RECHERCHE COOPÉRATIVE SUR PROGRAMME Nº 25

JEAN LERAY

Chapitre III Équations de Schrödinger et de Klein-Gordon, pour l'atome à un électron, dans un champ magnétique

Les rencontres physiciens-mathématiciens de Strasbourg - RCP25, 1978, tome 25 « Analyse lagrangienne et mécanique quantique par Jean Leray », , exp. n° 5, p. 187-266

http://www.numdam.org/item?id=RCP25_1978_25_187_0

© Université Louis Pasteur (Strasbourg), 1978, tous droits réservés.

L'accès aux archives de la série « Recherche Coopérative sur Programme nº 25 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

CHAPITRE III

Equations de Schrödinger et de Klein-Gordon, pour l'atome à un électron, dans un champ magnétique.

INTRODUCTION . - <u>Sommaire</u> . - Les problèmes les plus intéressants de la théorie des équations aux dérivées partielles, linéaires et homogènes, sont les problèmes de valeurs propres ; leur caractère essentiel est de n'avoir de solution qu'exceptionnellement. Ce chapitre III donne des exemples de problèmes lagrangiens ayant ce même caractère ; ces problèmes supposent :

$$\ell = 3$$
; $Z(3) = X \oplus X^*$; $X = X^* = E^3$ (espace euclidien);

ils concernent l'opérateur lagrangien a associé à un hamiltonien H , de type approprié : le système d'Hamilton qu'il définit possède deux intégrales premières définies sur Z(3) : la longueur L et l'une des composantes M du vecteur $x \land p$ de E^3 .

Cet hamiltonien peut être celui de l'électron, non-relativiste ou relativiste, soumis à l'action simultanée du champ électrique d'un noyau atomique fixe et d'un champ magnétique constant (effet Zeeman); alors H dépend d'un paramètre : le niveau d'énergie E de l'électron; a est l'opérateur de Schrödinger ou (cas relativiste) celui de Klein-Gordon; les niveaux d'énergie pour lesquels nos problèmes lagrangiens ont une solution coîncident avec ceux que définissent les problèmes qu'il est classique d'étudier à propos de ces opérateurs.

L'intérêt du point de vue lagrangien est sa simplicité: par application du théorème 7.1 (Chap. II, § 3), <u>le § 1 obtient ces niveaux d'énergie par une quadrature</u>; elle se calcule aisément par la méthode des résidus dans les cas Schrödinger et Klein-Gordon.

Le § 1 cherche les <u>solutions</u>, <u>définies</u> mod. 1/v <u>sur une variété lagrangienne</u> compacte, du système lagrangien :

(1)
$$a U = (a_{L^2} - const.) U = (a_M - const.) U = 0 mod. $1/v^2$,$$

où a et a sont les opérateurs lagrangiens associés aux intégrales premières L² et M : il applique le théorème 7.1. Les équations possédant des solutions (en particulier les niveaux d'énergie) et ces solutions sont caractérisées par 3 entiers, qu'introduit la quantification de Maslov :

$$\ell$$
 , m , n tels que $|m| \le \ell < n$;

ce sont les 3 nombres quantiques de Schrödinger; les variétés lagrangiennes sur lesquelles ces solutions sont définies sont <u>des tores</u> $T(\ell,m,n)$ de dimension 3 (cf. théorème 7.1, 2°)), d'équations

$$T(l,m,n) : H(x,p) = L^{2}(x,p) - const. = M - const. = 0$$
,

ces constantes ayant les mêmes valeurs que dans (1) et dépendant de (ℓ,m,n) .

Le § 2 cherche <u>les solutions</u>, <u>définies</u> mod. 1/v <u>sur une variété lagrangienne</u> compacte V <u>et à amplitude lagrangienne</u> > 0 , <u>de l'équation lagrangienne</u>

(2)
$$a U = 0 \quad \text{mod.} 1/v^2.$$

Il s'agit donc d'un problème formellement analogue au problème aux limites qu'il est classique d'étudier à propos de l'équation de Schrödinger, la condition d'allure à l'infini de ce problème classique étant remplacée par la condition que V est compacte. En général, la condition d'existence est la même : un triplet d'entiers quantiques la définit ; mais la solution correspondant à ce triplet n'est plus nécessairement unique.

Le § 3 cherche <u>les solutions</u>, <u>définies sur une variété lagrangienne compacte</u>, du système lagrangien

(3)
$$a U = (a_{\underline{U}} - const.) U = (a_{\underline{M}} - const.) U = 0 ,$$

les constantes étant des nombres formels, réels mod. $1/v^2$, H <u>étant l'hamiltonien de l'électron</u>, relativiste ou non ; alors a , a , <u>et</u> a <u>commutent</u> ;

le théorème 7.2 s'applique ; les solutions sont encore caractérisées par le triplet d'entiers quantiques (ℓ, m, n) ; les solutions du problème (1) sont, mod. $1/\nu$, celles du problème (3).

Le § 4 rappelle <u>le problème qu'il est classique de se poser à propos des équations de Schrödinger et Klein-Gordon</u>: trouver une fonction

$$u : E^3 \rightarrow c$$

<u>de carré sommable ainsi que son gradient</u>, vérifiant l'équation aux dérivées partielles

$$(4) a u = 0 ;$$

le § 3 rappelle la résolution de ce problème, pour montrer qu'elle diffère essentiellement de celle des problèmes précédents : nous constatons, sans l'expliquer, que tous ces problèmes définissent les mêmes niveaux d'énergie.

Les difficultés que rencontre le § 2 et la longueur des calculs qu'emploie le § 3 contrastent avec la simplicité du § 1 ; ce § 1 justifie la conclusion suivante :

CONCLUSION . - Appliquée à l'atome à un électron, placé dans un champ magnétique constant, la quantification de Maslov (Chap. II, § 3, n° 6 et 7) donne aux grandeurs observables (c'est-à-dire aux niveaux d'énergie) les mêmes valeurs que la mécanique ondulatoire ; mais cette quantification de Maslov est directement apparentée à la mécanique corpusculaire, donc, à la première théorie quantique ; néanmoins elle n'en a pas les défauts : elle a une justification logique (Chap. I et II) ; elle n'exige pas la détermination des trajectoires de l'électron non-quantifié, mais seulement la connaissance des intégrales premières classiques, L et M , du système d'Hamilton définissant ces trajectoires.

L'interprétation probabiliste de cette quantification est la suivante : dans l'état défini par un choix du triplet d'entiers quantiques (ℓ, m, n) , le point (x,p) représentant à la fois la position x et la quantité de mouvement (ℓ, m, n) de l'électron appartient à un tore (ℓ, m, n) de dimensions de l'espace à 6 dimensions : (ℓ, m, n) est définie par la mesure invariante (ℓ, m, n) de ce tore (ℓ, m, n) (cf. § 1).

Note . - Soient 2 triplets distincts d'entiers quantiques :

$$(\ell, m, n) \neq (\ell', m', n')$$
;

ils définissent (§ 1) des tores dont l'intersection est vide :

$$T(\ell, m, n) \cap T(\ell', m', n') = \emptyset$$
;

soient U et U' deux fonctions lagrangiennes définies respectivement sur

$$T(\ell, m, n)$$
 et $T(\ell', m', n')$;

leur produit scalaire est donc (Chap. II, § 2, théorème 3.2, 3°)):

$$(U/U') = 0 .$$

<u>Historique</u> . - V.P. Maslov n'a pas explicité cet emploi de sa quantification ; il n'a étudié que le cas de nombres quantiques tendant vers l'infini, c'est-àdire "le principe de correspondance" de la mécanique quantique.

Ch. III, § 1

§ 1. <u>Un hamiltonien</u> H, <u>auquel s'applique commodément le théorème</u> 7.1(Ch. II,§ 3). Les niveaux d'énergie, avec effet Zeeman, de l'atome à un électron.

Le théorème 7.1 du chap. II, § 3 suppose données, sur $\Omega \subset Z(\ell)$, ℓ fonctions, 2 à 2 en involution. Ce chapitre III choisit $\ell = 3$ et un triplet classique de telles fonctions.

1 . QUATRE FONCTIONS, DONT TOUS LES COUPLES, SAUF UN, SONT EN INVOLUTION SUR $E^3 \oplus E^3$. - Notons $X = X^* = E^3$ l'espace euclidien de dimension 3 ; appliquons le chapitre II à

$$\ell = 3$$
 , $Z(3) = E^3 \oplus E^3$,

un repère R_o de Z étant donc choisi : le théorème 5 du chap. II, § 3 nous évite d'en employer d'autre.

Par contre, dans E^3 , nous employons non seulement un repère orthonormé fixe (I_1, I_2, I_3) , mais aussi un repère orthonormé mobile. Notons :

$$x \in X = E^3$$
, $p \in X^* = E^3$,

 (x_1, x_2, x_3) et (p_1, p_2, p_3) les coordonnées de x et p dans (I_1, I_2, I_3) :

$$x = \sum_{j=1}^{3} x_j I_j$$
, $p = \sum_{j=1}^{3} p_j I_j$.

Définissons par

R(x) = |x|, P(p) = |p|, $Q(x,p) = \langle p,x \rangle$, $L(x,p) = |x \wedge p|$, (1.1)

 $M(x,p) = x_1 p_2 - x_2 p_1$ (troisième composante de $x \land p$),

cinq fonctions de (x,p), évidemment liées par les relations

(1.2)
$$L^2 + Q^2 = P^2 R^2$$
; $|M| \le L$; $0 \le P$; $0 \le R$.

Le vecteur I₃ a donc un rôle priviligié; (ce sera, par exemple, la direction du champ magnétique produisant l'effet Zeeman).

Dans $E^3 \oplus E^3$, le système caractéristique de d < p, dx > est

$$dx = dp = 0$$
:

toute fonction $E^3 \oplus E^3 \to R$ en est intégrale première ; la parenthèse de Poisson (.,.) (définition 2 du chap. II, § 3) de deux telles fonctions

est donc définie; vu la formule (2.5) (ibid.)

$$(1.3)$$
 $(L,M) = (L,Q) = (L,R) = (M,Q) = (M,R) = 0 , (Q,R) = R .$

D'après le théorème 2 (E. Cartan) du chap. II, \S 3, une quadrature définit localement sur $E^3 \oplus E^3$ quatre fonctions numériques réelles

$$f_0$$
 , f_1 , f_3 , f_5

telles que :

(1.4)
$$< p, dx > = df_0 + f_1 dL + f_3 dM + f_5 dR$$
.

Explicitons ces fonctions f_j . Notons (J_1, J_2, J_3) le repère mobile orthonormé, défini pour $L \neq 0$, tel que :

(1.5)
$$x = R J_1, x \wedge p = L J_3,$$

ce qui implique :

(1.6)
$$p = QR^{-1}J_1 + LR^{-1}J_2$$
, $P \neq 0$, $R \neq 0$.

Notons w_1 , w_2 , w_3 les composantes infinitésimales du déplacement relatif de ce repère (G. Darboux -E. Cartan); ce sont les formes de Pfaff

$$\omega_1=<$$
 J_3 ,dJ_2>= - < J_2 , dJ_3> ,
 $\omega_2=<$ J_1 ,dJ_3> ,
 $\omega_3=<$ J_2 , dJ_1> telles que :

$$(1.7) \ \mathrm{dJ}_1 = w_3 \ \mathrm{J}_2 - w_2 \ \mathrm{J}_3 \ , \ \ \mathrm{dJ}_2 = w_1 \ \mathrm{J}_3 - w_3 \ \mathrm{J}_1 \ , \ \ \mathrm{dJ}_3 = w_2 \ \mathrm{J}_1 - w_1 \ \mathrm{J}_2 \ ;$$

rappelons que la différentiation extérieure de ces relations donne les équations (qui sont les équations de structure du groupe orthogonal):

(1.8)
$$d\omega_1 = \omega_3 \wedge \omega_2$$
, $d\omega_2 = \omega_1 \wedge \omega_3$, $d\omega_3 = \omega_2 \wedge \omega_1$.

La différentiation de (1.5)₁ donne, vu (1.7):

(1.9)
$$dx = (dR) J_1 + R w_3 J_2 - R w_2 J_3 ;$$

d'où, vu (1.6)

(1.10)
$$< p, dx > = QR^{-1} dR + L \omega_3$$
.

Pour transformer cette formule en une formule du type (1.4), introduisons les angles d'Euler Φ , Ψ , Θ ; ce sont les paramètres du repère (J_1 , J_2 , J_3) définis comme suit, pour

$$J_3 \neq \pm I_3$$
 , c'est-à-dire : $|M| < L$:

 Θ est l'angle de I_3 et J_3 ; o < $\Theta<$ π ; une rotation de Φ autour de I_3 transforme (I_1 ,I_2 ,I_3) en (I_1 , I_2 ,I_3) tels que

$$I_2' \sin \Theta = I_3 \wedge J_3;$$

une rotation de $_{\Theta}$ autour de $_{\mathbb{I}_{2}^{1}}$ transforme $(I_{1}^{1},I_{2}^{1},I_{3})$ en $(I_{1}^{1},I_{2}^{1},J_{3})$; une rotation de $_{\mathbb{Y}}$ autour de $_{\mathbb{J}_{3}}$ transforme $(I_{1}^{1},I_{2}^{1},J_{3})$ en (J_{1},J_{2},J_{3}) . Evidemment:

$$(1.11) M = L \cos \Theta;$$

 Φ et Ψ sont définis mod. 2 π . On a les formules classiques : $J_1 = \left(\cos\Phi\,\cos\Psi\,\cos\Theta - \sin\Phi\,\sin\Psi\right)\,I_1 +$

+ ($\sin \Phi \cos \Psi \cos \Theta + \cos \Phi \sin \Psi$) I₂ - $\cos \Psi \sin \Theta$ I₃;

 $\begin{aligned} & J_2 = (-\cos\Phi\sin\Psi\cos\Theta - \sin\Phi\cos\Psi)I_1 + \\ & + (-\sin\Phi\sin\Psi\cos\Theta + \cos\Phi\cos\Psi)I_1 + \sin\Psi\sin\Theta I_3 \\ & J_3 = \cos\Phi\sin\Theta I_1 + \sin\Phi\sin\Theta I_2 + \cos\Theta I_3 \end{aligned}$

(1.13) $\omega_2 = \sin \Psi \sin \Theta d\Phi + \cos \Psi d\Theta ;$ $\omega_3 = \cos \Theta d\Phi + d\Psi .$

L'expression explicite de la formule (1.10) est, vu (1.11) et $(1.13)_3$:

(1.14)
$$< p, dx > = Q \frac{dR}{R} + L d\Psi + M d\Phi ;$$

cette formule fondamentale est du type (1.4), conformément au théorème d'E. Cartan qui nous guide.

Formules complémentaires . - La différentiation de (1.6) donne, vu (1.7) :

 $(1.15) \ \mathrm{dp} = \left[\mathrm{d}(QR^{-1}) - LR^{-1}\omega_3 \right] J_1 + \left[\mathrm{d}(LR^{-1}) + QR^{-1}\omega_3 \right] J_2 + \left[LR^{-1}\omega_1 - QR^{-1}\omega_2 \right] J_3 \ .$ $Vu \ (1.9) \ \mathrm{d}^3x = \mathrm{d}x_1 \wedge \mathrm{d}x_2 \wedge \mathrm{d}x_3 \ vaut :$

$$d^{3}x = R^{2}(dR) \wedge \omega_{2} \wedge \omega_{3} ;$$

D'où, vu (1.15):

$$d^{3}x \wedge d^{3}p = L \frac{dR}{R} \wedge dQ \wedge dL \wedge w_{1} \wedge w_{2} \wedge w_{3} ,$$

c'est-à-dire, en substituant aux w_j leurs expressions (1.13) et en éliminant Θ grâce à (1.11) :

(1.17)
$$d^{3}x \wedge d^{3}p = dL \wedge dM \wedge dQ \wedge \frac{dR}{R} \wedge d\Phi \wedge d\Psi .$$

Notons Ω^6 une partie ouverte de $Z(3) = E^3 \oplus E^3$ sur laquelle :

$$|M| < L$$
;

sur Ω^6 nous pouvons donc employer les coordonnées

L, M, Q, R,
$$\Phi$$
, Ψ ,

 Φ et Ψ étant définis mod. 2π .

Note 1. - Sur Ω^6 , L \neq 0; donc, vu (1.2)₁: P \neq 0, R \neq 0.

LEMME 1 . - Soit V une variété lagrangienne de $\,\Omega^6\,$; (dim V = 3) ; remplaçons chacune des fonctions et des formes différentielles précédentes par sa restriction à V .

