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HYDRODYNAMIC LIMIT OF A GINZBURG-LANDAU LATTICE MODEL
IN A SYMMETRIC RANDOM MEDIUM

J. FRIT2  , Mathematical Institute
H-1364 Budapest, Pf. 12%, Hungary
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is investigated in the presence of random conductivities. It is
shown that this randomness of the medium averages out in such a
way that the effective, macroscopic resistance of the medium turns
out to be the the limiting mean value of microscopic resistances.

This means that there in no interplay between nonlinearity of the

evolution law and randomness of the medium; the effective conduct-
ivity does not depend on the interaction. In the most transparent,
one-dimensional case the effective conductivity is just the har-
monic mean of the microscopic conductivity. Some extensions in-
cluding multidimensional systems in a small electric field are

also discussed. A complate text is to appear in Commun. Math. Phys.

*Supported in part by: Hungarian National Foundation for Scientific
Research; Grant No. 1815

1. Formulation of the Problem
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Time-dependent Ginzburg-Landau equations describe thermally homo-

geneous systems near the critical point. In a critical situation

the slowly varying, conservative forces, and the rapidly oscillating
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forces separate in such a radical way that the slowly varying
component admits a thermodynamical description, while the oscill-
ating forces are represented by a white noise in space and time.
In a thermal equilibrium free energy is the fundamental thermo-
dynamical potential, the simplest Gihzburg—Landau free energy

functional reads formally as
v 2
Hlw) = [ V(w(x)) + SVl ax

where V denotes the gradient of w:Rl—> R . The derivative, DH
n
of H with respect to the exteéive quantity w plays the role of
a chemical potential, its gradient drives the slowly varying, deter-

ministic part of the current of w ,

Jdet(x,w) = - % c(x) VWDH(x,yw)} , VDH(X,w) = V'(w(x)) - sdw(x) ,

where ¢ > 0 denotes the conductivity of the (isotropic) medium.
The stochastic part of the current is assumed to be of type

1/2
dJ . (tyx) = [o(x)] / dwy (x)

where dwt(x) is a vector valued standard white noise in space
and time. Now the evolution law is specified as a single conser-

vation law:
dwt(X) + div Jdet(x’wt) dt = div dJran(t’x) . (1)

Stationary states of this reversible evolution are the canonical
Gibbs states with energy H at unit temperature.
Our goal is to understand the hydrodynamic behaviour of such

models in the case of microscopically random conductivities., Un-
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fortunately, continuum models of this kind are very complicated
from a technical point of view, see [Fu]. For example, non-equi-
librium solutions to (1) can be constructed only in the one-di-
mensional case. We are going to discuss in details the following,
one-dimensional lattice version of (1). The configurations of our
system are then sequences w = (wk)kez indexed by 2 , the set

of integers, w, €R and the evolution is given by
duy, = L oy [V (w0 )=V (w.)] dt = = e, o [V (wy)-V' (w,_q)] dt
k = 2%k K+1 K 2 k-1 Kk k-1

1/2 dw 1 [ck]l/2 dw

+ [Ck-l] e y 0, (0) =0, keZ , (2)

k

where V:R~» R {s a convex potential, Wi s keZ 1is a family of
independent, standard Wiener processes, and Cy » keZ isafixed
set of positive numbers. We are interested mainly in such situ-
ations when c, are randomly selected, but in the present,; one-
dimensional case this structure is not relevant, we only need a
law of large numbers for 1/ck s which is just the resistance of
the bond between sites k and k+l , Since (2) is in fact a dif-
fusive system, the rescaled density field, st s should be defined

as

where € > O denotes the scaling parameter, and [u] is the in-
teger part of ueR . According to the philosophy of hydrodynamic
1imits, we expect that SE(t,@) converges in probability to a
deterministic limit [ ¢(x) Qt(x) dx as €= 0, and o, , the
limiting density, satisfies a nonlinear diffusionlequation.
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To expose the problem, let ce(x) = C[x/e] , wi(x):ew[x/e](t/ez) ’
T 9(x) = e g(x+e)-p(x)] , VEig(x) = e M g(x-€)-9(x)] 4 then

