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The aim of this talk is to decribe a mathematically rgorous
justification of the Peierls substitution. In this written version of the talk
we do not include the very preliminary discussion of the Haas Van Alphen
effect, but refer to [H52,3] for more definite results. A part from the
classical work of Peierls [P], we have been inspired by several
mathematical works: such as Avron-Simon [ASi], Nenciu [N1-3],
Bellissard [B1,2], Guillot -Ralston-Trubowitz [GURT]. (Some references to
the physical htterature are also given below.) we learned about the use of
wannier functions from [B1,2],IN1-3], and in our earlier paper [HS1], we
used such functions in the case when the periodic Schrodinger operator
has a single band in its spectrum. In that case we obtained a reduction of
the study of the spectrum and of the density of states to that of
corresponding quantities for a certain effective Hamiltoman which 15 a
pseudodifferential operator, “obtained by Peierls substitution’’. In
[B1,2],IN1-3] such reductions to an infinite matrix were given. Such
infintte matrices also play a role as an intermediate step in our approach.
In the work [GuRT] certain approximate solutions of the magnetic
schrodinger equation are constructed by means of 'WKB-methods and
some discussion of the Haas Van Alphen effect is also given. Since only
special solutions are constructed, only some partial resuits about the
spectrum are obtained,

More recently, we managed to improve the resuits of [H51] (see [HSZ]},
by eliminating the assumption that we work with energies close to a
single band for the zero field case, and this talk will give an outline of
this more general case. The usual Wannier functions have then
dissappeared, but they are reminiscent in the choice of certan auxiliary
operators:

f
Let VeC®(RN:R) be periodic with respect to the lattice, I‘=&1.aaei .

where the e form a basis in RN, so that V{x+¥)=V(x) for every yeT.

Let At,..,AneCm(Rn;R), and assume that the corresponding exterior
differential or “‘magnetic field”, B=d(ZAJ«dxj) 15 constant on RN, we are
then interested in the spectrum and in the density of states for the
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magnetic Schrodinger operatm {m.S.0.):
{1 Pg. \,—L(D +A(x))“+V(x)

By simple con)ugatmns of the operator by exponential factors, we know
that only B and not the special choice of A is important here, and since
we assume that B is constant, we may take Ak(x)=52bj,kxj, where

—is
B=zZZ by, kd":]""’jf‘k and bJ k=B, -
In the case B=0 we can use the Bloch-Floguet theory: Let I'* be the
dual lattice, {¥*eR"™; ¥y~ e2m2}, and put ‘.}Be={ueL‘,20c(IR"}' u(x+%)=

e 5Ou(x) for all % e}, for 8eRM*/T™ (which is a Hilbert space equipped
with the standard LZ inner product over a fundamental domain of

I'.} The operator U, defined by IJu(x,e)=§ ulx-%)elb® is unitary from

LZR™ to [®%qde and the inverse is given by

U= Tv{x)= (VIR /TN [ w(x,8)d6.
P=P0_‘V 1s then unitarily equivalent to j@Pede. where Pg is the
(essentially self-adjoint) operator on %gq defined as Po,y in the sense of
gistributions. we also know that the spectrum of PO.\, 18 purely
absolutely continuous and

)

of the form g Ji » where Ji ={E,(6); 6 RN*/T*}, Here Epl6)<Ei0)=..
are the eigenvalues of Pg. In the case of a simple band, 'Jkg’ {disjoint
from Jy when k#kq) the Peierls substitution says that when B is small
and for energies close to Jko’ the operator is "well approximated’’ by the
pseudodifferential operator, Ekg(Dx1+A1“‘)'--'Dxn’“’"‘n(x”'

wWe fix some zoelR. Our aim is to study the spectrum and the density
of states near the energy z,, when B is small. We start with the case
B=0:
Proposition 1. There exists an integer N=0, and analytic functions,
191:19.”*/?*-—’%9, for j=1,..,N, such that for every 6 R"*/I"* and for
gyery z n a complex neighborhood of Z(y,-the operator

Pg-z2 F

F(z,6)= 7| %gxeN— wgxeN
Ry 0

is bijective. Here %é is the intersection of 3{;9 and the space of functions

Delonging locang to the standard Soboley space HZ. Moreover,
L N _n*
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If 2y belongs to a simple band, 'Jkg , then one can prove that
Ker(Pg-Ey (8)) 15 a trivial Tine bundle over RM™*/T* ( See [N1],[HS1]), and
it follows in that case that we can take N=1, and *p{(8)="p(8), a
normalized analytic section of Ker(Pe—EkO(S'J).