1°) <u>Le contour apparent</u> Σ_{R} <u>de</u> V est la surface de V où :

$$(1.18) \qquad \qquad \sum_{\mathbf{R}} : d\mathbf{R} \wedge \mathbf{w}_2 \wedge \mathbf{w}_3 = 0 \quad \mathbf{sur} \quad \mathbf{V} .$$

2°) u voisinage d'un point de \sum_R , il existe sur V une forme différentielle \overline{w} de degré 3, mulle part nulle, telle que sur Σ_R :

(1.19)
$$dQ \wedge \omega_2 \wedge \omega_3 / \overline{\omega} \ge 0$$
; $dL \wedge dR \wedge \omega_2 / \overline{\omega} \ge 0$; $dR \wedge \omega_3 \wedge \omega_1 / \overline{\omega} \ge 0$,

les trois premiers membres étant trois fonctions non simultanément nulles ; il existe une constante c telle que, au voisinage de ce point de V , l'indice de Maslov $m_{R_{_{\rm O}}}$ de V ait la valeur :

(1.20)
$$m_{R_0} = c \quad \text{pour } dR \wedge w_2 \wedge w_3 / \overline{w} < 0 ,$$

$$= 1 + c \text{ pour } dR \wedge w_2 \wedge w_3 / \overline{w} > 0 .$$

<u>Preuve de 1°). - L'expression (1.16) de $d^{3}x$.</u>

Preuve de 2°).- Calculons le saut de m_{R_0} à travers \sum_{R_0} en appliquant le théorème 3.2 du chap. I, § 3. Vu (1.9), (1.15), et (1.18), les composantes d_jx et d_jp de dx et dp dans le repère (J_1,J_2,J_3) vérifient sur V en les points de \sum_{R} :

$$\begin{array}{l} d_{1}p \, \wedge \, d_{2}x \, \wedge \, d_{3}x \, = \, R^{2} [\, d(QR^{-1}) \, - \, LR^{-1}\omega_{3}] \, \wedge \, \omega_{2} \, \wedge \, \omega_{3} \, = \, R \, dQ \, \wedge \, \omega_{2} \, \wedge \, \omega_{3} \, ; \\ \\ d_{1}x \, \wedge \, d_{2}p \, \wedge \, d_{3}x \, = \, - \, R \, dR \, \wedge \, [\, d(LR^{-1}) \, + \, QR^{-1}\omega_{3}] \, \wedge \, \omega_{2} \, = \, dL \, \wedge \, dR \, \wedge \, \omega_{2} \, ; \\ \\ d_{1}x \, \wedge \, d_{2}x \, \wedge \, d_{3}p \, = \, (dR) \, \wedge \, \omega_{3} \, \wedge \, [\, L \, \omega_{1} \, - \, Q \, \omega_{2}] \, = \, L \, dR \, \wedge \, \omega_{3} \, \wedge \, \omega_{1} \, . \end{array}$$

D'où, vu ce théorème 3.2 (chap. I, \S 3), l'existence de \overline{w} vérifiant (1.19) et (1.20).

2. CHOIX D'UN HAMILTONIEN H . - Soit une fonction indéfiniment différentiable

$$H: \Omega^6 \to \mathbb{R}$$
;

en involution avec L et M, c'est-à-dire, vu (1.14), fonction composée des fonctions L, M, Q, R:

(2.1)
$$H(x,p) = H[L(x,p), M(x,p), Q(x,p), R(x)]$$
;

H[.] est une fonction indéfiniment différentiable, définie sur une partie ouverte Ω^4 de l'espace \mathbb{R}^4 de coordonnées L , M , Q , R ; nous supposons sur Ω^4 :

(2.2)
$$0 < R$$
, $|M| < L$, $(H_Q, H_R) \neq (0, 0)$ pour $H = 0$:

 H_Q désigne la fonction valant $\frac{\partial H[L, M, Q, R]}{\partial Q}$

Vu (1.3), <u>les trois fonctions</u> H, L, M <u>de</u> (x,p) <u>sont deux à deux en involution</u>, ce qui permet d'appliquer explicitement le chap. II, § 3 à <u>l'opérateur lagrangien</u> a <u>associé à</u> H.

D'après le théorème 2 (E. Cartan) du chap. II, \S 3 , une quadrature définit localement, sur Ω^6 , quatre fonctions numériques réelles

$$g_0$$
, g_1 , g_2 , g_3

telles que

(2.3)
$$= dg_0 + g_1 dL + g_2 dM + g_3 dH ;$$

nous emploierons cette formule pour H=0; le lemme qui suit l'explicite pour H=0;

vu (1.14), la quadrature est la définition de Ω par (2.8).

Notations . - Soit (cf. chap. II, \S 3) W l'hypersurface de Ω^6 d'équation

$$W: H(x,p) = 0$$

Notons (L_o , M_o) tout couple de nombres réels tel que $\left|M_o\right| < L_o$; notons $V[L_o$, $M_o]$ toute composante connexe de la partie de W d'équations

(2.4)
$$V[L_0, M_0] : H(x,p) = 0, L(x,p) = L_0, M(x,p) = M_0$$

W est la réunion des $V[L_o, M_o]$; vu le théorème 7.1, $V[L_o, M_o]$ est une variété lagrangienne; elle est le produit topologique

- du tore de dimension 2 et de coordonnées Φ et Ψ mod. 2π ;
- d'une courbe connexe $\Gamma[L_0; M_0]$ du demi-plan ouvert de coordonnées (Q , R > 0) ; l'équation de cette courbe est

(2.5)
$$\Gamma[L_{o}, M_{o}] : H[L_{o}, M_{o}, Q, R] = 0$$
;

cette courbe n'a pas de point singulier, vu (2.2)3.

Sur W définissons, à l'addition près d'une fonction de (L, M), une fonction numérique réelle t de [L, M, Q, R] par la condition :

(2.6)
$$dt = \frac{dR}{RH_{Q}[L, M, Q, R]} = -\frac{dQ}{RH_{R}[L, M, Q, R]} \quad sur \Gamma[L, M];$$

quand la courbe Γ [L,M] est fermée, alors t est défini mod. c[L,M], où

(2.7)
$$c[L,M] = \oint_{\Gamma[L,M]} \frac{dR}{RH_Q} = -\oint_{\Gamma[L,M]} \frac{dQ}{RH_R};$$

t est monotone sur Γ ; (L, M, t, Φ , Ψ) constitue un sytème de coordonnées locales de W .

Définissons sur W , à l'addition près d'une fonction de (L,M) , une autre fonction numérique réelle Ω par :

(2.8)
$$d\Omega = Q \frac{dR}{R} \quad \text{sur } \Gamma \text{ [L, M];}$$
 quand la courbe $\Gamma \text{ [L, M]} \text{ est fermée, alors } \Omega \text{ est défini mod. } 2\pi N \text{ [L, M] où}$

(2.9)
$$N[L,M] = \frac{1}{2\pi} \oint_{\Gamma[L,M]} Q \frac{dR}{R} > 0;$$

 Ω n'est pas monotone sur Γ . Notons sa différentielle :

(2.10)
$$d\Omega[L,M,t] = Q \frac{dR}{R} + \lambda [L,M,t] dL + \mu [L,M,t] dM;$$

le \S 2 précisera les propriétés des fonctions λ et μ ainsi définies. Nous pouvons maintenant expliciter la restriction de (2.3) à W :

LEMME 2 . - 1°) La restriction à W de la forme de Pfaff

$$\omega = < p, dx >$$

est:

$$(2.11) \qquad \qquad \omega_{\overline{W}} = d \left(\Omega + L \Psi + M \Phi\right) - \left(\lambda + \Psi\right) dL - \left(\mu + \Phi\right) dM.$$

2°) Le système caractéristique de dw, est <u>le système d'Hamilton</u> :

- 197 -

(2.12)
$$\frac{dx}{H_{p}(x,p)} = -\frac{dp}{H_{x}(x,p)}, H(x,p) = 0.$$

Ses intégrales premières sont les fonctions composées des fonctions :

(2.13)
$$L, M, \lambda + \Psi, \mu + \Phi;$$

L et M sont en involution; $\lambda + \Psi$ et $\mu + \Phi$ aussi.

3°) Sur les courbes solution de ce système, c'est-à-dire sur les courbes caractéristiques de W, nous avons

$$(2.14) dt = \frac{dx}{H_p(x,p)} = -\frac{dp}{H_x(x,p)} = \frac{dR}{RH_Q[L,M,R,Q]} = \frac{d\Psi}{H_L[.]} = \frac{d\Psi}{H_M[.]} = -\frac{dQ}{RH_R[.]},$$

$$dL = dM = 0.$$

4°) Sur W:

(2.15)
$$\frac{d^3 \times \wedge d^3 p}{d H} \mid_{W} = d L \wedge d M \wedge d t d \Phi \wedge d \Psi.$$

<u>Preuve de</u> 1°). - L'expression (1.14) de <p, dx> dans Z et l'expression (2.10) de Q dR/R sur W .

Preuve de 2°). - Le lemme 3.2 (E. Cartan) du Chap. II, §3 prouve que d ω_W a pour système caractéristique (2.12) et est de rang 4 ; or, vu (2.11) :

$$d \omega_W = d L \wedge d (\lambda + \Psi) + d M \wedge d (\mu + \Phi)$$
;

donc (définition d'E. Cartan du sytème caractéristique, Chap. II, \S 3, n° 2), les 4 fonctions (2.13) sont intégrales premières de ce système; les couples L, M et λ + Ψ , μ + Φ sont en involution vu la Note 2.2 du Chap. II, \S 3.

<u>Preuve de 3°)</u>. - Ce même lemme (E. Cartan) et l'expression (1.14) de <p, dx>prouvent que d ω_M a pour système caractéristique :

$$\frac{dR}{RH_{Q}\left[\dot{L},M,Q,R\right]} = \frac{d\Psi}{H_{L}\left[\cdot\right]} = \frac{d\Psi}{H_{M}\left[\cdot\right]} = -\frac{dQ}{RH_{R}\left[\cdot\right]} = \frac{dL}{O} = \frac{dM}{O} , H = O .$$

Evidemmment:

$$\frac{dx}{H_{p}(x,p)} = \frac{\langle x, dx \rangle}{\langle x, H_{p}(x,p) \rangle} = \frac{RdR}{\langle x, L_{p} \rangle H_{L} + \langle x, M_{p} \rangle H_{M} + \langle x, Q_{p} \rangle H_{Q}};$$

or, puisque $x \land (p+sx)$ est indépendant de la variable réelle s,

$$< x , L_p > = < x , M_p > = 0 ;$$

d'autre part

$$< x$$
, $Q_p > = R^2$;

les quatre relations précédentes impliquent:

$$\frac{dx}{H_{p}(x,p)} = \frac{dR}{RH_{Q}[L,M,Q,R]} = \frac{d\Psi}{H_{L}} = \frac{d\Phi}{H_{M}} = -\frac{dQ}{RH_{R}},$$

donc (2.14), vu (2.6) et (2.12).

Preuve de 4°). - La formule (1.17) s'écrit:

$$d^3 \times \wedge d^3 p = dL \wedge dM \wedge dH \wedge \frac{dR}{RH_Q} \wedge d\Phi \wedge d\Psi$$

où, pour H = 0, vu (2.14):

$$\frac{dR}{RH_{Q}} = dt \mod. (dL, dM);$$

d'où (2.15), dont le sens est le suivant:

3. LES TORES QUANTIFIES T (ℓ , m, n) CARACTERISANT LES SOLUTIONS, DEFINIES mod. $1/\nu$ SUR DES VARIETES COMPACTES, DU SYSTEME LAGRANGIEN :

(3.1)
$$a U = (a_{T2} - L_0^2) U = (a_{M} - M_0) U = 0 \mod 1/v^2;$$

a, a $_{\rm L}^2$ et a désignent <u>les opérateurs lagrangiens associés</u> respectivement <u>aux</u> hamiltoniens en involution :

 ${\rm L_o}$ et ${\rm M_o}$ sont deux constantes réelles telles que : ${\rm |M_o|} < {\rm L_o}$.

D'après le théorème 7.1 du chap. II, § 3, les solutions de ce système sont <u>les fonctions lagrangiennes</u> U, <u>à amplitude lagrangienne constante</u>, <u>définies mod.</u> 1/v <u>sur celles des variétés</u> V [L_o, M_o], compactes ou non, définies par (2.4), <u>qui vérifient la condition quantique de Maslov</u> (chap. II, § 3, déf. 6.2); V [L_o, M_o] est choisi connexe; <u>la mesure</u> n_V <u>de</u> V, <u>invariante</u> par les vecteurs caractéristiques de H, $L^2-L_o^2$ et M-M_o, qui sert à définir l'amplitude lagrangienne, est

$$(3.2) \eta_{V} = dt \wedge d\Phi \wedge d\Psi,$$

vu (2.15) et la formule (7.4) du chap. II, § 3.

Rappelons l'énoncé de cette condition quantique de Maslov : la fonction

$$\frac{1}{2\pi \cancel{k}} \varphi_{R_0} - \frac{1}{4} m_{R_0} \qquad (où \cancel{k} = \frac{i}{v_0} \text{ est réel})$$

est uniforme sur V mod. 1

La phase $\phi_{R_o} \text{ de } V \text{ [} L_o \text{ , } M_o \text{] (définie chap. I , } 2 \text{ , } n^o \text{ 9 ; } \$ \text{ 3 , } n^o \text{ 1) , } vu}$ (2.11) où $L = L_o$, $M = M_o$, est :

$$\varphi_{R_{O}} = \Omega + L_{O} \Psi + M_{O} \Phi.$$

Calculons l'indice de Maslov de $V [L_0, M_0]$:

LEMME 3 . - 1°) Le contour apparent Σ_{R_0} de $V[L_0, M_0]$ est la réunion $\Sigma_{R_0} \cup \Sigma_{R_0}$ de deux surfaces de $V[L_0, M_0]$ d'équations

$$\sum_{1}$$
: Ψ = 0 mod. π ; \sum_{2} : H [L, M, Q, R] = 0.

2°) <u>L'indice de Maslov</u> m_{R_0} de V [L_0 , M_0] est, à l'addition près d'un entier constant:

(3.5)
$$m_{R_0} = \left[\frac{1}{\pi} \Psi \right] - \left[\frac{1}{\pi} \operatorname{arc} \operatorname{tg} \frac{H_Q}{H_R} \right] \operatorname{sur} \tilde{V} \left[L_0, M_0 \right];$$

[...] désigne la partie entière de

<u>Preuve</u>. - Appliquons le lemme 1. Sur $V [L_0, M_0]$, vu (1.11) et (1.13) :

 $w_1 = -\cos \Psi \sin \Theta d \Phi$, $w_2 = \sin \Psi \sin \Theta d \Phi$, $L_0 w_3 = L_0 d \Psi + M_0 d \Phi$;

donc, vu (2.6):

(3.6)
$$dR \wedge \omega_2 \wedge \omega_3 = -RH_0 \sin \Psi \sin \Theta dt \wedge d\Psi \wedge d\Phi,$$

$$(3.7) \qquad \text{dQ} \wedge \omega_2 \wedge \omega_3 = \text{RH}_{\text{R}} \sin \Psi \sin \Theta \text{ dt} \wedge \text{d} \Psi \wedge \text{d} \Phi ,$$

(3.8)
$$dR \wedge \omega_3 \wedge \omega_1 = -RH_Q \cos \Psi \sin \Theta dt \wedge d \Psi \wedge d \Phi,$$

où R sin $\Theta \neq 0$, vu $(2.2)_1$ et $(2.2)_2$.

Vu le lemme 1.1°), \sum_{R_o} a pour équation

$$H_Q$$
 sin $\Psi = 0$;

d'où le 1°) du lemme 3.

Au voisinage d'un point de $\sum_1 \setminus \sum_2 \cup \sum_3$, $H_Q \cos \Psi \neq 0$; nous pouvons donc dans le lemme 1.2°) choisir :

$$\overline{w} = dR \wedge \omega_3 \wedge \omega_1$$
; $dR \wedge \omega_2 \wedge \omega_3 / \overline{\omega} = tg \Psi$;

d'où, vu ce lemme :

$$m_{R_0} = \left[\frac{1}{\pi} \Psi \right] + \text{const.}$$

Au voisinage d'un point de \sum_{2} \ \sum_{1} \ \ \sum_{2} \ , \ H_{R} \ \sin \ \mathbf{Y} \neq 0 \ \text{vu (2.2)}_{3} ; nous pouvons donc dans le lemme 1.2°) choisir :

$$\overline{w} = dQ \wedge w_2 \wedge w_3 ; dR \wedge w_2 \wedge w_3 / \overline{w} = -H_Q / H_R ; d'où :$$

$$m_{R_O} = const. - \left[\frac{1}{\pi} arc tg \frac{H_Q}{H_R} \right].$$

L'expression globale de m_{R_0} résulte des deux expressions locales (3.9) et (3.10).

La condition quantique de Maslov (3.3) s'énonce, vu (3.4) et (3.5) : la fonction

$$\frac{1}{\cancel{\cancel{M}}} \quad \frac{\Omega}{2\pi} + \frac{1}{4\pi} \text{ arc } \quad \text{tg} \quad \frac{\overset{\text{H}}_{Q}}{\overset{\text{H}}{H}_{R}} + \left(\frac{\overset{\text{L}}{\circ}}{\cancel{\cancel{M}}} - \frac{1}{2}\right) \frac{\overset{\text{\Psi}}{\rightarrow}}{2\pi} + \frac{\overset{\text{M}}{\circ}}{\cancel{\cancel{M}}} \quad \frac{\overset{\text{\Phi}}{\rightarrow}}{2\pi}$$

est définie mod. 1 sur $V[L_0, M_0]$.

Si $V[L_o, M_o]$ est compacte, c'est-à-dire si la courbe $\Gamma[L_o, M_o]$ est fermée, cette condition est la suivante, vu (2.9):

$$\frac{1}{1}$$
 N $[L_{\circ}, M_{\circ}] + \frac{1}{2}, \frac{1}{1}$ $L_{\circ} - \frac{1}{2}, \frac{1}{1}$ M_{\circ}

sont 3 entiers; notons-les, pour retrouver les notations classiques en physique quantique:

$$n-\ell$$
 , ℓ , m ;

puisque $N \ge 0$ et $|M_{\Omega}| < L_{\Omega}$, nous avons

$$|\mathbf{m}| \leq \ell < \mathbf{n}$$
.

