are then séquences ω - ^k^keZ * n c* e x e (* by Ζ $ the set 
of integers, tokeR , and the évolution is given by 

where V:R-^ I is a convex potential, w k , keZ is a family of 
independent, standard Wiener processes, and c^ f k€Z isafixed 
set of positive numbers. We are interested mainly in such situ­
ations when ĉ . are randomly selected, but in the présent * one-
dimensional case this structure is not relevant * we only need a 
law of large numbers for l/c^ , which is just the résistance of 
thé bond between sites k and k+1 · Since (2) is in fact a dif-
fusive system, the rescaled density field, SE , should be defined 
as 

ε ε ε 2 ε S (Φ> σ ) « / Φ(Χ) ω.(χ) dx , ω,(χ>ω Γ , -.lt/ε ) , σ =ω , ( 3 ) t ε t t 1 Χ / Ε ] Ε Υ 

where ε > 0 dénotes the scaling parameter, and [u] is the in-
teger part of ueE . According to the philosophy of hydrodynamic 
limits, we expect that S^(t,<p) converges in probability to a 
deterministic limit / cp(x) dbc as ε-**· 0 , and , the 
limiting density, satisfies a nonlinear diffusion équation. 



62 

Το expose the problem, let c e(x) « °[χ/ε] ' w t ^ e e w [ x A ] ^ / ε 2 ) ' 
ν εφ(χ) - ε"1[φ(χ+ε;-φ(χ)] , ν*φ(χ) - ε_1[φ(χ-ε)-φ(χ)] . then 

(5) 

where the martingale part Με vanishes as ε·** 0 . In view of the 
principle of local equilibrium^the field V converges in a weak 

2 
IL -sensé to a deterministic limit, and so does ce by the law of 
large numbers. This means that we have to evaluate the product of 
weakly convergent fields; which usually differs from the product 
of weak limits. Fortunately, there is a trivial ρarticuler case, 
the linear évolution équation corresponding to V*(x) « χ # Indeed, 
i f Ρ (t,j,k) dénotes the transition probability of the randora c 
walk on Ζ with generator Ε s (~l/2)V*cV1 . and $ k(t) is the 
conditional mean of u^lt) given the médium* then we have an ex-
plicit solution Ç k(t) a

 2je£ p c ^ ' ^ ' k ^ # Therefore our dif­

fus ive scaling (3) results in a limiting équation dç/dt * (c/2) 

9 2ç/9t 2 for the limiting density Q β ç(t,x) , where c dénotes He 
effective diffusion constant of the underlying random walk. For 
example. if c^ is an ergodic séquence, then c is just the har­
monie mean of c , i.e. l/c « < > . The linear model can 
be treated in the same way in ail dimensions, the only différence 
is that no explicit formula of c is available if d > 1 . 

The nonlinear problem reduces to the principle of local equi-
librium by means of the following trick. Let φ:ΗΜ* Ε be a smooth 
test function of compact support* and define φε for ε > 0 by 
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2 

which is much nicer than (5)· Now we can apply the principle of 

local equilibrium to conclude that the field V*(u>£(e)) converges 

weakly to j'(ç^{*)) $ where Q is the limiting density, and 

J(Ç) - sup [*ç-F(X;] , F(X) = log / 6χρ(λχ-ν(χ)) dx ; (8) 
λ 

notice that is just the canonical mean value of V * ^ k ) 
2 

given the mean spin ç . On the other hand, φ φ in L · thus 
3^(φ,σε) is expected to converge to / φ(χ) 0^.(x) d x * where 

is a weak solution to the limiting équation 

19) 

this solution is uniquely determined by its initial value. The 
function c is defined by (6) and the requirement Φε-** φ ; both 
should be satisfied for ail smooth φ of compact support. 

where c is specified in such a way that Φε~"* φ in IL (E) as 
ε goes to 0 . Such a construction is certainly possible if ° ε( χ) 
= °[ χ/ ε] * where c k , keZ is an ergodic séquence of harmonie 

mean c · The case of several dimensions is more sophisticated. 

Using of (6) as a test fonction for the weak form of (2) we 

see that cancels the singularity of the évolution law due to 

the randomness of the médium. Since is the formai adjoint of 

V £ , from (2) by the Ito lemma we obtain 
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2. Main Resuit and Discussions 

Our statement on the hydrodynamic limit of (2) îs basically a law 

of large numbers, it can be formulated in terms of the following 

functional spaces. The phase space of the rescaled process is 

a locally convex, reflexive space 1> ~ defined by means of some 

Hilbert norms | · | , r > 0 ; |u| 2 = / e" rl x' u 2(x) dx . The dual 
2 , . 2* 1 1H 

space of TLa will be denoted by IL , while ïïe and M e are 
e e ρ 

the spaces of absolutely continuous u:E-* S. such that u^u'clL^ 
2k 2 and u,u*elLe , respectively. The weak topology of L e plays a 

crucial rôle in the proofs, E w dénotes the space of weakly conti-
2 

nuous and bounded g:l>e-* S · At a given level ε > 0 of scaling 
2 

the configurations of our system are embedded into L e as step 
functions of step size ε · In view of this correspondence we say 

2 
that μ $ a family of Borel probabilities on 1 , satifies the 

t- e 
lav of large numbers with asymptotic raean OtlL̂  if 11m / g άμ ε 

* g(ç) ior ail gcC w as ε-* 0 . 
The potential V is assumed to have three continuous derivatives, 