Lat
Efz,9) E,(2,8) )
)

5(z,8)= ( ,
E_(z,8)E__ (2,9
denote the wnverse of ®(2,8). (We notice that in the simple band case, we
get E_+(z,8)=z-EkO(6), provided that we choose R, as above.) An

important observation is that z belongs to the spectrum of Fg if and only
if O belongs to the spectrum of E_+(z,9). This is due to the formulas,

(Po-2)7'=E(2,6)-E,(z,0)E_ (2,007 TE_(2,8),

- ay-lo -1

E_ (2,87 =-R (Pg-2)7 IR _

we now add a weak constant magnetic field, B. For some suitable m,
let 1(x,£),..,1,(%,£) be linearly independent real linear forms on T*RM=
RMxR™* with the property that,
{2} H},lk}=<B,eJ~hek>, for j,k=1,..,n.
Here {a,b} denotes the Poisson bracket: Z(E)gja)(aij)-(axja)(agjb), for
a=alx,£), b=b(x,€) in C(T*RM). As an example, we can always take
m=n and 1]-(x,€)=§]-+b.j(x) (and this corresponds to the classical Peierls

substitution), but it is also of interest that we can sometimes take m<n.

Let 9=(8‘,..,8n}, where Qj-‘—' <8,e,>, s0 that GJ are the dual coordinates

on B"* and using these conrdinates, we define 10, €)= 040,60, 01 0%,60)

as a point of RN*/I*. we then have:

Thearem 2. There exists a smooth function g=g{B,z:8) with values in the
NXN matrices, defined in a neighborhoad of {0}x{zq}x{R"*/T™) n
RMN=1/2 e x(CN*/T™), holomorphic with respect to 2,8, such that for
z,B n a neighbarhaed of (24,0} In CxRMN-1/2 we have the
equivalence:

(3} zeotPg y)e0eatOpWigB,z;ix,E).

Moreover, g(0,2;8)=E__ (2,6).

Here "o denotes "spectrum of”, and Op¥(a) denctes the
peudadifferential operator ocbtained by Wey! quantization of a (assumed to

belong to some suitable space of symbols on T*RM):
4y op¥aui= [ el =W ar(x+yd/2, Miuty) dydn/mm,
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far u in the Schwarz space, A(RM), (It follows from standard resulls on
pseudodifferential opertors, that 0p¥(g-1) is bounded on L<(R™M).)

Brief_outline of the proof. We first return to the case B=0, and put
‘;’0,1(’4)=U_1("Pj)(><7, By j(¥)=g {(x-%). In the case of a single band,

and with the special choice indicated after Proposition 1, the functions
@6:@,6- 4 form an orthonormal basis of the spectral subspace associated

o F’O 4 'Jkg' These are the Wannier functions, used by Bellissard [B1,2]
and Nenciu [N1-3]. In the general case, the analyticity of gDJ« with respect
to 8, imphes that q’O,j 15 exponentially decreasing: There exists a

constant C>0 such that, l@o’j(x)lste‘ Ix1/C for all xeR", and we have
the same type of estimate for every derivative of @O,j' (Here we actually
need that 1pj is smooth in %, but this property can easily be added to the
conclusion of Proposition 1.)
Using U™, we find that
) Po.yw-2 Ff(_)_ " ,
Po)=( Nk HERMx1Z(T ;e — L2312,

R

4
15 bijective, where (R?_u)(“d)f(ul@x’j'}Lz(mn), and RE_):(REJ* (the

complex adjoint of R?_) i

E%z) EY(2)

80(z)= |

E%) €Y, (2)
denotes the inverse, then E‘i+(z) is given by the (block) matrix,
E‘;i,r(z;c(,ﬁ):&*(E_+(z,.))(,8—o<), where we let F(f)(«) denote the
Fourier coefficient at eI, of the function feC®(RN*/T*). Thanks to the
exponential decrease of the function ‘I’O,j’ one can show that £9¢(2)

remains bounded also on certain exponentially weighted spaces.
For B#0, one has to consider PB,V as a singular perturbation of F’O,v.

Moreaver, Pg y will not in general commute with transiations by

elements of ', but with certain modified “magnetic” transiations (see
Zak (2], Luttinger [L], Bellissard [B1,2] and Nenciu [N1-3]): For a€T', we
put Tgu{x)ze("(Z)‘-B”‘"Wu(x—o() and check that:

Wwe can not use Floquet theory (in general) since the TE do not necessarily

form a commutative group:
(S) ToTg=e B ®ABI TR
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we put @5 ;=752 ;. REutco,= (w129 », uel4RM, RB=RY",

Pg y-2 RE
#B(z)= ( B,¥ )

rE 0

Let Hé ={ueL4(RM: such that (ij+Aj)u, (Dzj+A}~)(ka+Ak)u belong to LZ

for all j,ki. This is @ Hilbert space with the natural norm. )
Proposition 3. For (z,B) in a neighborhood of {25} {0} in CxRAN-1/Z,

the operator Pg(z) is bijective from Hg€X1€ onto LZX12. 1f we let

EB(z) EB¢z

EB(z) €B L(2)
be the corresponding inverse, then the matrix of Eq+(z) is of the form,
EB_+(z)=EWZK'B’OM:B}I(B,z;ot-ﬁ), where { is smooth in B,z and
holomorphic in 2, with
(6) Iagf(B,z;d)lﬁtg g= Tl for some 1 >0, independent of %,

Moreaver, zeo‘(PB,v) if and only if Oeo(Eq+(z)).