 $\underline{\text{Si}}$ V [L_o, M_o] <u>n'est pas compacte</u>, cette condition quantique de Maslov se réduit à la suivante :

$$\frac{1}{1} L_0 - \frac{1}{2} = L, \frac{1}{1} M_0 = m$$

sont deux entiers tels que $|\mathbf{m}| \leq l$.

La conclusion de ce n°3 est donc le

THEOREME 3 . - Les variétés connexes sur lesquelles sont définies les solutions du système lagrangien (3.1) sont :

1°) <u>les variétés</u> V [L, M, COMPACTES, <u>définies par</u> (2.4), <u>et telles qu'existent</u> 3 <u>entiers</u> :

vérifiant les conditions :

$$|\mathbf{m}| \leq \ell < \mathbf{n} ,$$

V [L, M] est alors un tore, qui sera noté T (l, m, n) : ses coordonnées sont

(3.13) t mod c [L_o, M_o], défini par (2.7);
$$\forall$$
 mod. 2 π ; Φ mod. 2 π .

2°) <u>les variétés</u> V [L_0 , M_0] NON-COMPACTES, <u>définies par</u> (2.4), <u>et telles qu'existent</u> 2 entiers

vérifiant les conditions :

$$|\mathbf{m}| \leq \mathbf{l};$$

(3.15)
$$L_{0} = \cancel{k} \left(\ell + \frac{1}{2} \right), M_{0} = \cancel{k} m;$$

 $V[L_0, M_0]$ est alors le produit

- d'un tore de dimension 2 , de coordonnées Ψ mod. 2π , Φ mod. 2π ;
- et d'une droite, demi-droite ou segment de coordonné t.

Munissons $V[L_0, M_0]$, compacte ou non, de la mesure invariante par les vecteurs caractéristiques de H, $L^2-L_0^2$, $M-M_0$:

(3.16)
$$\eta_{\nabla} = d t \wedge d \Phi \wedge d \Psi;$$

alors les solutions de (3.1) définies sur V sont les fonctions lagrangiennes à amplitude lagrangienne constante.

Note 3.1 . - Nous nous limiterons désormais à l'étude des variétés lagrangiennes compactes ; (par exemple : de l'électron appartenant à un atome) .

Note 3.2. - Les vecteurs caractéristiques de $L^2 - L_0^2$ et $M - M_0$ sont respectivement :

(3.17)
$${}^{1}L^{2} - L^{2}_{0} : dL = dM = dt = 0, d\Psi = 2L_{0}, d\Phi = 0;$$

(3.18)
$$m_{M-M_0}$$
 : $dL = dM = dt = dY = 0$, $d\Phi = 1$.

Preuve de (3.17) . - $\mu_{L^2-L_0^2}$ est le vecteur tangent à $V[L_0, M_0]$ tel que ,

vu (1.2), puis (1.5)₁ et (1.6), puis (1.5)₁ et (1.12):

$$dx = 2 L L_p = 2 (R^2 p - Qx) = 2 L R J_2 = 2 L \frac{\partial x (L, M, t, \Psi, \Phi)}{\partial \Psi}$$

ce qui prouve (3.17).

Preuve de (3.18) . - μ_{M-M_o} est le vecteur tangent à V [L_o, M_o] tel que, vu (1.1), puis (1.5)₁ et (1.12) :

$$dx = (-x_2, x_1, o) = \frac{\partial x(L, M, t, \Psi, \Phi)}{\partial \Phi}$$
.

Note 3.3. - Le vecteur caractéristiques de H [cf. (2.14)]:

(3.19)
$$n : dL = dM = 0, dt = 1, d\Psi = H_L, d\Phi = H_M$$

et ceux de $L^2 - L_0^2$ et $M - M_0$ engendrent, conformément au théorème 7.1. 2°) du Chap. II, §3, <u>un groupe de translations de la variété</u> $V[L_0, M_0]$, quand elle est <u>compacte</u>, donc <u>un tore</u> : les translations, en coordonnées [cf. (2.7) et {2, (1.5)}]:

t
$$mod.c[L_o,M_o]$$
, $\Psi + \lambda[t,L_o,M_o] - \frac{N_L[L_o,M_o]}{c[L_o,M_o]}$ t $mod.2\pi$, $\Phi + \pi - \frac{N_M}{c}$ t $mod.2\pi$

4. EXEMPLES : LES OPERATEURS DE SCHRODINGER ET KLEIN - GORDON. -

Choisissons:

(4.1)
$$H(x, p) = \frac{1}{2} [P^2 - \frac{K[R, M]}{R^2}],$$

 ${\tt K}: {\tt R}_+ \oplus {\tt R} \to {\tt R}$ étant une fonction donnée. Autrement dit :

(4.2)
$$H[L, M, Q, R] = \frac{1}{2R} [L^2 + Q^2 - K[R, M]].$$

L'application du théorème 3 est immédiate.

La condition que (2:4) définisse au moins une hypersurface compacte V [L_0 , M_0], qui est un tore, est la suivante : la fonction

$$R_{+} \ni R \mapsto K [R, M_{o}] - L_{o}^{2} \in R$$

est positive entre deux zéros consécutifs, R_1 et R_2 (0 < R_1 < R_2); alors (2.9) définit :

(4.3)
$$N \left[L_{o}, M_{o} \right] = \frac{1}{\pi} \int_{R_{1}}^{R_{2}} \sqrt{K[R, M_{o}] - L_{o}^{2}} \frac{dR}{R} > 0 .$$

Note 4.1. - Si K est fonction affine de M, alors, vu (4.1):

et par suite [Chap. II, \S 1, Déf. 6.2 et (6.3)], <u>l'opérateur associé à</u> H a pour expression dans R_{\circ} :

Ch. III, § 1

(4.5)
$$a = \frac{1}{2 v^2} \Delta - \frac{1}{2 R^2} K \left[R, \frac{1}{v} \left(x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1} \right) \right]$$

où :
$$\Delta = \sum_{j=1}^{3} \frac{\partial^{2}}{\partial x_{j}^{2}}$$
; l'opérateur $\frac{1}{\nu} \left(x_{1} \frac{\partial}{\partial x_{2}} - x_{2} \frac{\partial}{\partial x_{1}} \right)$ et le produit par toute

fonction de R commutent.

<u>Exemple 4.1 . - Nommons opérateur de Schrödinger - Klein - Gordon l'opérateur associé à l'hamiltonien :</u>

(4.6)
$$H(x,p) = \frac{1}{2} [P^2 + A(M) - \frac{2B(M)}{R} + \frac{C(M)}{R^2}],$$

où A, B, C: R → R sont des fonctions données. Notons :

$$A_{\circ} = A (M_{\circ}), B_{\circ} = B (M_{\circ}), C_{\circ} = C(M_{\circ}).$$

La condition qu'existe au moins une variété compacte $V \left[L_0, M_0 \right]$ définie par (2.4) s'explicite comme suit :

(4.7)
$$A_0 > 0, L_0^2 + C_0 > 0, B_0 > \sqrt{A_0} \sqrt{L_0^2 + C_0};$$

quand elle est satisfaite, $V \left[L_{o}, M_{o} \right]$ est unique et, vu (4.3) :

$$N [L_0, M_0] = \frac{1}{2\pi} \oint \sqrt{-A_0 R^2 + 2B_0 R - L_0^2 - C_0} \frac{dR}{R},$$

l'intégrale étant calculée le long d'un lacet de C entourant la coupure $\left[R_1 \ , \ R_2 \ \right] ; \ le \ calcul \ de \ deux \ résidus, \ en \qquad R = \infty \quad et \quad R = 0 \ , \quad donne :$

(4.8)
$$N \left[L_{o}, M_{o} \right] = \frac{B_{o}}{\sqrt{A_{o}}} - \sqrt{L_{o}^{2} + C_{o}} > o.$$

L'énoncé du théorème 3 devient donc le suivant :

Ch. III, § 1

THEOREME 4.1. - Soit a l'opérateur de Schrödinger - Klein - Gordon, c'est-àdire l'opérateur associé à l'hamiltonien (4.6); soient a teles de l'opérateur de Schrödinger - Klein - Gordon, c'est-àdire l'opérateur associé à l'hamiltonien (4.6); soient a teles de l'opérateur de Schrödinger - Klein - Gordon, c'est-à-

<u>les opérateurs associés aux hamiltoniens</u> L² <u>et M. Alors le système</u> lagrangien

(4.9) a
$$U = (a_{M} - L_{O}^{2})$$
 $U = (a_{M} - M_{O})$ $U = 0$ mod. $1/v^{2}$

possède des solutions définies sur une variété COMPACTE si et seulement s'il existe un triplet d'entier (l, m, n) tel que :

(4.10)
$$L_{o} = 1/2 (l+1/2) , M_{o} = 1/2 m ,$$

Si cette condition est réalisée, cette variété compacte est unique : c'est le tore T (1, m, n) d'équations

(4.12)
$$T(\ell, m, n) : H(x, p) = L(x, p) - L_0 = M(x, p) - M_0 = 0.$$

Munissons ce tore de la mesure invariante (3.16); alors les solutions de (4.9)

définies mod. 1/v sur T (1, m, n) sont les fonctions lagrangiennes à

amplitude lagrangienne constante.

Notations, concernant la physique et employées seulement par la fin de ce n° 4. - Donnons-nous, dans E^3 , un potentiel électrique $\mathcal{A}_0: X \to R$ et un potentiel-vecteur magnétique $(\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3): X \to R^3$, indépendants du temps et vérifiant la loi physique :

$$(4.13) \qquad \qquad \sum_{j=1}^{3} \frac{\partial \mathcal{X}_{j}}{\partial \mathbf{x}_{j}} = 0 \quad ;$$

on sait que les trajectoires dans E^{5} de l'électron, non-relativiste ou relativiste, de masse μ , de charge électrique - $\varepsilon < 0$, sont les solutions du système d'Hamilton défini par l'hamiltonien valant dans le cas non-relativiste :

(4.14)
$$\mathbb{H}(\mathbf{x},\mathbf{p}) = \frac{1}{2\mu} \sum_{j=1}^{3} \left[\mathbf{p}_{j} + \frac{\epsilon}{c} \mathcal{A}_{j}(\mathbf{x}) \right]^{2} - \mathbb{E} - \epsilon \mathcal{A}_{0}(\mathbf{x}) ,$$

dans le cas relativiste :

(4.15)
$$H(x,p) = \frac{1}{2\mu} \sum_{j=1}^{3} \left[p_j + \frac{\epsilon}{c} \mathcal{A}_j(x) \right]^2 - \frac{1}{2\mu c^2} \left[E + \epsilon \mathcal{A}_o(x) \right]^2 + \frac{1}{2} \mu c^2$$
;

c est la vitesse de la lumière ;

E est une constante, qui est l'énergie des électrons dont la position x et la quantité de mouvement p vérifient H(x,p)=0; (énergie incluant la masse au repos μ c² dans le cas relativiste).

Vu (4.13)

$$<\frac{\partial}{\partial x}$$
, $\frac{\partial}{\partial p}>$ $H(x,p)=0$;

vu le chap. II, § 1, (6.3) et déf. 6.2, l'opérateur associé à H est donc, dans le cas non-relativiste l'opérateur de <u>Schrödinger</u>:

(4.16)
$$\mathbf{a} = \frac{1}{2\mu} \left[\frac{1}{v^2} \Delta + \frac{2\varepsilon}{c} \sum_{\mathbf{j}} \mathcal{A}_{\mathbf{j}}(\mathbf{x}) \frac{1}{v} \frac{\partial}{\partial \mathbf{x}_{\mathbf{j}}} + \frac{\varepsilon^2}{c^2} \sum_{\mathbf{j}} \mathcal{A}_{\mathbf{j}}^2(\mathbf{x}) \right] - \mathbf{E} - \varepsilon \mathcal{A}_{\mathbf{0}}(\mathbf{x}) ,$$

dans le cas relativiste l'opérateur de Klein-Gordon :

$$(4.17) \quad \mathbf{a} = \frac{1}{2\mu} \left[\frac{1}{v^2} \Delta + \frac{2\epsilon}{c} \sum_{\mathbf{j}} \mathcal{A}_{\mathbf{j}} \frac{1}{v} \frac{\partial}{\partial \mathbf{x_j}} + \frac{\epsilon^2}{c^2} \sum_{\mathbf{j}} \mathcal{A}_{\mathbf{j}}^2 \right] - \frac{1}{2\mu c^2} \left[\mathbf{E} + \epsilon \mathcal{A}_{\mathbf{0}} \right]^2 + \frac{\mu c^2}{2} .$$

Particularisons comme suit ces hamiltoniens et ces opérateurs : \mathcal{A}_{o} est le potentiel électrique du noyau de nombre atomique Z , placé à l'origine ; le

champ magnétique est constant, parallèle au troisième axe de coordonnées et d'intensité \mathcal{H} .

Autrement dit :

(4.18)
$$\mathcal{A}_{0}(x) = \frac{\varepsilon Z}{R}$$
, $\mathcal{A}_{1}(x) = -\frac{1}{2}\mathcal{H}_{x_{2}}$, $\mathcal{A}_{2}(x) = \frac{1}{2}\mathcal{H}_{x_{1}}$, $\mathcal{A}_{3} = 0$.

Négligeons, comme en physique, les termes en \mathcal{Z}^2 ; les hamiltoniens (4.14) et (4.15) de l'électron deviennent des hamiltoniens du type (4.6) : dans le cas non-relativiste

(4.19)
$$H(\mathbf{x},\mathbf{p}) = \frac{1}{2\mu} \left[\mathbf{P}^2 + \frac{\epsilon}{\mathbf{c}} \mathcal{K} \mathbf{M} - 2\mu \mathbf{E} - \frac{2\mu \epsilon^2 \mathbf{Z}}{\mathbf{R}} \right] ;$$

dans le cas relativiste

(4.20)
$$H(x,p) = \frac{1}{2\mu} \left[P^2 + \frac{\varepsilon}{c} \mathcal{R}M + \mu^2 c^2 - \frac{E^2}{c^2} - \frac{2\varepsilon^2 ZE}{c^2 R} - \frac{\varepsilon^4 Z^2}{c^2 R^2} \right] .$$

L'opérateur de Schrödinger devient :

(4.21)
$$a = \frac{1}{2\mu} \left[\frac{1}{2} \Delta + \frac{\epsilon \mathcal{L}}{cv} \left(\mathbf{x}_1 \frac{\partial}{\partial \mathbf{x}_2} - \mathbf{x}_2 \frac{\partial}{\partial \mathbf{x}_1} \right) - 2\mu \mathbf{E} - \frac{2\mu \epsilon^2 \mathbf{Z}}{\mathbf{R}} \right] ;$$

l'opérateur de Klein-Gordon devient :

$$(4.22) a = \frac{1}{2\mu} \left[\frac{1}{\sqrt{2}} \Delta + \frac{\varepsilon \mathcal{H}}{cv} \left(x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1} \right) - \frac{E^2}{c^2} - \frac{2\varepsilon^2 ZE}{c^2 R} - \frac{\varepsilon^4 Z^2}{c^2 R^2} \right] .$$

La relation $(4.11)_{3}$ définit E en fonction de (l, m, n); ce calcul fait apparaître les constantes classiques :

$$\alpha = \frac{\varepsilon^2}{2\pi} = \frac{1}{137}$$
, "constante de structure fine", sans dimension,

$$\beta = \frac{\varepsilon \cancel{h}}{2uc}$$
, "magnéton de Bohr", ($\beta \mathcal{H}$ a la dimension de l'énergie),

et la fonction valant :

$$(4.23) F(n,k) = \frac{1}{\sqrt{1 + \left(\frac{\alpha Z}{n - k + \sqrt{k^2 - \alpha^2 Z^2}}\right)^2}}$$

L'énoncé du theorème 4.1 devient le suivant :

THEOREME 4.2 . - Soit a l'opérateur de Schrödinger (4.21) ou l'opérateur de Klein-Gordon (4.22), H étant (4.19) ou (4.20); soient a et

 a_{M} <u>les opérateurs associés à L² et M</u> . <u>Pour certaines valeurs des constantes</u> E, L_o, M_o <u>le système lagrangien</u>:

(4.9) a
$$U = (a_{L^2} - L_c^2) U = (a_{M} - M_o) U = 0$$
 mod. $1/v^2$

possède des solutions définies mod. $1/\nu$ sur des variétés COMPACTES; ces valeurs de E, L, M, M, en fonction des triplets d'entiers (ℓ, m, n) , tels que:

 $|m| \le \ell < n$ et, dans le cas Klein-Gordon, $\ell + 1/2 \ge \alpha Z$;

ces expressions de E , L , sont les suivantes :

(4.24)
$$E = -\mu c^2 \frac{\alpha^2 Z^2}{2n^2} + \beta \mathcal{H}_m \quad \underline{\text{dans le cas Schrödinger}},$$

(4.25)
$$E^2 = \mu c^2 \left(\mu c^2 + 2\beta \mathcal{X}_m\right) F^2(n, \ell+1/2) \quad \underline{\text{dans le cas Klein-Gordon}},$$

(4.26)
$$L_0 = 1/(l+1/2)$$
 , $M_0 = 1/m$.