W = - 4 vte 9V () ab + e M2 anf) (4)
d3¢ = amMp - % J (7 9(x)) e (x) ¥ V' (0f(x)) dx dt (5)

where the martingale part M® vanishes as €=% 0 . In view of the
principle of local equilibrium,the field V' converges in a weak
L24sense to a deterministic 1limit, and so does c_ by the law of
large numbers., This means that we have to evaluate the product of
weakly convergent fields; which usually differs from the product
of weak limits. Fortunately, there is a trivial particular case,
the linear evolution equation corresponding to V’(x) = X ., Indeed,
if pc(t,j,k) denotes the transition probability of the random
walk on Z with generator G = (~1/2)VICV1 y and @, (t) 4is the
conditional mean of wk(t) given the medium, then we have an ex-
plicit solution Qk(t) = zjez oj(O) pc(t,j,k) . Therefore our dif-
fusive scaling (3) results in a limiting equation 8¢/ot = (c/2)
82¢/8t2 for the limiting density ¢ = Q(t,x) , where <& denotes the
effective diffusion constant of the underlying random walk. For
example, if Cy is an ergodic sequerce, then € is Jjust the har-
monic mean of ¢ , i.e. 1/¢c = < l/ck > ., The linear model can
be treated in the same way in all dimensions, the only difference
is that no explicit formula of ¢ 1s available if d > 1 .
The nonlinear problem reduces to the principle of local equi-

librium by means of the following trick. Let ¢:R-% B Dbe a smooth
test function of compact support, and define Pe for € >0 by
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¥ | 3
Vscevecp8 = VecVE¢ . ¢€(O) = ¢(0) , (6)

2
where ¢ 1is specified in such a way that $~> ¢ in 1L (R) as
€ goes to O . Such a construction is certainly possible if ce(x)
= c[x/s] , where ¢, , keZ is an ergodic sequence of harmonic
mean ¢ . The case of several dimensions is more Sophisticated.
Using e of (6) as a test function for the weak form of (2) we
see that Pe cancels the singularity of the evolution law due to

the randomness of the medium. Since V: is the formal adjoint of

V. , from (2) by the Ito lemma we obtain
dsf(p,,0,) = aMf - 3 [ via0ie(x) V' (wg(x)) dx at (%)

which 1s much nicer than (5). Now we can apply the principle of
local equilibrium to conclude that the field V’(wg(')) converges
weakly to J’(ot(')) s where @ 1s the limiting density, and

J(g) = sup [Ag-F(X)] , F(}) = log [ exp(Mx-V(x)) dx ; (8)

notice that J’(Q) is just the canonical mean value of V’(wk)
2
given the mean spin @ . On the other hand, Pe -» ¢ in L , thus
Si(@,cs) is expected to converge to [ ¢(x) 0,(x) dx , whare
Q+ 1s a weak solution to the limiting equation
o] ’
— . 18 r= ad_ (@) c
= E(x . (9
5t = 3 =l(x) - 1 )
this solution is uniquely determined by its initial value. The

function € 4is defined by (6) and the requirement ¢ _<» ¢ ; both
should be satisfied for all smooth ¢ of compact support.
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2. Main Result and Discussions
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Our statement on the hydrodynamic limit of (2) is basically a law
of large numbers, it can be formulated in terms of the following
functional spaces. The phase space of the rescaled process w% is
a locally convex, reflexive space ms defined by means of some
Hilbert norms |{*|., r >0 ; luli = [ e Tlxl uz(x) dx + The dual

2 2N 1 1%
space of 1 will be denoted by L while Hy and He are

the spaces of absolutely continuous u:R-+ R such that u,u’clg

and u,u'emgx; respectively. The weak topology of Lg plays a

crucial role in the proofs, T denotes the space of weakly conti-

nuous and bounded g:Lj-*»B.. At a given level € > 0 of scaling

the configurations of our system are embedded into Ls as step
functions of step size € . In view of this correspondence we say
that pu_ , a family of Borel probabilities on Lz y satifies the
law of large numbers with asymptotic mean ocmg if lim [ g dp,

= g(¢) for all geL, as e—» 0 .

- The potential V is assumed to have three continuous derivatives,

v

is bounded, and O <&y < v (x) < «, for all x . The evo-
lution is defined by (4), where c, = CE(X) is a step function

of step size e such that «, < c_(x) 2 «, , and we have some

1
continuously differentiable c:R—+ B such that
| . - 1%
1im [ (x)/ce(x) dx = [ @(x)/S(x) dx for ogeH, . (10)
e— 0

Our basic result is the following

THEOREM, Suppose that the initlal configuration, 0. converges
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weakly in L§ to some cemi

[ ¢(x) qt(x) dx 1in probability for each @tméw s where ¢ 1is
the weak solution to (9) with initial value Q4 = o . ]

as €= O , Then S§(¢,o€) —

A complete proof of this result is to be published in [Fr3],
the resolvent approach of [Frl],[Fr2] is used. Following the per-
turbative argument of [FM], the following, weakly asymmetric
problem can also be treated. Let e :R~> R be uniformly bounded,

and consider
e . 1 v '€ ¥ €
dup = TelecoeBlug)] at - 3 Vo TV (wg( 7)) dt + VoS dwg  (11)

where c, is a random conductivity as before, G is interpreted
as an external, electric field. We expect that the electric field
averages out in a direct way; if
- 13¢
ezimo J o(x)e (x) dx = [ ¢(x)8(x) dx for g¢eH;" , (12)

then the limiting equation reads as

QD'CD
o

= 21a(x)5(x)B(q)] + % &la(x) 88 , (13)
where B 1s the canonical equilibrium expectation of B .