The idea of the proof is that aithough PB,V is a singular perturbation
of F',:,‘.ﬁ, , the two operators are close in any fixed compact set, when B
15 small enough. The same can be said about b and 0 and 1t turns out

that we can form approximate inverses by using suitable partitions of
umty, the magnetic translation operators and 50_

The matrices of the form ‘Iﬂ,a(f)(oi,ﬁ)=e':'/2"{‘5’°“‘>8’f(ot—ﬁ) with
fe1(I) form an algebra. We can write Mg(f)== ﬂ'tx)t&B, ‘c&B=‘ﬂLB(6d)
whare S, (B)=1if B=a, and =0 otherwise. We have,

(8) T:&BT‘§B=ENB"&A’B>TEBT‘&B-

Thanks to the choice of the lj, one verifies that,

(@) @1 COLIR,D> GICB, IR, DYD gIKB, XABY GI<B,1%,D)> o<, 1K, D>
In fact e < TR,Dxd> = gpWiei <L IR, ED>y 54 we can use the calculus of
Wey! quantizations. (See [BoGH], [H8).) To Mpg(f) we can then associate
the pseudodijferential operator, 0p™(Sftoe! %1813y = gpWige,
where g is the function on R"®/T™ with f=%(g). This correspondence
commutes with camposition of the operators.

In the case, when { is of exponential decrease, one can show, using a
thearem of R.Beals [Be], that

{10) (MM =c(0p(geN).
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Applying this to the function, f , given in Proposition 3, we obtain
Thearem 2,
Remark 4. In order to apply semiclassical analysis, we can fix a field By,

put B=h60 and let h—0. If II,..,ln are adapted to 50 as above, thento B
we can associate the linear forms li(x,hf;), and the study of the spectrum
of P,y is then reduced to the study of the “semiclassical’

pseudodifferential operator, 0pY{gthB,z:1(x,h&N).

Not only the spectrum, but the density of states, can be reduced in the
same way. Let FeCS'(R). Then F(Pg,y! 1s @ smoothing operator, and the
{smooth) distribution kernel, K(x,y) satisfies: K{x+¥,x+¥)=K(x,x).

Following Shubin [Sh], and several ather authors, we introduce the
averaged trace,

(10 {r F(Pg )= [qK(x,xdw/vols),
where 2 is some fundamental domain of I'. If F=0, then tr F(PB,V)EO, S0
there 15 a umique Radon measure, PB.V {the so called density of states)
such tNhat,
(12) tr F(Pg y)=] Fl2) pg (d2).
Let feCS"(C) be an extension of F such that dF=0{]Im(z)]). Then,
' dF(z)
(13) F(Pg y)=-(1/m)[ " (z-Pg, )7 L(d2),

1z
where L denotes the Lebesgue measure on C~R<, If F and F have their
support in a sufficiently small neighborhood of {20}, we can exploit the
formula (Z—F'B’v)‘1=—EE’(2)+E§_(2)(EB_+(2))"EB_(2'}, and that EB(z) 15
holomorphic n 2, 1o get,

| BF(2) ,
(14) F(Pg, y)=-(1/m) e EBG)ER | (20 1eB) Lid2).
32
Next, we take the trace of this relation. One can show that,

% £BeB )-1gB= {eBeBel -1
(5) {r e5(E9 ) 1eB= {r(eBeBeeB -0y,

where,

(16) {riMmp(n)=(vol(2)) ™" trf(o)=(2m)~"[ tr g(6) de, 1=Fg.
RN*/T*

Moreover,

~ BeBogeB
07 eBef=0eB | /2.

If 0=0p™(ge1) is the operator in Theorem 2, we get:
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-y

- F(z) o | |
(18) {r FPg )=~/ —— {r{{30/82)07 ) Ltdz)/volis)

Jz
Here, in the case of Weyl-quantizations, we define tr(0p"(q)) as the
mean value of the trace of the symbol g. (This mean value exists in the
case of (30/82)+0Q~"). Further developments will appear in [HS2,3].
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