Ces solutions de (4.9) sont définies sur les tores (4.12). Munissons ces tores de la mesure invariante (3.16); alors ces solutions sont les fonctions lagrangiennes, définies sur ces tores, d'amplitude lagrangienne constante.

Note 4.2. - Les physiciens, négligeant β^2 et β_{α}^2 , simplifient (4.25) comme suit :

$$\pm E \simeq \mu c^2 F(n, l + 1/2) + \beta \% m$$
;

le signe - concerne l'anti-matière $(\mu < 0)$.

Note 4.3. - Les niveaux d'énergie (4.24) et (4.25) sont ceux que donne l'étude de l'équation aux dérivées partielles

$$au = 0$$
,

la fonction $u : E^{\frac{3}{2}} \setminus \{0\} \to 0$ et son gradient étant de carrés sommables (Chap. III, § 4).

§ 2. L'équation lagrangienne a U = 0 mod. $1/v^2$; (a associé à H; U à amplitude lagrangienne \geq 0, définie sur V compacte).

0. INTRODUCTION . - <u>Sommaire</u> . - Le § 1 a étudié le problème (1) (Introduction du chap. III) , c'est-à-dire un <u>système de trois équations</u> lagrangiennes. Ce § 2 étudie la première de ces trois équations et, plus précisément, le problème (2) (Ibid.).

Toute solution du problème (1) est solution du problème (2), vu le théorème 3 du § 1. Dans le cas exceptionnel où l'hamiltonien H est indépendant de M (par exemple : Schrödinger et Klein-Gordon sans champ magnétique), une même rotation de E³ opérant sur x et p transforme évidemment les solutions du problème (1) en solutions du problème (2) qui ne sont plus solutions du problème (1). Sans se placer dans ce cas exceptionnel, le théorème 1 de ce § 2 construit des solutions du problème (2) qui ne sont pas solutions du problème (1): une solution du problème (2) définie sur un tore T (1, m, n) (§ 1, théor. 3) n'est pas, en général, unique à un facteur multiplicatif constant près.

Par contre, le théorème 2 montre que, même si H dépend de paramètres, <u>ces</u> tores T (£, m, n) <u>sont en général les seules variétés lagrangiennes compactes</u> V <u>sur lesquelles sont définies des solutions du problème</u> (2). Le théorème 3.1. précise même que, dans le cas Schrödinger et Klein-Gordon, les problèmes (1) et (2) définissent les mêmes niveaux d'énergie : les niveaux classiques.

Note. - Le théorème 1 de ce § 2 n'a pas de signification physique : son critère est le caractère rationnel ou non de nombres qui, dans le cas de Schrödinger et Klein - Gordon, dépendent de grandeurs physiques.

CONCLUSIONS . - Appelons "problème bien posé" un problème qui, posé pour l'équation de Schrödinger - Klein - Gordon, a les caractères essentiels du problème classique (4)

(Introduction au Chap. III) : <u>le problème</u> (1) (Ibid.) <u>est bien posé</u>, vu le § 1 , théorème 4.2 ; vu la note qui précède, ce § 2 montre que le <u>problème</u> (2) (Ibid) n'est pas bien posé.

1. LES SOLUTIONS DE L'EQUATION a U = 0 mod. $1/\nu^2$, à AMPLITUDE LAGRANGIENNE ≥ 0 , DEFINIES SUR LES TORES V [Lo, Mo]. - Le § 1, n° 2 a choisi H et défini les variétés :

$$W: H = O$$
; $V[L_O, M_O]: H = L - L_O = M - M_O = O$.

Toute variété lagrangienne compacte V de W est réunion de caractéristiques K de W (dont le paramètre W varie de W est donc réunion d'adhérences compactes W de telles caractéristiques.

Propriétés d'une caractéristique K <u>de</u> H <u>à adhérence compacte</u> \overline{K} . - Une telle caractéristique K , vu § 1 (2.13) , appartient à un tore $V[L_O, M_O]$ et a pour équations dans ce tore :

(1.1)
$$K: \Psi - \Psi_0 + \lambda \left[L_0, M_0, t \right] = \Phi - \Phi_0 + \mu \left[L_0, M_0, t \right] = 0$$
 ($\Phi_0, \Psi_0: const$)

Rappelons que les coordonnées de $V[L_0, M_0]:$

sont définies

(mod. 2
$$\pi$$
 , mod. 2 π , mod c_0), où $c_0 = c [L_0, M_0]$.

Plus explicitement : soit \mathbb{R}^3 de coordonnées (Ψ , Φ , t) ; soit $\mathbf{2}^3$ le groupe additif des triplets d'entiers (ξ , η , ζ) opérant comme suit sur \mathbb{R}^3 :

$$\mathbf{Z}^{\mathfrak{Z}}$$
 \ni (ξ , η , ζ) : (Ψ , Φ , t) \longleftrightarrow (Ψ + 2π ξ , Φ + 2π η , t + c_{0} ζ) :

<u>le quotient de</u> R^3 <u>par ce groupe</u> \mathbf{z}^3 est $V[L_o, M_o]$; il existe une application naturelle :

(1.2)
$$\mathbb{R}^3 \to \mathbb{R}^3 / \mathbb{Z}^3 = \mathbb{V} \left[\mathbb{L}_0 \mathbb{M}_0 \right].$$

Etant donnée une fonction

$$F: (L, M, t) \rightarrow F[L, M, t] \in \mathbb{R}$$

notons:

$$\Delta_{t}F[L,M,t] = F[L,M,t+c[L,M]] - F[L,M,t];$$

évidemment:

$$\Delta_{t} R = \Delta_{t} Q = 0 ;$$

vu, au \S 1, les définitions (2.8) de Ω et (2.9) de $\mathbb N$:

(1.4)
$$\Delta_{t} \Omega [L, M, t] = 2 \pi N [L, M];$$

vu (1.3) et au \S 1 la définition (2.10) de λ et μ :

2
$$\pi$$
 d N [L, M] = Δ_t λ [L, M, t] dL + Δ_t μ [L, M, t] dM,

c'est-à-dire :

(1.5)
$$\Delta_{t} \lambda = 2 \pi N_{L}, \Delta_{t} \mu = 2 \pi N_{M}$$
.

Notons:

$$N_{L_o} = N_L [L_o, M_o], N_{M_o} = N_M [L_o, M_o].$$

Nous pouvons maintenant expliciter \bar{K} :

LEMME 1.1. . - 1) Supposons N_{L_0} et N_{M_0} rationnels:

(1.6)
$$N_{L_0} = -\frac{L_1}{N_1}$$
, $N_{M_0} = -\frac{M_1}{N_1}$, où $(L_1, M_1, N_1) \in \mathbb{Z}^3$, P.G.C.D. $(L_1, M_1, N_1) = 1$;

(c'est-à-dire : L_1 , M_1 , N_1 sont des entiers, de plus grand commun diviseur 1). Alors $K = \overline{K}$ est une courbe fermée, d'équations (1.1).

Plus précisément les équations (1.1) définissent une courbe ouverte \tilde{R}^1 (c'està-dire homéomorphe à R^1) de R^3 ; vu (1.5) et (1.6), le sous-groupe \tilde{Z}^1 de engendré par (L_1 , M_1 , N_1) laisse \tilde{R}^1 invariant; on a :

(1.7)
$$K = \overline{K} = \widetilde{R}^{1} / \widetilde{Z}_{1}.$$

2°) Supposons N_{L_0} et N_{M_0} liés par une unique relation affine

$$\text{(1.8)} \quad \text{L}_{1} \; \text{N}_{\text{L}_{0}} \; + \; \text{M}_{1} \; \text{N}_{\text{M}_{0}} \; = \; \text{N}_{1} \; , \quad \text{où} \quad \left(\text{L}_{1}, \, \text{M}_{1}, \, \text{N}_{1} \; \right) \; \in \; \textbf{Z}^{3}, \; \text{P.G.C.D.} \; \left(\; \text{L}_{1}, \, \text{M}_{1}, \, \text{N}_{1} \; \right) \; = \; 1 \; .$$

Alors K est le tore T^2 , de dimension 2, défini dans $V[L_o, M_o]$ par l'équation:

Plus précisément, l'équation (1.9) définit une surface \mathbb{R}^2 de \mathbb{R}^3 homéomorphe à \mathbb{R}^2 ; vu (1.5) et (1.8), le sous-groupe \mathbb{Z}^2 de \mathbb{Z}^3 d'équation :

(1.10)
$$\tilde{\mathbf{z}}^2$$
: $L_1 \xi + M_1 \eta + N_1 \zeta = 0$

opère sur \tilde{R}^2 ; on a:

$$\mathbf{T}^2 = \mathbf{\tilde{R}}^2 / \mathbf{\tilde{z}}^2.$$

Pour expliciter des générateurs de \tilde{z}^2 , notons :

 $^{M}_{2}$ et $^{N}_{2}$ divisent $^{L}_{1}$; P.G.C.D $(^{M}_{2}$, $^{N}_{2}$) = 1 vu $(1.8)_{3}$; il existe donc $^{L}_{3}$ et de même $^{M}_{3}$, $^{N}_{3}$, entiers tels que :

$$(1.13)$$
 $L_1 = L_3 M_2 N_2 , M_1 = L_2 M_3 N_2 , N_1 = L_2 M_2 N_3 .$

~2 est engendré par ses trois éléments :

$$(1.14) \quad (0, M_2, N_3, -M_3, N_2), (-L_2, N_3, 0, L_3, N_2), (L_2, M_3, -L_3, M_2, 0),$$

que lie évidemment la relation

$$(1.15) \quad L_{3} (0, M_{2} N_{3}, -M_{3} N_{2}) + M_{3} (-L_{2} N_{3}, 0, L_{3} N_{2}) + N_{3} (L_{2} M_{3}, -L_{3} M_{2}, 0) = 0.$$

Supposons qu'aucune relation affine à coefficients entiers ne lie $^{N}L_{o}$ et $^{N}M_{o}$.

Alors \overline{K} est le tore $V[L_{o}, M_{o}]$.

<u>Preuve</u>. - La partie de \mathbb{R}^3 dont K est l'image naturelle dans $\mathbb{V}\left[L_0, M_0\right]$ est définie par la condition :

$$(\frac{\Psi - \Psi_{o} + \lambda \left[L_{o}, M_{o}, t\right]}{2\pi}, \frac{\Phi - \Phi_{o} + \mu \left[L_{o}, M_{o}, t\right]}{2\pi}) \in G$$

où G est l'image de \mathbf{z}^3 dans le groupe additif \mathbb{R}^2 par le morphisme :

$$\mathbf{z}^{3}$$
 \ni $(\xi, \eta, \zeta) \mapsto (\xi + N_{L_{o}} \zeta, \eta + N_{M_{o}} \zeta) \in \mathbb{R}^{2}$.

Donc \overline{K} est l'image naturelle dans $V\left[L_{o},M_{o}\right]$ de la partie fermée de R^{3} définie par la condition

$$(1.16) \quad \left(\frac{\Psi-\Psi_{o}+\lambda \left[L_{o},M_{o},t\right]}{2\pi}\right), \quad \frac{\Phi-\Phi_{o}+\mu \left[L_{o},M_{o},t\right]}{2\pi}\right) \in \overline{G}$$

où G est l'adhérence de G; G un sous-groupe fermé de R².

Trois cas se présentent :

- 1) G est discret; 2) dim $\bar{G} = 1$; 3) $\bar{G} = \mathbb{R}^2$.
- 1) G est discret, c'est-à-dire : $\overline{G} = G$. La condition qu'il en soit ainsi s'énonce : N_{L_0} et N_{M_0} sont rationnels

(Cf. rapidité de convergence vers un nombre irrationnel des réduites de son développement en fraction continue). Sous l'hypothèse (1.6), qui exprime cette condition, $\bar{K} = K$ et le sous-groupe \tilde{Z}^1 de Z^3 qui laisse invariant la courbe $\tilde{R}^1 \subset R^3$ d'équations (1.1) a pour éléments les $(\xi, \eta, \zeta) \in Z^3$ tels que :

$$N_1 \xi = L_1 \zeta$$
, $N_1 \eta = M_1 \zeta$;

vu $(1.6)_3$, N_1 divise ζ ; \tilde{Z}^1 est donc engendré par $(L_1, M_1, N_1) \in \mathbf{z}^3$.

2) dim $\overline{G}=1$. $-\overline{G}$ est alors l'ensemble des $(\theta,\tau)\in R^2$ vérifiant une condition:

(1.17)
$$L_1 \theta + M_1 \tau \in \mathbb{Z}, (L_1, M_1 \in \mathbb{R});$$

vu la définition de G, la condition que \overline{G} est le sous-groupe (1.17) de R^2 s'énonce :

(1.8) est vérifié ; G n'est pas discret ;

vu 1°), elle s'énonce donc :

 N_{L_0} et N_{M_0} sont liés par une unique relation affine à coefficients entiers, qui est (1.8).

Sous cette hypothèse, vu la définition (1.16) de \bar{K} et la définition (1.17) de \bar{G} , \bar{K} est l'image par (1.2) de la variété \tilde{R}^2 de R^3 d'équation (1.9). Le sous-groupe \tilde{Z}^2 de Z^3 qui laisse invariant \tilde{R}^2 est évidemment défini par (1.10), qui implique, vu (1.8), et (1.12):

(1.18) L_2, M_2, N_2 divisent respectivement ξ, η, ζ .

Vu (1.13), $\tilde{\mathbf{Z}}_2$ contient les trois éléments (1.14). D'une part (1.14) engendre le sous-groupe de $\tilde{\mathbf{Z}}_2$ d'équation :

 $\xi = 0$,

car P.G.C.D. $(M_2 N_3, M_3 N_2) = 1$, vu $(1.12)_1$, $(1.13)_2$ et $(1.13)_3$. Donc P.G.C.D. $(N_3, M_3) = 1$, ce qui implique que, sur le sous-groupe de $\mathbf{\tilde{Z}}_2$ engendré par ses éléments $(1.14)_2$ et $(1.14)_3$, § prend toutes valeurs multiples de \mathbf{L}_2 . Les trois éléments (1.14) de $\mathbf{\tilde{Z}}_2$ engendrent donc $\mathbf{\tilde{Z}}_2$, vu (1.18). 3°) $\mathbf{\bar{G}} = \mathbf{R}^2$. Vu 1°) et 2°), la condition que $\mathbf{\bar{G}} = \mathbf{R}^2$ s'énonce : $\mathbf{N_{L_0}}$ et $\mathbf{N_{M_0}}$ ne sont liés par aucune relation affine à coefficients entiers. Si $\mathbf{\bar{G}} = \mathbf{R}^2$, alors $\mathbf{\bar{K}}$ est l'image de \mathbf{R}^3 par (1.2); donc $\mathbf{\bar{K}} = \mathbf{V}[\mathbf{L_0}, \mathbf{M_0}]$. Mesures de $\mathbf{V}[\mathbf{L_0}, \mathbf{M_0}]$ invariantes. Rappelons que $\mathbf{V}[\mathbf{L_0}, \mathbf{M_0}]$ possède une mesure $\mathbf{V}[\mathbf{L_0}, \mathbf{M_0}]$ possède une mesure $\mathbf{V}[\mathbf{L_0}, \mathbf{M_0}]$ invariante par le vecteur caractéristique \mathbf{v} de $\mathbf{H}(\S 1, (3.2))$:

$$\eta = dt \wedge d\Phi \wedge d\Psi$$
.

Toute mesure de $V \begin{bmatrix} L_0, M_0 \end{bmatrix}$ invariante par κ est le produit de η_V par une fonction $V \begin{bmatrix} L_0, M_0 \end{bmatrix} \to R$ invariante par κ , c'est-à-dire constante sur les

Ch.III, § 2 - 215 -

adhérences \overline{K} des caractéristiques K de H appartenant à $V \left[L_{o} , M_{o} \right]$.

Le lemme suivant est donc une conséquence évidente du lemme 1.1 :

LEMME 1.2. - 1°) Supposons que N_{L_0} et N_{M_0} sont les nombres rationnels (1.6).

Alors les caractéristiques de H appartenant à $V[L_o, M_o]$ sont les courbes fermées d'équations :

$$\texttt{K} \; \left(\texttt{c}_{1}, \texttt{c}_{2} \right) \; : \quad \texttt{Y} \; + \; \lambda \; \left[\texttt{L}_{0} \; , \; \texttt{M}_{0} \; , \; \texttt{t} \; \right] \; = \; \texttt{c}_{1} \qquad \Phi \; + \; \mu \; \left[\texttt{L}_{0} \; , \; \texttt{M}_{0} \; , \; \texttt{t} \; \right] = \; \texttt{c}_{2} \; \; ,$$

où c_1 et c_2 sont des constantes définies respectivement

mod.
$$2\pi \frac{M_2}{N_1} = \frac{2\pi}{L_2 N_3}$$
, mod. $2\pi \frac{L_2}{N_1} = \frac{2\pi}{M_2 N_3}$;

$$L_2 = P.G.C.D. (M_1, N_1), M_2 = P.G.C.D. (L_1, N_1).$$

Les <u>mesures de</u> $V [L_0, M_0]$ <u>invariantes</u> par le vecteur caractéristique n de H valent :

(1.19)
$$F(\Psi + \lambda [L_0, M_0, t], \Phi + \mu [L_0, M_0, t]) \eta_V,$$

F(.,.) étant une fonction arbitraire de périodes respectives $2\pi \frac{M_2}{N_1}$ et $2\pi \frac{L_2}{N_1}$ en ses deux arguments.