In two or more space dimensions there is no explicit way to de-
scribe the medium and the effective conductivities. Microscopic
conductivities are associated to the bonds of Zd , they can also
be interpreted as the transition rates of a symmetric random walk
on Zd . Suppose that this random walk admits a diffusion limit
with diffusion constant & > O ; using the methods of [Fr2] and
the ideas outlined below, it seems to be possible to pass to the
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hydrodynamic 1imit, the effective coniuctivity will be just ¢ .
A direct extension of the methods of [FrZz] allows us to consider
models containing random, ferromagnetic interaction terms in the

Ginzburg-Landau free energy. More exactly, let

Hlw) = kﬁzd [ V(wy) + by 3 U(wk-wj) 1 (14)

X
| 3-ki=1
where V 1is the same as before, bkj=bjk >0, U(x)=U(-x) , U"(x) .
>0, and both u"  and bkj are bounded. In this general case

the Wiener process w® of (4) is vector valued, V_ and V: are

£
the discrete gradient of step size € , and its adjoint, respecti-
vely, and V’ should be replaced by the gradient of H , If bkj

is an ergodic system of bond variables, then the subbaditive ergodic
theorem shows that the limiting equation does not depend on the

randomness of b , but explicit expressions are not available.

3, On the Idea of the Proof

——. e m S g M By g e S W S .

Like in all references enclosed below, our basic information on the
dynamics concerns the smoothness of time averages of type
€ > -zt

XE(o,g) = Of e glwf) At , z > 0, g, o=wg . (15)
More exactly, both X® and its variational derivative Dxi(x,c,g)
are equicontinuous functions of the initial configuration o - with
respect to the weak topology of Lz y see [Frl1],[Fr2]. This deli-
cate property is due to the parabolic structure of the evolution
equation, cf. v > 0. Let f;(c) denote the conditional expect-
ation of X% given the initial value o , then g(o) = z f;(o)

- Gefg(c) y where &_ denotes the generator of the rescaled
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process w% . In view of the resolvent approach, we want to pass
along subsequences to the resolvent equation of the limiting semi-

group defined by (9), it reads as
B(0) =2 £,(9) + 3 [J (8,9 (o(x))15(x) 8,0f,(x,0) » pelly . (16)

The original resolvent equation g:zf—msf is an elliptic equation
in the functional space C, , so it is quite natural to look for

its weak form. Elements of the dual space of Ew are measures on
mg , therefore we have to integrate with respect to a clever meas-
ure, Let e denote the Gibbs state with energy H(w) = L V(w,) -

€

z Aiwk y, where A% 1is a real sequence indexed by Z ; the pro-

Jection of this measure on Lg will be denoted by the same symbol,

thus Ba e is concentrated on step functions of step size € . In-
! £ £
tegrating by parts we obtain that if A (x) = A[x/e] , then

S 8(3) by ((do) =z [ £(0) uy (do)

+ %‘ﬁf (Veke(x)) cel(x) VDI, (x,0) dx ux’s(do) R (1%)

and now we are in a position to use the trick of (6). Indeed, in the

present, one-dimensional case we can define A; = Ag(sk) by
- ’
c.(x) TA%(x) = (I,8(x)) V.3 (I 0(x)) », A%(0)=I’(I_Q(0)) , (18)

where TIy¢(x) 1is the integral mean of ¢ over [ek,ek+e) with k
= [x/€] . This transformation removes the singularity of (1%) due
to the randomness of ¢, » and 2 direct calculation shows that Ui, e
satisfies the law of large numbers with asymptotic mean ¢ . There-

fore, a compactness argument based on the continuity properties of
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X; and DX allows us to pass from (1%) to (16). Since (16) is
uniquely solved, each subsequence converges to the very same limit,
and the proof can be completed in the same way as in [Fr2].

In the multidimensional case (18) can not be solved, then we de-

fine Af by

£ ¥ Ey . uH = ’
8 AR + V(e VA®) = THI BV I(I o)) > (19)

where &, > 0 goes to zero as €=+ O , This resolvent equation is
uniquely solved if Qth(Rd)., and A - J'(g) 1in LZ(Rd) when-
ever ¢ and Q are smooth enough. This means that the corresponding
family u, satisfies the law of large numbers with asymptotic
mean Q , thus we can proceed as before, the general case of oemé

reduces to this one by an easy approximation procedure.
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