V,ff is bounded^ and 0 < ^ < V*(x) < « 2 for ail χ * The évo­
lution is defined by (4), where ο ε s c^(x) is a step function 
of step size ε such that < c £(x) < ac * and we have some 
continuously diff erentiable c:R-* R such that 

lim / φ(χ)/οε(χ) dx « / φ(χ)/δ(χ) dx for <peHe • 
ε-H* 0 

(10) 

Our basic resuit is the following 

THSOREM. Suppose that the initial configuration, a p converges 
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? 1 Γ weakly in to some oeil as ε-** 0 · Then Sr(<p,oe) — β β ο ε 
/ φ(χ) <?^(χ) d x * η probability for each Φ^Β^ • where Q is 
the weak solution to (9) with initial value qQ * a . ||| 

A complète proof of this resuit is to be published in [Fr3], 
the résolvent approach of [Frl],[Fr2] is used. Following the per-

turbative argument of [FM], the following, weakly asymmetric 

problem can also be treated. Let β ε;Ε-^ BL be uniformly bounded, 
and consider 

(11) 

where c is a random conductivity as before, e is interpreted 
ε ^ 

as an external, electric field. We expect that the electric field 
averages out in a direct wayj if 

(12) 

then the limiting équation reads as 

(13) 

where Β 1>S the canonical equilibrium expectation of Β . 

In two or more space dimensions there is no explicit way to de-
scribe the médium and the effective conductivities. Microscopic 
conductivities are associated to the bonds of Ζ , they can also 
be interpreted as the transition rates of a symmetric random walk 
on 2 d . Suppose that this random walk admits a diffusion limit 
with diffusion constant c > 0 ; using the methods of [Fr2] and 
the ideas outlined below, lt seems to be possible to pass to the 
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hydrodynamic litnit, the effective coniuctivity will be just c . 

A direct extension of the methods of [Fr2] allows us to consider 

models containing random, ferromagnetic interaction terms in the 

Ginzburg-Landau free energy. More exactly, let 

where V is the same as before, > 0 * U(x)sU(--x) , Urt(x) 

> 0 , and both Uif and b ^ are bounded. In this gênerai case 

the Wiener process w c of (A) is vector valued, Ϋ and Ϋ ε are 
the discrète gradient of step size ε , and its adjoint, respecti-
vely, and V* should be replaced by the gradient of H · If b̂ .̂  
is an ergodic System of bond variables, then the subbaditive ergodic 
theorem shows that the llmiting équation does not dépend on the 
randomness of b , but explicit expressions are not avallable. 

3. On the Idea of the Proof 
Like in ail références enclosed below, our basic information on the 
dynamics concerns the srnoothness of time averages of type 

(15) 

More exactly, both Χ ε and its variational derivative DX|(x,a,g) 
are equicontinuous functions of the initial configuration a with 

2 
respect to the weak topology of L p * see [Frl],[Fr2]é This déli­
cate property is due to the parabolic structure of the évolution 
équation, cf. ν" > 0 . Let f^i0) dénote the conditional expect-
ation of XF given the initial value a , then g(a) = ζ ΐε{ο) 

- 3îçf|(a) , where (B̂  dénotes the generator of the rescaled 
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procès s ω£ . In view of the résolvent approach, we want to pass 
along eubsequences to the résolvent équation of the limiting semi-
group defined by (9)> it reads as 

(16) 

The original résolvent équation gsrzf-îBç.f is an elliptic équation 
in the functional space (Cw $ so it is quite natural to look for 
its weak form. Eléments of the dual space of C are measures on 

w 
1^ , therefore we have to integrate with respect to a clever meas-

ure. Let ε dénote the Gibbs state with energy Η(ω) « Σ ν(ω^) -
Σ λ£ω^ , where λ ε is a real séquence indexed by Ζ ; the pro-

2 
jection of this measure on L e will be denoted by the same symbol, 
thus \ΐχ is concentrated on step functions of step slze r · In-

9 ε ε 
tegrating by parts we obtain that if λ (χ) s *£ x/ cj * then 

+ \î! (V eX e(x)) ο ε(χ) ? eBf 2(x,a; dx μ λ, ε(άσ) , 

and now we are in a position to use the trick of (6). Indeed, in the 
présent, one-dimensional case we can define λ£ « X c(ek) by 

c r(x) ν ελ ε(χ) « (I£c(x)) 7 cJ >(I £Q(x)) f λε{0)^\ΐε9{0)) , (18) 

where Ι$φ(χ) is the intégral mean of φ over [ek f€k«) with k 
« [x/ε] . This transformation removes the singularity of (Vf) due 

to the randomness of c £ , and a direct calculation shows that ε  

satisfies the law of large numbers with asymptotic mean ο · There­
fore, a compactness argument based on the continuity properties of 
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and fl)X| allows us to pass from (1?) to (16)· Since (16) is 
uniquely solved, each subsequence converges to the very same limitj 
and the proof can be completed in the same way as in [Fr2]· 

In the multidimensional case (18) can not be solved, then we de-
fine λ ε by 

where δ ε > 0 goes to zéro as ε-*·* 0 . This résolvent équation is 
uniquely solved if QrX 2(R d) , and λ j'(<?) in L 2(& d) when-
ever c and q are smooth enough. This means that the corresponding 
family μ. satisfles the law of large numbers with asymptotic 
mean ρ , thus we can proceed as before, the gênerai case of ΟεΜ^ 
reduces to this one by an easy approximation procédure. 
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