Supposons N_{L_o} et N_{M_o} liés par l'unique relation affine (1.8). Alors les adhérences \bar{K} des caractéristiques K de H appartenant à $V[L_o,M_o]$ sont les tores d'équations :

(1.20)
$$T^{2}(c_{0}): L_{1} \{ \Psi + \lambda [L_{0}, M_{0}, t] \} + M_{1} \{ \Phi + \mu [L_{0}, M_{0}, t] \} = c_{0},$$

c étant une constante définie mod. 2 π . Les mesures de $V[L_o, M_o]$ invariantes par le vecteur caractéristique \varkappa de H valent :

(1.21)
$$F\left[L_{1}\left(\Psi+\lambda\right)+M_{1}\left(\Phi+\lambda\right)\right] \eta_{V},$$

F[.] étant une fonction arbitraire de période 2π .

3°) Supposons qu'aucune relation affine à coefficients entiers ne lie N_{L_0} et N_{M_0}

alors toute caractéristique K de H appartenant à V $[L_0, M_0]$ a pour adhérence $\overline{K} = V [L_0, M_0]$. Toute mesure de $V [L_0, M_0]$ invariante par le verteur caractéristique κ de H vaut :

(1.22) const.
$$\eta_{V}$$
.

Il est aisé de conclure :

THEOREME 1 . - 1°) Les tores $V[L_0, M_0]$ sur lesquels peut être définie mod. $1/\nu$ une solution lagrangienne U, à amplitude lagrangienne ≥ 0 , de l'équation

a $U = 0 \text{ mod. } 1/v^2$ (a : opérateur associé à H)

sont définis par la condition (3.11), (3.12) du § 1 : il existe trois entiers :

tels que :

$$|\mathbf{m}| \leq \ell < n$$
,

$$L_{o} = 1/2$$
 ($\ell + 1/2$), $M_{o} = 1/2$ m, $L_{o} + N$ [L_{o} , M_{o}] = $1/2$ n.

2°) <u>Pour que la solution</u> U, <u>définie sur un tel tore</u>, <u>soient unique</u>, <u>à un facteur</u> <u>constant près</u>, il faut et suffit que les dérivées de N:

$$N_{L}[L_{o}, M_{o}], N_{M}[L_{o}, M_{o}]$$

ne soient liées par aucune relation affine à coefficients entiers.

<u>Preuve.</u> - Vu le théorème 6 du chap. II , § 3 : la condition d'existence d'une telle solution sur V [L_o , M_o] est la condition quantique de Maslov ; la condition de son unicité est celle de l'unicité de la mesure invariante η de V [L_o , M_o] (à un facteur constant près) . Le § 1 , n° 3 a donné à la condition quantique de Maslov l'énoncé (3.11) - (3.12). Le lemme 1.2 donne la condition d'unicité de la mesure invariante.

2. VARIETES LAGRANGIENNES COMPACTES V , AUTRES QUE LES TORES V $[L_0, M_0]$, SUR LESQUELLES EXISTENT DES SOLUTIONS DE L'EQUATION : a U=0 mod. $1/v^2$, A AMPLITUDE LAGRANGIENNE ≥ 0 . — Montrons que de telles variétés V n'existent qu'exceptionnellement.

Le calcul de leur indice de Maslov (lemme 2.3 et 2.4) emploiera les propriétés suivantes :

Autres propriétés des caractéristiques K de H à adhérence compacte . - La différentiation de la définition (2.10) (Chap. III, $\S 1$) de λ et μ donne :

$$\frac{1}{R}$$
 d Q \wedge d R + d λ \wedge d L + d μ \wedge d M = 0 ,

où L, M, Q, R sont des fonctions de (L, M, t) vérifiant H [L, M, Q, R] = 0; donc :

$$H_{L}$$
 d L + H_{M} d M + H_{Q} d Q + H_{R} d R = 0;

d'où, par élimination de dQ:

il existe donc trois fonctions numériques réelles ρ , σ , τ de (L,M,t), définies pour $H_Q \neq 0$, telles que :

$$d \lambda = -\frac{H_L}{RH_Q} dR + \rho dL + \sigma dM,$$

(2.1)

$$d \mu = -\frac{H_{M}}{RH_{Q}} \quad d R + \sigma d L + \tau d M ;$$

vu l'expression (1.5) de $~\Delta_t^{~\lambda}~$ et $~\Delta_t^{~\mu}$, puis, au § 1, la définition (2.6) de t, ces relations impliquent :

(2.2)
$$\Delta_{t}^{\rho} = 2 \pi N_{L^{2}}$$
, $\Delta_{t}^{\sigma} = 2 \pi N_{LM}$, $\Delta_{t}^{\tau} = 2 \pi N_{M^{2}}$,

(2.3)
$$\lambda_{t} [L, M, t] = -H_{L} [L, M, Q, R], \mu_{t} = -H_{M}.$$

Explicitons <u>la partie singulière</u>, pour $H_Q = 0$, de ρ , σ , τ et $\rho \tau - \sigma^2$: vu (2.1),

$$\rho = \frac{R_L H_L}{R H_Q} + \lambda_L, \sigma = \frac{R_M H_L}{R H_Q} + \lambda_M = \frac{R_L H_M}{R H_Q} + \mu_L, \tau = \frac{R_M H_M}{R H_Q} + \mu_M;$$

donc :

$$\rho \ \tau - \sigma^2 = \ \frac{1}{R H_Q} \left[R_L H_L \mu_M - R_M H_L \mu_L - R_L H_M \lambda_M + R_M H_M \lambda_L \right] + \lambda_L \mu_M - \lambda_M \mu_L \ .$$

Or, puisque H[L, M, Q, R] = 0:

$$H_{R} R_{L} + H_{L} + H_{Q} Q_{L} = H_{R} R_{M} + H_{M} + H_{Q} Q_{M} = 0$$
;

quand $H_R \neq 0$, ces relations permettent d'éliminer R_L et R_M des expressions précédentes de ρ , σ , τ , $\rho\tau$ - σ^2 ; vu, au § 1, l'hypothèse (2.2): $H_R \neq 0$ pour $H_Q = 0$;

donc:

LEMME 2.1. - Les fonctions

$$\rho + \frac{H_{L}^{2}}{R H_{Q} H_{R}} , \sigma + \frac{H_{L} H_{M}}{R H_{Q} H_{R}} , \tau + \frac{H_{M}^{2}}{R H_{Q} H_{R}} ,$$

$$(2.5)$$

$$\rho \tau - \sigma^{2} + \frac{1}{R H_{Q} H_{R}} \left[H_{L}^{2} \mu_{M} - H_{L} H_{M} (\mu_{L} + \lambda_{M}) + H_{M}^{2} \lambda_{L} \right]$$

sont bornées au voisinage des points où $H_Q = 0$.

Propriétés des variétés lagrangiennes compactes V de W. – V est engendré par des caractéristiques de H, à adhérence compacte, appartenant donc à des tores V [L_O , M_O]; les fonctions

$$L, M, N = N [L, M], c = c [L, M]$$

sont donc définies sur V .

Notons V_2 la partie ouverte de V où $dL \wedge dM \neq 0$, si elle n'est pas vide. Quand $dL \wedge dM = 0$ sur V, notons V_1 la partie ouverte de V où $(dL, dM) \neq 0$, si elle n'est pas vide. V_1 et V_2 sont donc des variétés lagrangiennes de V, non nécessairement compactes, engendrées par des caractéristiques K de H, à

adhérences K compactes; elles contiennent ces adhérences.

Quand V_2 et V_1 n'existent pas, V est donc l'un des tores $V[L_0, M_0]$. Vu le lemme suivant, ni V_1 , ni V_2 n'existe, sauf si le graphe de la fonction :

$$N : (L, M) \rightarrow N [L, M]$$

contient un segment rectiligne de direction rationnelle.

La conséquence du théorème 2 qu'énonce l'introduction (§ 2, n° 0) résulte donc de ce lemme .

LEMME 2.2 . - 1°) Sur V_2 , N est fonction affine de (L,M); plus précisément : (2.6) L_1 d $L+M_1$ d $M+N_1$ dN=0, où $(L_1,M_1,N_1)\in \mathbf{Z}^3$, P.G.C.D. $(L_1,M_1,N_1)=1$. V_2 est défini dans W par la donnée d'une fonction F de deux variables et par les équations:

(2.7)
$$\Psi + \lambda [L, M, t] + F_{T} [L, M] = \Phi + \mu [L, M, t] + F_{M} [L, M] = 0.$$

Plus précisément, dans l'espace \mathbb{R}^5 de coordonnées (L, M, ψ , Φ , t), ces équations (2.7) définissent une variété \mathbb{V}_2 de dimension 3, sur laquelle, vu (1.5) où $\mathbb{N}_L = -\mathbb{L}_1/\mathbb{N}_1$, $\mathbb{N}_M = -\mathbb{M}_1/\mathbb{L}_1$, le sous-groupe \mathbb{Z}_1 de \mathbb{Z}_3 engendré par (\mathbb{L}_1 , \mathbb{N}_1 , \mathbb{N}_1) $\in \mathbb{Z}^3$ opère comme suit :

(2.8)
$$(ξ,η,ζ): (L,M,ψ,Φ,t) → (L,M,ψ+2πξ,Φ+2πη,t+c[L,M]ζ);$$

on a:

$$v_2 = \tilde{v}_2 / \tilde{z}_1.$$

V₂ posséde la <u>mesure invariante</u> par le vecteur caractéristique de H:

$$\eta = d L \wedge d M \wedge d t$$
.

2°) <u>Sur</u> V₁, L, M et N <u>sont fonctions affines d'une même variable</u> s ; plus précisément :

Ch. III, §2

$$(2.10) \quad \frac{dL}{L_1} = \frac{dM}{M_1} = \frac{dN}{N_1} = ds \quad \text{où } (L_1, M_1) \neq 0 \text{ , } (L_1, M_1, N_1) \in \mathbf{Z}^3, \text{ P.G.C.D. } (L_1, M_1, N_1) = 1 \text{ .}$$

 V_1 est défini dans W par la donnée de trois fonctions de s : L et M, affines, vérifiant (2.10), et F, et par les équations :

$$L = L (s)$$
 , $M = M (s)$

(2.11) $L_{1} \{ \psi + \lambda [L, M, t] \} + M_{1} \{ \Phi + \mu [L, M, t] \} + F_{s} (s) = 0.$

Plus précisément, ces équations (2.11) définissent dans \mathbb{R}^5 une variété \tilde{V}_1 de dimension 3, sur laquelle opère suivant (2.8) le sous-groupe \tilde{Z}_2 de \tilde{Z}_3 d'équation (1.10); rappelons que ce sous-groupe est engendré par ses trois éléments (1.14); on a :

$$v_1 = \tilde{v}_1 / \tilde{z}_2.$$

V, possède la mesure invariante par le vecteur caractéristique de H

$$\eta_{V}^{\,=\,\,\left(\,\text{M}_{1}^{\,}\text{d}\,\,\psi\,\,-\,\,\text{L}_{1}^{\,}\,\,\text{d}\,\,\Phi\,\,\right)\,\,\wedge\,\,\text{ds}\,\,\wedge\,\,\text{dt}\,\,.}$$

3°) Les phases de V_1 et V_2 dans le repère R_0 (chap. III, § 1, n° 1) valent: $\phi_{R_1} = \Omega + L \Psi + M \Phi + F .$

<u>Note 2.1</u>. - Au § 1, (2.8) et (2.10) définissent :

- Ω à l'addition près d'une fonction F de (L, M);
- λ et μ à l'addition près de ses dérivées ${ t F}_{ t L}$ et ${ t F}_{ t M}$.

Etant donné V_1 ou V_2 , on peut donc choisir Ω tel que dans (2.7), (2.11) et (2.13):

$$F = 0$$
.

Pour quantifier V, nous n'emploierons que la conséquence suivante de (2.13) et des définitions, au \S 1, (2.7) de c [L,M], (2.9) de N:F étant choisi nulle, la fonction :

Ch. III, §2

(2.14)
$$\varphi_{R_0} - 2 \pi N \frac{t}{c[L,M]} - L \Psi - M \Phi \text{ est définie sur } V_1 \text{ et sur } V_2.$$

<u>Préliminaires à la preuve</u>. - Vu la formule (2.11) du § 1, le théorème 3.1 du chap. II, § 3 s'applique avec :

$$\ell$$
 = 3, h_1 = L, h_2 = M, g_0 = Ω + L Ψ + M Φ , g_1 = - Ψ - λ , g_2 = - Φ - μ ,

la phase $\phi_R^{}$ devant remplacer la phase lagrangienne ψ .

Toute variété lagrangienne V de W a donc localement des équations de l'un des quatre types suivants:

$$(2.15)_1$$
 $\Psi + \lambda + F_L [L, M] = \Phi + \mu + F_M = 0;$

(2.15)₂
$$M = f(L), \Psi + \lambda + f_{I}(L)(\Phi + \mu) + F_{I}(L) = 0;$$

 $(2.15)_3$ résultant de $(2.15)_2$ par permutation de $(L, \Psi), (M, \Phi)$;

$$(2.15)_4$$
 L = const., M = const.;

F et f sont fonctions d'une ou deux variables. La phase ϕ_{R_0} de V a l'expression (2.13), avec F = 0 dans le quatrième cas .

<u>Preuve de 1°</u>). - Localement, V_2 a des équations du type $(2.15)_1$; V_2 est donc engendré par des caractéristiques K appartenant à des tores $V[L_0, M_0]$ disjoints; leurs adhérences \overline{K} sont donc disjointes et appartiennent à V_2 ; dim $V_2 = 3$; donc :

dim.
$$\overline{K} = 1$$
.

Vu le lemme 1.1, les valeurs de N_L et N_M sur V sont donc des nombres ration-nels. Les fonctions N_L et N_M sont donc constantes sur V et vérifient (1.6), ce qu'exprime (2.6) . D'où 1°) et (2.13).

Preuve de 2°). - Localement, V_1 a des équations du type $(2.15)_2$ ou $(2.15)_3$; c'est-à-dire du type:

Ch. III, § 2 - 222 -

(2.16)
$$L = L(s), M = M(s), L_s(s)(\Psi + \lambda) + M_s(s)(\Phi + \mu) + F_s(s) = 0$$

cù $(L_s, M_s) \neq 0$. Pour chaque valeur de s, notons T(s) la variété de W d'équations (2.16) : dim T(s) = 2.

Puisque V₁ est engendré par des caractéristiques d'équations :

L = const. , M = const. , Ψ + λ = const. , Φ + μ = const.

et contient leurs adhérences, V_1 contient les adhérences $\overline{T(s)}$ des T(s). Déterminons - les.

Vu l'expression (1.5) de Δ_t^{λ} et Δ_t^{μ} et vu que $L_s^{N}L + M_s^{N}N_M = N_s^{N}$, T (s) est l'image dans W de l'ensemble des $(\Psi, \Phi, t) \in \mathbb{R}^3$ tels que :

$$L_{s} \frac{\Psi + \lambda \left[L, M, t\right]}{2 \pi} + M_{s} \frac{\Phi + \mu \left[L, M, t\right]}{2 \pi} + \frac{1}{2 \pi} F_{s} \in G(s),$$

où G (s) est l'image de \mathbf{z}^3 dans le groupe additif R par le morphisme :

$$z^{3} \ni (\xi, \eta, \zeta) \mapsto L_{s} \xi + M_{s} \eta + N_{s} \xi.$$

 $\overline{T(s)}$ est donc l'image dans W de l'ensemble des $(\Psi, \Phi, t) \in \mathbb{R}^3$ tels que :

$$L_{s} \frac{\Psi + \lambda \left[L, M, t\right]}{2 \pi} + M_{s} \frac{\Phi + \mu \left[L, M, t\right]}{2 \pi} + \frac{1}{2 \pi} F_{s} \in \overline{G(s)},$$

 $\overline{G\ (s)}$ étant l'adhérence de $G\ (s)$, donc un sous-groupe fermé de R .

G(s) = R et $\overline{T(s)}$ est donc le tore, de dimension 3, V[L(s), M(s)], sauf si G(s) est discret, c'est-à-dire s'il existe $(L_1, M_1, N_1) \in \mathbf{Z}^3$ tels que

$$\frac{L_s}{L_1} = \frac{M_s}{M_1} = \frac{N_s}{N_1}$$
 , P.G.C.D. $(L_1, M_1, N_1) = 1$.

Puisque dim $V_1 = 3$, il doit en être ainsi pour tout s: les fonctions M_s / L_s , N_s / L_s sont à valeurs rationnelles, donc constantes; les entiers L_1 , M_1 , N_1 sont indépendants de s, qu'on peut choisir tel que (2.10) ait lieu. D'où 2°) et (2.13).

Quantification de V. - Imposons à V la condition quantique de Maslov ; pour l'exprimer, calculons <u>l'indice de Maslov</u> m_{R_0} de V_2 et de V_1 ; nous emploierons le lemme 1 du § 1 .

Nous ferons F = 0 dans le lemme 2.2 (cf. Note 2.1).

LEMME 2.3. - 1°) Les fonctions ρ , σ , τ sont définies sur V_2 ; notons le complété de R par un point à l'infini ; la fonction F: $V_2 \rightarrow R$ valant

(2.17)
$$F(L, M, t) = \frac{\rho L^2 + 2\sigma LM + \tau M^2}{L(L^2 - M^2)(\rho \tau - \sigma^2)} \in \mathbb{R}^{-1}$$

est donc définie sur $\mathbf{V_2} \setminus \mathbf{\Sigma}$ ", $\mathbf{\Sigma}$ " étant la partie de $\mathbf{V_2}$ où :

(2.18)
$$\sum'': \frac{\rho}{M^2} = -\frac{\sigma}{LM} = \frac{\tau}{L^2}.$$

2°) Si $V_2 \setminus \Sigma$ " est connexe, alors sur son revêtement universel :

(2.19)
$$m_{R_0} = \left[\frac{1}{\pi} \quad \Psi + \frac{1}{\pi} \quad \text{arc tg } F(L,M,t) \right], \quad \left[\dots \right]: \text{ partie entière de } \dots \right).$$

3°) La fonction:

(2.20)
$$m_{R_{o}} - \frac{1}{\pi} \quad \Psi - 2 \quad \frac{t}{c[L, M]}$$

est définie (c'est-à-dire : uniforme) sur V_2 .

Note 2.2 . - Supposons donnée la fonction

$$N: (L, M) \mapsto N[L, M]$$
, vérifiant (2.6),

choisissons H vérifiant (2.9), § 1, puis Ω vérifiant (2.8), § 1; pour des choix génériques:

$$\dim \, \sum " = \, 1$$
 , $\mathbb{V}_2 \, \setminus \sum "$ est connexe .

<u>Preuve de 1°).</u> - Rappelons que (L, M, t) sont des coordonnées locales de V_2 ; vu (2.2) et (2.6)

$$\Delta_{t} \rho = \Delta_{t} \sigma = \Delta_{t} \tau = 0$$
;

d'où 1°) .

<u>Preuve de</u> 2°). - <u>Le contour apparent de</u> V₂. - Les formules (1.11) et (1.13) du § 1 donnent sur W:

$$(2.21) \quad \frac{L}{\sin \Theta} \quad \omega_2 \quad \wedge \omega_3 = L \sin \Psi \, d \, \Phi \wedge d \, \Psi + \frac{\cos \Psi}{L^2 - M^2} \left(M \, d \, L - L \, d \, M \right) \wedge \left(L \, d \, \Psi + M \, d \, \Phi \right) .$$

Or la différentation de (2.7), où F = 0, donne sur V_2 , vu la définition (2.1) de ρ , σ , τ :

$$d\Psi + \rho dL + \sigma dM = d\Phi + \sigma dL + \tau dM = 0$$
 mod. dR ;

vu (2.6) § 1:

$$dR = RH_Q dt \mod (dL, dM)$$
.

D'où:

(2.22)
$$\frac{L}{R \sin \Theta} dR \wedge \omega_2 \wedge \omega_3 = G(L, M, t, \Psi) dL \wedge dM \wedge dt,$$

en notant G la fonction, qui, vu le lemme 2.1, est régulière sur V2:

$$G = -H_{Q} \left[L \left(\rho \tau - \sigma^{2} \right) \sin \Psi + \frac{\rho L^{2} + 2 \sigma L M + \tau M^{2}}{L^{2} - M^{2}} \cos \Psi \right].$$

Vu le lemme 1 du \S 1, le contour apparent Σ_{R_0} de V_2 est donc :

$$\sum_{R_o} = \sum' \cup \sum''$$
,

 Σ " étant défini par (2.18), Σ ' étant la surface de $V_2 \setminus \Sigma$ " d'équation : (2.23) Σ ': tg Ψ + F (L, M, t) = 0,

où F est défini par (2.17).

Calcul de m_{R_0} . - Les formules (1.11) et (1.13) du \S 1 donnent sur W :

$$(2.24) \qquad \frac{L}{\sin \Theta} \quad \omega_{3} \wedge \omega_{1} = L \cos \Psi d \Phi \wedge d \Psi - \frac{\sin \Psi}{L^{2} - M^{2}} \quad (MdL - LdM) \wedge (Ld\Psi + Md\Phi) ;$$

d'où, par les calculs qui déduisent (2.22) de (2.21) :

(2.25)
$$\frac{L}{R \sin \theta} dR \wedge \omega_3 \wedge \omega_1 = G_{\Psi}(L, M, t, \Psi) dL \wedge dM \wedge dt$$
.

Ces relations (2.22), (2.25) et le lemme 1 \S 1 donnent, au voisinage d'un point de Σ ':

$$\mathbf{m}_{\mathrm{R}}^{}$$
 = const. pour $\mathbf{G} \, / \, \mathbf{G}_{\psi}^{} \, < \, \mathbf{0}$,

$$m_{\widetilde{R}} = 1 + const.$$
 pour $G/G_{\Psi} > 0$.

Ce résultat vaut évidemment pour toute fonction G s'annulant une fois sur \sum ', par exemple pour la fonction :

$$G = \frac{1}{\pi} \Psi + \frac{1}{\pi} \text{ arc tg } F(L, M, t)$$
 mod. 1;

donc, sur $V_2 \setminus \Sigma$ ", m_{R_0} a localement l'expression (2.19), à une constante additive près. D'où 2°).

Preuve de 3°). - Supposons d'abord H et Ω génériques (Note 2.2), donc $V_2 \setminus \Sigma$ " connexe et

$$LH_{L} + MH_{M} \neq 0$$
 pour $H_{O} = 0$,

ce qui implique, vu le lemme 2.1, que la fonction

$$f = \rho L^2 + 2 \sigma LM + \tau M^2 : V_2 \setminus \Sigma'' \rightarrow \overline{R}$$

est définie. Vu (2.19), la fonction

(2.26)
$$m_{R_0} - \frac{1}{\pi} \Psi - \frac{1}{\pi} \text{ arc tg } F$$
 est définie sur $V_2 \setminus \Sigma''$;

vu la définition de F , où |M| < L d'après l'hypothèse (2.2) du \S 1, on a au voisinage des points où F = 0 :

F = 0 équivaut à f = 0; donc:

(2.27) arc tg F + arc tg f est définie sur
$$V_2 \setminus \Sigma$$
";

$$\Delta_{t} \left(\rho L_{1}^{2} + 2 \sigma L_{1} M_{1} + \tau M_{1}^{2} \right) = 2 \pi \left[L_{1}^{2} N_{L^{2}} + 2 L_{1} M_{1} N_{LM} + M_{1}^{2} N_{M^{2}} \right] = 2 \pi \left[\frac{d^{2}N}{ds^{2}} = 0 \right].$$

Preuve de 2°). - Le contour apparent de V_1 . - La différentiation de (2.32) donne, vu (2.10) et la définition (2.1) de ρ , σ , τ :

 $d \Psi + (\rho L_1 + \sigma M_1) ds + M_1 dr = d\Phi + (\sigma L_1 + \tau M_1) ds - L_1 dr = 0 \mod dR;$ d'où, vu (2.21), puisque $dR = R H_Q dt \mod (dL, dM)$, c.à.d. mod. ds:

(2.35)
$$\frac{L}{R \sin \Theta} dR \wedge \omega_2 \wedge \omega_3 = G(s, t, \Psi) ds \wedge dr \wedge dt,$$

où:

G(s,t,
$$\Psi$$
) = H_Q[L(ρ L₁² + 2 σ L₁M₁ + τ M₁²) sin Ψ + $\frac{N_0^2}{L^2 - M^2}$ cos Ψ];

vu 1°) et le lemme 2.1 , la fonction $G: V_1 \to \bar{R}$ est définie et régulière sur V_1 . Vu le lemme 1 du § 1, le contour apparent \sum_{R_0} de V_1 a donc pour équation :

$$\sum_{\mathbf{R}_{\mathbf{Q}}} : \operatorname{tg}_{x} \Psi + \operatorname{Fr}(\mathbf{r}, \mathbf{s}, \mathbf{t}) = 0.$$

Calcul de m_{R_0} . - Le calcul déduisant (2.35) de (2.21) permet de déduire de (2.24) la formule :

$$\frac{L}{R \sin \Theta} \ dR \wedge \omega_3 \wedge \omega_1 = G_{\Psi} (s, t, \Psi) ds \wedge dr \wedge dt.$$

D'où, en appliquant le lemme 1 du \S 1 comme le fait le lemme 2.4, l'expression (2.34) de m_{R_0} .

Preuve de 3°). - Supposons V₁ générique . Vu (2.34) :

(2.36)
$$m_{R_0} - \frac{1}{\pi} \quad \Psi - \frac{1}{\pi} \quad \text{arc tg F (r,s,t)} \quad \text{est définie sur } V_1 ;$$

vu (2.33), où |M| < L d'après l'hypothèse (2.2) du § 1, et vu le lemme 2.1 , F = 0

or:

(2.28) arc tg f + arc tg
$$\frac{1}{f}$$
 = const.;

vu le lemme 2.1, $\frac{1}{f}$ = 0 équivaut à H_Q = 0 et, au voisinage des points où H_Q = 0:

$$\frac{H_{Q}}{H_{R}}$$
 f < 0;

donc:

(2.29) arc tg
$$\frac{1}{f}$$
 + arc tg $\frac{H_Q}{H_D}$ est définie sur $V_2 \setminus \Sigma$ ";

or, vu l'orientation de Γ , \S 1, (2.9) :

(2.30)
$$\operatorname{arc\ tg\ }\frac{H_{Q}}{H_{R}} + 2\pi \frac{t}{c[L,M]} \quad \text{est définie sur } \Gamma[L,M].$$

Les formules (2.26) ... (2.30) prouvent 3°) pour H et Ω génériques. D'où 3°).

LEMME 2.4. - 1°) Définissons sur V_1 une constante N_0 et une fonction r par les relations :

(2.31)
$$L_1 M - M_1 L = N_0$$
;

(2.32)
$$\Psi + \lambda + M_1 r = \Phi + \mu - L_1 r = 0 .$$

Les fonctions (r, s, t) sont des coordonnées de v_1 .

Une fonction $F: V_1 \to \overline{R}$ est définie par la formule (quand V_1 est générique) :

(2.33)
$$F(r,s,t) = \frac{N_0^2}{L(L^2-M^2)(\rho L_1^2 + 2\sigma L_1 M_1 + \tau M_1^2)}.$$

2°) Si
$$V_1$$
 est générique $(N_0 \neq 0; H_2 L_1^2 + 2H_{LM}L_1 M_1 + H_2 M_1^2 \neq 0$ pour $H_Q = 0)$, alors:

(2.34)
$$m_{R_0} = \left[\frac{1}{\pi}\Psi + \frac{1}{\pi} \text{ arc tg } F(r,s,t)\right] \quad ([\dots]: \text{ partie entière de...})$$

3°) La fonction (2.20) est définie sur V_1 .

Preuve de 1°). - $(2.11)_2$, où F = 0 (Note 2.1) justifie la définition (2.32) de r . Vu (2.2) et (2.10) :

équivaut à $H_Q = 0$; au voisinage des points de V_1 où $H_Q = 0$:

$$F \frac{H_{R}}{H_{Q}} < 0 ;$$

donc :

(2.37) arc tg F + arc tg
$$\frac{H_Q}{H_R}$$
 est défini.

Les formules (2.30), (2.36) et (2.37) prouvent que la fonction (2.20) est définie sur V_1 générique, donc sur tout V_1 .

LEMME 2.5. - 1°) Pour que V_2 <u>vérifie la condition quantique de Maslov</u>, il faut et suffit que, sur V_2 , les fonctions L, M et N soientliées par une relation:

(2.38)
$$L_1 \left(L - \frac{1}{2}\right) + M_1 M + N_1 \left(N + \frac{1}{2}\right) = 1 N_0$$

où:

(2.39)
$$L_1, M_1, N_1 \neq 0, N_0 \in \mathbf{Z}, P. G. C. D. (L_1, M_1, N_1) = 1.$$

2°) Pour que V_1 <u>vérifie la condition quantique de Maslov</u>, il faut et suffit que, sur V_1 , les fonctions L, M et N soient liés par les trois relations ;

(2.40)
$$(L_1, M_1, N_1) \wedge (L - \frac{1}{2}, M, N + \frac{1}{2}) = 1/2 (L_0, M_0, N_0),$$

où: ^ désigne le produit vectoriel dans E³,

deux seulement des trois relations (2.40) sont donc indépendantes.

Préliminaires à la preuve. - Une variété V vérifie la condition quantique de Maslov (chap. III, § 2, définition 6.2) quand la fonction

$$\frac{1}{2\pi k} \phi_{R} - \frac{1}{4} m_{R}$$
 est définie mod. 1 sur V.

 v_u (2.14) et (2.20), v_1 ou v_2 vérifie donc cette condition quand la fonction

$$\left(\frac{L}{2\pi} + \frac{1}{2}\right) \quad \frac{\Psi}{2\pi} + \frac{M}{2\pi} \quad \frac{\Phi}{2\pi} + \left(\frac{N}{2\pi} + \frac{1}{2}\right) \quad \frac{t}{c(L,M)}$$

est définie mod. 1 $\operatorname{sur}\ \operatorname{V}_1$ ou V_2 .

Preuve de 1°). - Vu le lemme 2.2 1°): la fonction (2.42) est définie sur v_2 ; $v_2 = v_2^2 / z_1^2$; a pour générateur:

et opère sur v_2 suivant (2.8). La condition quantique de Maslov est donc :

$$\left(\frac{L}{R} + \frac{1}{2}\right) L_1 + MM_1 + \left(\frac{N}{R} + \frac{1}{2}\right) N_1 \in \mathbf{Z}.$$

D'où 1°) .

<u>Preuve de 2°)</u>. - Vu le lemme 2.2 2°): la fonction (2.42) est définie sur \tilde{V}_1 ; $\tilde{V}_1 = \tilde{V}_1 / \tilde{\mathbf{Z}}_2$; $\tilde{\mathbf{Z}}_2$ a pour générateurs :

$$(0, M_2, N_3, -M_3, N_2), (-L_2, N_3, 0, L_3, N_2), (L_2, M_3, -L_3, M_2, 0)$$

 L_2 ,... N_3 étant définis par (1.12) et (1.13) ; \tilde{Z}_2 opère sur \tilde{V}_2 suivant (2.8). La condition quantique de Maslov est donc :

$$\frac{M}{M} \, M_2 \, N_3 \, - \, \left(\frac{N}{M} \, + \frac{1}{2} \, \right) \, M_3 \, N_2 \, \in \mathbf{Z} \, ; \, - \, \left(\, \frac{L}{M} \, + \frac{1}{2} \, \right) \, L_2 \, N_3 \, + \, \left(\frac{N}{M} \, + \, \frac{1}{2} \, \right) \, L_3 \, N_2 \, \in \mathbf{Z} \, ;$$

$$(\frac{L}{k} + \frac{1}{2})$$
 L_2 $M_3 - \frac{M}{k}$ L_3 $M_2 \in \mathbf{Z}$;

vu (1.13) cette condition quantique équivaut à la condition (2.40) - (2.41), complétée par la suivante : L_0 , M_0 , N_0 sont respectivement multiples de L_2 , M_2 , N_2 . Or :

$$L_2 = P.G.C.D. (M_1, N_1), \dots;$$

cette dernière condition résulte donc de (2.41). D'où 2°).

THEOREME 2. - Cherchons une solution U de l'équation lagrangienne

a
$$U = 0 \mod 1 / v^2$$
 (a : opérateur associé à H);

à amplitude lagrangienne ≥ 0, qui soit définie mod. 1 / v sur une variété lagrangienne V compacte, autre que les tores V [Lo, Mo] étudiés par le théorème 1;

pour que U existe, il est nécessaire que le graphe de la fonction

$$N:(L,M) \mapsto N[L,M]$$
 [Cf. Chap. III, § 1, (2.9)]

contienne un segment rectiligne d'équation plückérienne :

$$(2.40) \qquad (L_1, M_1, N_1) \wedge (L - \frac{1}{2}, M, N + \frac{1}{2}) = \chi (L_0, M_0, N_0)$$

telle que :

$$L_1, M_1, N_1, L_0, M_0, N_0 \in \mathbf{Z}, L_1^2 + M_1^2 \neq 0$$

(2.41)
$$P.G.C.D.(L_1, M_1, N_1) = 1, L_0 L_1 + M_0 M_1 + N_0 N_1 = 0.$$

COMPLEMENT . - La condition :

$$N_0' \in \mathbf{z}$$

est nécessaire et suffisante pour qu'existe un tel segment dans un domaine plan, appartenant à ce graphe de N et ayant une équation :

(2.43)
$$L_{1}^{1}\left(L-\frac{M}{2}\right) + M_{1}^{1}M + N_{1}^{1}\left(N+\frac{M}{2}\right) = MN_{0}^{1}$$

telle que :

(2.44)
$$L_{1}^{\prime}$$
, M_{1}^{\prime} , N_{1}^{\prime} \in **Z**, P.G.C.D.(L_{1}^{\prime} , M_{1}^{\prime} , N_{1}^{\prime}) = 1, N_{1}^{\prime} \in **R**.

Note 2.3. - Ce complément facilite l'application du théorème (cf. n° 3).

<u>Preuve du théorème</u>. - Vu le chapitre II, \S 3, théorème 6, V doit vérifier la condition quantique de Maslov. Puisque V n'est pas l'un des tores V [L, M,], V

doit contenir une variété lagrangienne V_2 ou V_1 vérifiant cette condition quantique; vu le lemme 2.5, le graphe de la fonction N contient donc : soit un segment rectiligne d'équations (2.40) - (2.41);

soit un domaine plan d'équation (2.38) - (2.39) et donc un tel segment.

<u>Preuve du complément</u>. - La condition $N_0 \in \mathbb{Z}$ est évidemment suffisante. Prouvons qu'elle est nécessaire ; supposons que, dans l'espace \mathbb{R}^3 de coordonnées (L, M, N), le plan d'équation (2.43)-(2.44) contienne une droite d'équations (2.40)-(2.41) cette hypothèse s'exprime par les 4 relations (dont les 2 dernières résultent des précédentes):

$$N_{o}^{\prime} = \begin{array}{c} L_{1} \ L_{1}^{\prime} + M_{1} \ M_{1}^{\prime} + N_{1} \ N_{1}^{\prime} = o \ , \\ \\ N_{o}^{\prime} = \begin{array}{c} \frac{M_{1}^{\prime} \ N_{o} - N_{1}^{\prime} \ M_{o}}{L_{1}} = \frac{N_{1}^{\prime} \ L_{o} - L_{1}^{\prime} \ N_{o}}{M_{1}} = \frac{L_{1}^{\prime} \ M_{o} - M_{1}^{\prime} \ L_{o}}{N_{1}} \ . \end{array}$$

Ces relations impliquent $N_0' \in \mathbf{Z}$, puisque P.G.C.D. $(L_1, M_1, N_1) = 1$.

3. EXEMPLE : L'OPERATEUR DE SCHRÖDINGER - KLEIN - GORDON .

Nous choisissons pour a l'opérateur associé à l'hamiltonien H, défini au § 1 par (4.6), où A sera supposé fonction affine de M, B et C constants, B > 0.

Ce § 1 a étudié le système :

$$a U = a_{L^2 - L_0^2} U = a_{M - M_0} U = 0$$
,

et retrouvé les niveaux d'énergie classiques.

En étudiant la seule équation :

a
$$U = 0$$
,

nous allons retrouver les mêmes conditions d'existence, donc ces mêmes <u>niveaux d'éner</u>gie classiques .

THEOREME 3.1 . - L'équation lagrangienne :

(3.1) a
$$U = 0 \text{ mod. } 1/v^2$$

possède une solution U à AMPLITUDE LAGRANGIENNE ≥ 0 , définie mod. 1 / v sur une variété COMPACTE V si et seulement s'il existe un triplet d'entiers (£, m, n)

vérifiant la condition (4.11) du théorème 4.1 du § 1.

Note 3 . - Sous cette condition ni l'unicité de V, ni l'unicité de U à un facteur constant près (cf. Théor. 1) ne sont assurées.

<u>Preuve</u>. - L'existence d'une telle solution de (3.1), souscette condition (4.11) du § 1, est assurée par le théorème 1 et aussi par ce théorème 4.1 du § 1.

Vu le théorème 1, il ne peut exister de telle solution de (3.1) , définie sur un tore $V \left[\begin{array}{c} L_O \end{array}, M_O \right] \ \text{que sous cette condition} \ .$

Vu le théorème 2 et la formule (4.8) du § 1 donnant la valeur de la fonction N:

(3.2)
$$N [L, M] = \frac{B}{\sqrt{A(M)}} - \sqrt{L^2 + C},$$

l'existence d'une telle solution sur une variété V autre qu'un tore $V [L_0, M_0]$ exige ceci :

Le graphe de N contient un segment de droite .

Elle exige donc que l'un des trois cas suivant se présente :

<u>Premier cas</u>: $A(M) = A_0$ est indépendant de M; C = 0.

Vu (3.2), le graphe de N est donc <u>le plan</u> d'équation :

$$L + N = \frac{B}{\sqrt{A_0}}.$$

Le théorème 2 et son complément exigent l'existence d'un entier n tel que :

$$\frac{B}{\sqrt{A_0}} = 1/2 n ,$$

La condition (4.11) du théorème 4.1, \S 1 est donc vérifiée, puisqu'elle est indépendante de ℓ pour C = 0 et de m pour A(M) indépendant de M.

Second cas: C = 0; A dépend de M.

Vu (3.2), le graphe de N contient les seules droites d'équation:

$$M = M_{\odot}$$
, $N + L = \frac{B}{\sqrt{A_{\odot}}}$, où $M_{\odot} = const.$, $A_{\odot} = A (M_{\odot})$;

leurs équations plückériennes sont donc :

$$(1,0,-1) \wedge (L-\frac{1}{2}, M,N+\frac{1}{2}) = (M_0,-\frac{B}{\sqrt{A_0}}, M_0)$$
.

Le théorème 2 exige l'existence d'entiers m et n tels que :

$$M_0 = \mathcal{X} m , \frac{B}{\sqrt{A_0}} = \mathcal{X} n ;$$

n>|m| car N>0 et L>|M| par hypothèse : cf. (1.2) au § 1 . La condition (4.11) du § 1 est donc vérifiée.

<u>Troisième cas</u>: $A = A_0$ est indépendant de M; $C \neq 0$.

Vu (3.2), le graphe de N contient les seules droites d'équation:

$$L = L_o$$
, $N = \frac{B}{\sqrt{A_o}} - \sqrt{L_o^2 + C}$ où L_o est une constante, $L_o^2 + C > 0$;

leurs équations plückériennes sont :

$$(0, 1, 0) \land (L - \frac{1}{2}, M, N + \frac{1}{2}) = (\frac{B}{\sqrt{A_0}} - \sqrt{L_0^2 + C + \frac{1}{2}}, 0, \frac{1}{2} - L_0).$$

Le théorème 2 exige l'existence d'entiers ℓ , n tels que :

$$\frac{B}{\sqrt{A_0}} + L_0 - \sqrt{L_0^2 + C} = 1/2 n , L_0 = 1/2 (1 + \frac{1}{2}) ;$$

 $0 \le 1$ car $0 < L_0$; 1 < n car N > 0 par hypothèse,

La condition (4.11) du § 1 est donc vérifiée.

THEOREME 3.2 . - Choisissons pour a l'opérateur de Klein-Gordon (4.22) du § 1; supposons le champ magnétique $\mathcal{H} \neq 0$. Alors les tores $T(\ell, m, n)$, définis par (4.12) § 1, sont les seules variétés compactes sur lesquelles existe une solution lagrangienne, v, à amplitude lagrangienne ≥ 0 , de l'équation:

a
$$U = 0$$
 mod. $1 / v^2$.

<u>Preuve</u>. - La preuve du théorème 3.1 prouve que la condition nécessaire qu'énonce le théorème 2 ne peut pas être satisfaite quand a est l'opérateur de Klein - Gordon $(C \neq 0)$ où A dépend de M $(\mathcal{H} \neq 0)$.

CONCLUSION . - Nous ne poursuivons pas cette étude malaisée de l'équation a U = 0 mod. $1/\nu^2$; en particulier nous n'explicitons pas les variétés lagrangiennes, autres que les tores $T(\ell,m,n)$, sur lesquelles existent des solutions de l'équation de Schrödinger ou des solutions, quand $\mathcal{H}=0$, de l'équation de Klein-Gordon.

Ch. III, § 3

§ 3. Le système lagrangien : a $U = (a_M - const.) U = (a_L^2 - const.) U = 0$,

quand a est l'opérateur de Schrödinger - Klein - Gordon.

O. INTRODUCTION . -

Ce \S 3 étudie le système lagrangien que le \S 1 a résolu mod. $1/v^2$.

Le n° 1 cherche sous quelle condition s'applique le théorème 7.2 du chap. II, § 3

Les n° 2,3 et 4 explicitent l'application de ce théorème sous des hypothèses appropriées, de plus en plus strictes, qui constituent finalement la suivante : a est l'opérateur de Schrödinger - Klein - Gordon; le théorème d'existence 4.1 est finalement obtenu.

Note 0. - A. Voros (cf. [23] - [24] me fait observer que ces propriétés des équations de Schrödinger et de Klein-Gordon s'étendent <u>au cas d'un potentiel électrique</u>, fonction à valeurs > 0 de la seule variable R, si <u>le niveau d'énergie</u> E n'est plus astreint à être un nombre réel et s'il lui est permis d'être <u>un nombre formel quelconque</u>, de phase nulle.

1. COMMUTATIVITE DES OPERATEURS a , a $_{\rm L}^2$ ET $_{\rm M}$ ASSOCIES AUX HAMILTONIENS

H (\S 1, n°2), L² ET M (\S 1, n°1). - Cherchons quand le théorème 7.2 du chap. II, \S 3 s'applique à ces opérateurs, c'est-à-dire quand ils commutent.

LEMME 1. - 1°) a_{M} et a (donc, en particulier, a_{M} et a_{L}^{2}) commutent.

2°) La condition que a_{L^2} et a commutent s'énonce :

(1.1)
$$(\forall L, M, Q, R)$$
 $H_{M^2Q} = H_{R^2R} = 0$.

<u>Preuve</u> . - Soient a et a' les opérateurs lagrangiens associés à deux hamiltoniens H et H'; vu la formule (1.1) du chap. II, § 2, leur commutateur

est associé à la fonction formelle valant :

$$(1.2) -2 \sum_{\mathbf{r} \in \mathbb{N}} \frac{1}{(2\mathbf{r}+1)!} \frac{1}{(2\nu)^{2\mathbf{r}+1}} \left[\langle \frac{\partial}{\partial \mathbf{x}}, \frac{\partial}{\partial \mathbf{p}}, \rangle - \langle \frac{\partial}{\partial \mathbf{x}}, \frac{\partial}{\partial \mathbf{p}} \rangle \right]^{2\mathbf{r}+1} \mathbb{H}(\mathbf{x}, \mathbf{p}) \mathbb{H}'(\mathbf{x}', \mathbf{p}') \Big|_{\mathbf{x}'=\mathbf{x}} \mathbb{P}'=\mathbf{p}$$

Supposons H et H' en involution, ce qui est le cas de H (§1, n°2),

L² et M (§1, n°1), vu au §1(1.3): le premier terme de (1.2) est nul. Si H' est linéaire en (x',p'), tous les autres termes sont évidemment nuls: a et a' commutent; d'où le 1°) du lemme. Supposons que H' est un polynome homogène de degré 4 en (x',p'); alors, vu (1.2), ao a'-a' oa est associé à $\frac{1}{\sqrt{3}}$ H", H"

étant l'hamiltonien valant :

$$H''(x,p) = -\frac{1}{24} \left[\left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial p'} \right\rangle - \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial p} \right\rangle \right]^{3} H(x,p) H'(x',p') \Big|_{x'=x}$$

Une double application de la formule de Taylor montre que le terme de H'(x'+y, p'+q) homogène de degré 1 en (x', p) et 3 en (y, q) est:

$$\frac{1}{6} \left[\langle q, \frac{\partial}{\partial p'} \rangle + \langle y, \frac{\partial}{\partial x'} \rangle \right]^{3} H'(x', p') = \left[\langle p', \frac{\partial}{\partial q} \rangle + \langle x', \frac{\partial}{\partial y} \rangle \right] H'(y, q);$$

donc, si H' est homogène de degré 2 en chacune de ses deux variables :

$$\mathrm{H''} \ (\mathrm{x} \ , \ \mathrm{p}) \ = \ -\frac{1}{4} \left[<\mathrm{p} \ , \ \mathrm{H'}_{\mathrm{p'}} \ (\frac{\partial}{\partial \mathrm{p}} \ , \ \frac{\partial}{\partial \mathrm{x}} \) > \ - \ <\mathrm{x} \ , \ \mathrm{H'}_{\mathrm{x'}} \ (\frac{\partial}{\partial \mathrm{p}} \ , \ \frac{\partial}{\partial \mathrm{x}} \) > \ \right] \mathrm{H} \ (\mathrm{x} \ , \ \mathrm{p}) \ .$$

En particulier, pour $H' = L^2$, c'est-à-dire : $H'(x',p') = |x' \wedge p'|^2$:

(1.3) H''
$$(x, p) = \frac{1}{2} H(x, p)$$
;

dans cette formule, les couples d'opérateurs

$$(p \wedge \frac{\partial}{\partial p} + x \wedge \frac{\partial}{\partial x})_j$$
, $(\frac{\partial}{\partial p} \wedge \frac{\partial}{\partial x})_j$ commutent.

L'opérateur (p $\land \frac{\partial}{\partial p}$ + x $\land \frac{\partial}{\partial x}$) est une rotation infinitésimale agissant sur

x et p; elle annule donc L, Q, R; un calcul aisé donne:

$$(p \wedge \frac{\partial}{\partial p} + x \wedge \frac{\partial}{\partial x}) M(x, p) = x_3 p - p_3 x;$$

supposons H fonction composée de L, M, Q, R [§1,(2.1)];

(1.3) devient donc:

H"
$$(x, p) = \frac{1}{2} < \frac{\partial}{\partial p} \wedge \frac{\partial}{\partial x}$$
, H_M $x_3 p - H_M p_3 x > ;$

notons pour toute fonction F de (x,p):

$$\mathcal{X} F = \begin{vmatrix} x_1 & x_2 & x_3 \\ p_1 & p_2 & p_3 \\ F_{x_1} & F_{x_2} & F_{x_3} \end{vmatrix}, \quad \mathcal{P} F = \begin{vmatrix} x_1 & x_2 & x_3 \\ p_1 & p_2 & p_3 \\ F_{p_1} & F_{p_2} & F_{p_3} \end{vmatrix};$$

l'expression précédente de H" s'écrit:

$$H''(x,p) = \frac{1}{2} \frac{\partial}{\partial x_3} \mathcal{P}_{M} - \frac{1}{2} \frac{\partial}{\partial p_3} \mathcal{E}_{M}.$$

Or les opérateurs différentiels linéaires \mathfrak{X} et \mathfrak{P} annulent évidemment \mathbb{P}^2 , Q, \mathbb{R}^2 , donc \mathbb{L}^2 vu (1.2) § 1;

$$\mathfrak{X} M = -\frac{1}{2} \frac{\partial L^2}{\partial x_3} , \quad \mathfrak{P} M = -\frac{1}{2} \frac{\partial L^2}{\partial p_3} ;$$

en notant D F le déterminant fonctionnel

$$\mathfrak{D} \ \mathbf{F} = \frac{\partial L^2}{\partial \mathbf{x}_3} \ \frac{\partial \mathbf{F}}{\partial \mathbf{p}_3} \ - \ \frac{\partial L^2}{\partial \mathbf{p}_3} \ \frac{\partial \mathbf{F}}{\partial \mathbf{x}_3} \quad ,$$

l'expression de H" devient donc :

$$H''(x,p) = \frac{1}{4} \mathcal{D} H_{M2}$$
.

Or l'opérateur differentiel linéaire 🛇 annule évidemment L et M ;

$$\frac{1}{2}$$
 \otimes Q = $p^2 x_3^2 - R^2 p_3^2$; $\frac{R}{2}$ \otimes R = Q $x_3^2 - R^2 p_3 x_3$

l'expression précédente de H" devient donc :

(1.4)
$$H''(\mathbf{x}, \mathbf{p}) = \frac{1}{2} \left(P^2 H_{M^2 Q} + \frac{Q}{R} H_{N^2 Q} \right) x_3^2 - \frac{R}{2} H_{M^2 R} p_3 x_3 - \frac{1}{2} R^2 H_{M^2 Q} p_3^2$$

Vu le n°1 du \S 1, p_3/x_3 est indépendant de (L,M,Q,R) : la condition :

$$(\forall x, p) H''(x, p) = 0$$

équivaut donc à (1.1), ce qui prouve le 2°) du lemme.

2. CAS D'UN OPERATEUR a COMMUTANT à a ET a . - Supposons (1.1) vérifié: le lemme 1 prouve que le théorème 7.2 du chap. II, \S 3 s'applique au système lagrangien:

$$(2.1)_{r}$$
 $a U = (a_{L}^{2} - c_{L}) U = (a_{M} - c_{M}) U = 0 \mod 1/v^{r+2} (r \ge 1)$,

où c_{I} , et c_{M} sont deux nombres formels de phase nulle, tels que :

(2.2)
$$c_L - L_o^2 = c_M - M_o = 0 \mod 1/v^2$$
.

Les expressions a_L^+ et a_M^+ de a_L^- et a_M^- dans R_0^- sont les suivantes, vu le chap. I, § 1, n° 3 et la formule

$$e^{\frac{1}{2\nu} < \frac{\partial}{\partial x}}, \frac{\partial}{\partial p} > L^{2}(x, p) = \left[1 + \frac{1}{2\nu} < \frac{\partial}{\partial x}, \frac{\partial}{\partial p} > + \frac{1}{8\nu^{2}} < \frac{\partial}{\partial x}, \frac{\partial}{\partial p} >^{2}\right] (P^{2}R^{2} - Q^{2})$$

$$= P^2 R^2 - Q^2 - \frac{2}{\nu} Q - \frac{3}{2\nu^2} :$$

(2.3)
$$a_{L^2}^+ (v, x, \frac{1}{v} \frac{\partial}{\partial x}) = \frac{1}{v^2} (\Delta_0 - \frac{3}{2}),$$

οù

(2.4)
$$\Delta_{0} = \mathbb{R}^{2} \Delta - \sum_{j,k} \mathbf{x}_{j} \mathbf{x}_{k} \frac{\partial^{2}}{\partial \mathbf{x}_{j}} \frac{\partial^{2}}{\partial \mathbf{x}_{k}} - 2\sum_{j} \mathbf{x}_{j} \frac{\partial}{\partial \mathbf{x}_{j}} \left[\Delta = \sum_{j} \left(\frac{\partial}{\partial \mathbf{x}_{j}} \right)^{2} \right]$$

est le laplacien sphérique, vu son expression (2.24) : il opère sur les restrictions des fonctions aux sphères : R = const.;

$$a_{M}^{+}(v, x, \frac{1}{v} \frac{\partial}{\partial x}) = \frac{1}{v}(x_{1} \frac{\partial}{\partial x_{2}} - x_{2} \frac{\partial}{\partial x_{1}})$$
,

qui est une rotation infinitésimale.

Imposons à l'inconnue U d'être définie mod. $1/v^{r+1}$ sur une variété lagrangienne compacte V; vu le théorème 3 du § 1

i) V est nécessairement l'un des tores

$$V = V [L_o, M_o] = T (L, m, n) : H = L^2 - L_o^2 = M - M_o = 0$$

que définit le 1°) de ce théorème

- ii) l'amplitude lagrangienne β_{0} de U est nécessairement constante.
- Si $\beta_0 = 0$, $(2.1)_r$ se réduit à $(2.1)_{r-1}$; imposons donc la condition :

$$\beta_{o} = const. \neq 0.$$

Nommons <u>problème</u> $(2.1)_r$ le problème défini par le système $(2.1)_r$, la condition (2.5) et la condition que V <u>est compacte</u>.

Notations . - La formule (3.16) de ce même théorème 3 du \S 1 explicite la mesure invariante η : les formules (1.16) et (3.6) du \S 1 explicitent d^3x ; la formule (3.4) du chap. I, \S 3 définit arg. $d^3x = \pi m_R$; m_R est donné par

(3.5) § 1; arg. η = 0 $\,$ par définition ; d'où la valeur de la fonction χ ,

que définit et emploie le § 3 du chap. III, et de son argument :

$$\chi = \frac{\eta}{d^3x} = \left[R^3 H_Q \left[L_0, M_0, Q, R \right] \sin \Psi \sin \Theta \right]^{-1}, \text{ où } \Theta = \text{const.};$$
(2.6)

$$\text{arg.}\ \chi = -\arg\text{.H}_{Q} - \text{arg.}\sin\ \Psi\ ,\ \text{où:arg.}\ H_{Q} = -\pi\left[\frac{1}{\pi}\operatorname{arc}\ tg\ \frac{H_{Q}}{H_{R}}\right],\ \text{arg.}\ \sin\ \Psi = \pi\left[\frac{\Psi}{\pi}\right];$$

rappelons que [...] est la partie entière de

Le contour apparent de V est

(2.7)
$$\sum_{R_{o}} : H_{Q} \sin \Psi = 0 ; \chi : V \setminus \sum_{R_{o}} \rightarrow R.$$

Soit U une fonction lagrangienne sur V, à amplitude lagrangienne

$$\beta_0 = \text{const.} \neq 0$$
;

son expression dans R sera notée :

(2.8)
$$\mathbb{U}_{R_{o}}(\nu) = \sqrt{\chi} \beta(\nu) e^{i\nu \varphi_{R_{o}}}, \text{ où } \beta(\nu) = \sum_{s \in \mathbb{N}} \frac{\beta_{s}}{\nu^{s}};$$

vu, au chap. II, § 2, le théorème de structure 2.2 et la définition 3.2 des fonctions lagrangiennes, la fonction

$$\chi^{-3s}$$
 $\beta_s : V \rightarrow C$

est régulière même sur \sum .

Soient D_{H} , D_{L} , D_{M} les opérateurs tels que :

$$\left[a U \right]_{R_o} = \frac{\sqrt{\chi}}{\nu} e^{\nu \varphi_{R_o}} D_H \beta;$$

$$\left[\left(a_L^2 - L_o^2 \right) U \right]_{R_o} = \frac{\sqrt{\chi}}{\nu} e^{\nu \varphi_{R_o}} D_L \beta;$$

$$\left[\left(a_M - M_o \right) U \right]_{R} = \frac{\sqrt{\chi}}{\nu} e^{\nu \varphi_{R_o}} D_M \beta.$$

 $\mathbb{D}_{\mathbb{H}}$, $\mathbb{D}_{\mathbb{L}^2}$ et $\mathbb{D}_{\mathbb{M}}$ <u>commutent</u>, puisque a, a et a_M commutent.

Employons sur $V \setminus \sum_{R_0}$ les coordonnées locales (R, Ψ , Φ).

LEMME 2.1. - 1°) Avec ce choix de coordonnées :

$$D_{\mathbf{M}} = \frac{\partial}{\partial \dot{\Phi}} .$$

2°) Si U est solution de l'équation

(2.11)
$$(a_{M} - c_{M}) U = 0 \mod 1/v^{r+2},$$

où c_M est un nombre formel, de phase nulle, tel que

$$c_{M} = M_{o} \mod 1/v^{2}$$
,

alors:

$$c_{M} = M_{O} \mod 1 / v^{r+2}$$
;

 β est, mod. $1/\nu^{r+1}$, fonction des seules coordonnées (R, Ψ).

Preuve de 1°). - Calculons D_{M} au moyen du théorème 4 du chap. II, § 3 : on substitue à H dans ce théorème l'hamiltonien $M-M_{O}$; vu (3.18), § 1, les caractéristiques de cet hamiltonien ont pour équations

$$dt = d\Psi = 0$$
, c'est-à-dire : $dR = d\Psi = 0$;

le paramètre de ces caractéristiques est Φ , qu'on substitue à t dans ce théorème . On obtient (2.10).

<u>Preuve de 2°</u>). - Pour r = 0, 2°) est évident. Une récurrence sur r permet de supposer 2°) vrai quand on y remplace r par r-1; alors

$$c_{M} = M_{o} + \frac{M_{r+1}}{N_{r+1}} \qquad (M_{r+1} \in C);$$

(2.11), vu (2.9) et (2.10), équivaut à :

$$\frac{\partial \beta_{\mathbf{r}}}{\partial \Phi} = M_{\mathbf{r}+1} \quad \beta_{\mathbf{o}} \quad , \quad \text{où} \quad \beta_{\mathbf{o}} = \text{const.} \neq 0;$$

or β_r est une fonction de Φ ayant la période 2π ; donc :

$$M_{r+1} = 0 ; \frac{\partial \beta_r}{\partial \Phi} = 0 ;$$

d'où 2°)

Notations . - Nous supposerons désormais β fonction des seules variables (R, Ψ) ; vu (2.10), D_H et D_L commutent à $\frac{\partial}{\partial \Phi}$ et opèrent donc sur les fonctions de (R, Ψ) .

LEMME 2.2 . - 1°) En coordonnées locales (R, Ψ , Φ):

(2.12)
$$\mathbb{D}_{L} \beta = 2 L_{o} \frac{d\tau}{d\Psi} \left[\frac{\partial}{\partial \tau} - \frac{1}{\nu} F \right] \beta - \frac{5}{4\nu} \beta ,$$

οù: τ est la variable

$$\tau = \cot g \Psi ;$$

F est l'opérateur à coefficients polynomiaux valant :

$$\mathbf{F} \, \boldsymbol{\beta} = \mathbf{F}_1 \, \boldsymbol{\beta} + \frac{\partial}{\partial \tau} \, \left[\, \mathbf{F}_2 \, \frac{\partial \, \boldsymbol{\beta}}{\partial \tau} \, \, \right] \, ,$$

 F_1 et F_2 étant les polynomes de τ valant :

$$F_{1}(\tau) = \frac{5 M_{o}^{2} \tau^{2} + L_{o}^{2} + M_{o}^{2}}{8 L_{o}(L_{o}^{2} - M_{o}^{2})}, F_{2}(\tau) = \frac{(M_{o}^{2} \tau^{2} + L_{o}^{2})(\tau^{2} + 1)}{2 L_{o}(L_{o}^{2} - M_{o}^{2})}.$$

2°) Soit U une fonction lagrangienne, définie sur le tore : $V[L_o,M_o]$, d'amplitude lagrangienne $\beta_o \neq 0$ et solution du système :

(2.13)
$$(a_{L^2} - c_{L}) U = (a_{M} - M_{o}) U = 0 \mod 1/v^{r+2}$$
,

où $\mathbf{c}_{\mathsf{T}_{\mathsf{L}}}$ est un nombre formel, de phase nulle, tel que :

$$c_L = L_0^2 \mod 1 / v^2$$
.

Notons Σ l'ensemble des points de la courbe Γ [L_o, M_o] [§1, (2.5)] où:

$$\Sigma$$
: $H_Q = 0$.

Alors :

(2.14)
$$c_L = L_0^2 - \frac{5}{4v^2} \mod 1/v^{r+2};$$

(2.15)
$$\beta (v, R, \Psi) = g(v, R) f(v, \tau) \mod 1/v^{r+1},$$

g étant une fonction formelle, arbitraire, de phase nulle, définie sur $\Gamma \ [\ L_{_{\hbox{\scriptsize O}}} \ , \ M_{_{\hbox{\scriptsize O}}} \] \ \backslash \ \ \,) \ \ \, f \ \ \, \text{étant définie comme suit.}$

3°) Il existe une unique fonction formelle, définie sur R, f, valant :

(2.16)
$$f(v,\tau) = \sum_{s \in \mathbb{N}} \frac{1}{v^s} f_s(\tau) \qquad (\tau \in \mathbb{R})$$

telle que :

$$\frac{\mathrm{d}\,\mathrm{f}}{\mathrm{d}\,\mathrm{T}} = \frac{1}{\nu} \,\mathrm{F}\,\mathrm{f}\,;$$

(2.18) $f_0 = 1$; f_s est un polynome réel de τ , de degré 3 s, ayant la parité de s;

$$(2.19) f \bar{f} = 1 + \frac{1}{\nu} F_2 (\bar{f} \frac{df}{d\tau} - f \frac{d\bar{f}}{d\tau}) [\bar{f} : imaginaire conjugué de f];$$

$$[(2.19) exprime f_2 s au moyen de f_1, ..., f_{2s-1}.]$$

Toute solution de (2.17) mod. $1/v^r$ est, mod. $1/v^r$, le produit de f par un nombre formel de phase nulle.

Note 2 . - La fonction formelle U' de x, homogène de degré 0 , définie pour

$$M_{o} R < L_{o} \sqrt{x_{1}^{2} + x_{2}^{2}}$$
,

valant:

(2.20)
$$U'(v,x) = \frac{f(v,y)}{\sqrt{\sin y}} e^{v(L_0 + M_0 \Phi)},$$

vérifie:

(2.21)
$$\frac{1}{v} \left(x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1} \right) U' = M_0 U'; \frac{1}{v^2} \Delta U' = \frac{1}{R^2} \left(L_0^2 + \frac{1}{\Delta v^2} \right) U'.$$

Preuve de 1°). - Calculons D_L au moyen du théorème 4 du chap. II, § 3: on y substitue à H l'hamiltonien $L^2 - L_0^2$; vu (3.17), § 1, les caractéristiques de cet hamiltonien ont pour équations

$$dt = d\Phi = o$$
, c'est-à-dire : $dR = d\Phi = 0$;

le paramètre de ces caractéristiques est Ψ / $2L_o$, qu'on substitue à t dans ce théorème ; au second membre de la formule (4.5) de ce théorème doit être substitué :

$$e^{\frac{1}{2} < \frac{\partial}{\partial \mathbf{x}}, \frac{\partial}{\partial \mathbf{p}}} L^{2}(\mathbf{x}, \mathbf{p}) = \left[1 + \frac{1}{2} < \frac{\partial}{\partial \mathbf{x}}, \frac{\partial}{\partial \mathbf{p}} > + \frac{1}{8} < \frac{\partial}{\partial \mathbf{x}}, \frac{\partial}{\partial \mathbf{p}} >^{2}\right] (P^{2} R^{2} - Q^{2})$$

$$= P^{2} R^{2} - Q^{2} - 2Q - \frac{3}{2};$$

ce théorème donne :

(2.22)
$$D_{L} \beta = 2 L_{o} \frac{\partial \beta}{\partial \Psi} + \frac{1}{\nu} \left[\chi^{-1/2} \Delta_{o} (\beta \chi^{1/2}) - \frac{3}{2} \beta \right],$$

où Δ_0 est défini par (2.4) en coordonnées (x_1, x_2, x_3) .

Vu le § 1, (1.5) et (1.12) , nous avons, en employant aux premiers membres les coordonnées (R, Ψ , Φ) et aux seconds membres les coordonnées (x_1 , x_2 , x_3);

(2.23)
$$R \frac{\partial}{\partial R} = \sum_{j=1}^{3} x_j \frac{\partial}{\partial x_j}; \text{ donc}: R^2 \frac{\partial^2}{\partial R^2} = \sum_{j,k} x_j x_k \frac{\partial^2}{\partial x_j \partial x_k}.$$

La définition (2.4) de Δ_o s'énonce donc :

(2.24)
$$\Delta_{o} = R^{2} \Delta - R^{2} \frac{\partial^{2}}{\partial R^{2}} - 2R \frac{\partial}{\partial R}.$$

Or les formules (1.5) et (1.12) du § 1 donnent :

$$\frac{x_3}{R} = -\sin \Theta \cos \Psi, \text{ où } \cos \Theta = \frac{M_o}{L_o}, \text{ vu } \S 1, (1.11) ;$$

d'où, sur ♥:

$$< R_{x}, \Psi_{x}> = 0 ; R^{2} < \Psi_{x}, \Psi_{x}> = 1 + \frac{\cot^{2} \Theta}{\sin^{2} \Psi}, R^{2} \Delta \Psi = \cot^{2} \Psi \left(1 - \frac{\cot^{2} \Theta}{\sin^{2} \Psi}\right);$$

d'où l'expression de \mathbb{R}^2 Δ sur les fonctions de (\mathbb{R}, \mathbb{Y}) ; portée dans (2.24), elle donne sur ces fonctions :

(2.25)
$$\Delta_{0} = \left(1 + \frac{\cot^{2} \Theta}{\sin^{2} \Psi}\right) \frac{\partial^{2}}{\partial \Psi^{2}} + \cot^{2} \Psi \left(1 - \frac{\cot^{2} \Theta}{\sin^{2} \Psi}\right) \frac{\partial}{\partial \Psi};$$

d'où, vu (2.6), par un calcul banal:

$$\chi^{-\frac{1}{2}} \Delta_{o} (\beta \chi^{1/2}) = \sqrt{\sin \Psi} \Delta_{o} (\frac{\beta}{\sqrt{\sin \Psi}})$$

$$= -2 L_{o} \frac{d\tau}{d\Psi} F \beta + \frac{1}{4} \beta ;$$

de (2.22) résulte donc (2.12) .

Preuve de 2°). - Vu le lemme 2.1, β est localement fonction des seules variables (R, Y). Vu ce lemme et (2.12), β est une fonction, non identiquement nulle, de la seule variable R.

Pour r = 0, 2°) est évident. Une récurrence sur r permet de supposer que β_0 , ..., β_{r-1} sont des polynomes en τ , à coefficients fonctions de R et que 2°) est vrai, quand on y remplace r par r-1. Alors :

$$c_L = L_0^2 - \frac{5}{4\nu^2} + \frac{2L_0L_{r+1}}{\nu^{r+1}} \mod 1/\nu^{r+2} (L_{r+1} \in C);$$

l'équation (2.13), s'écrit donc :

(2.27)
$$\frac{1}{\nu} D_{L} \beta + (\frac{5}{4\nu^{2}} - \frac{2L_{0}L_{r+1}}{\nu r+1}) \beta = 0 \text{ mod. } 1/\nu^{r+2};$$

vu l'hypothèse de récurrence, cette équation vaut mod. $1/v^{r+1}$; vu (2.12), elle s'écrit donc :

$$d\beta_r = (F\beta_{r-1})d\tau + L_{r+1}\beta_0 d\Psi$$
, pour R=const.;

donc, puisque F est un opérateur à coefficients polynomiaux, $\beta_{\bf r}$ est la somme d'un polynome en $\tau=\cot \Psi$ et de la fonction $L_{{\bf r}+1}$ $\beta_{\bf o}$ Ψ , où $\beta_{\bf o}\neq 0$; or $\beta_{\bf r}$ est une fonction de Ψ de période 2π ; donc :

$$L_{r+1} = 0$$
; β_r est un polynome en τ ;

(2.27) s'écrit :

$$d\beta = \frac{1}{\nu} (F\beta) d\tau$$
 mod. $1/\nu^{r+1}$ pour $R = const.$;

d'où (2.15), si 3°) est vrai.

Preuve de 3°). - La condition que (2.16) vérifie (2.17) mod $1/v^r$ s'écrit:

$$f_o = const.$$
, $\frac{df_s}{d\tau} = Ff_{s-1}$ pour $s = 1, ..., r-1$;

f s est donc un polynome en T, de degré 3 s, contenant une constante d'intégration arbitraire ; f est donc bien défini, au produit près par un nombre formel, de phase nulle.

Choisissons les constantes d'intégrations réelles : les f_r sont réelles. Il existe un choix unique des constantes d'intégration des f_{2s-1} tel que les f_r aient la parité de r.

<u>Preuve de</u> (2.19). - Soit \bar{f} l'imaginaire conjuguée de f; puisque ν est imaginaire pure et F réel, (2.17) implique :

$$\frac{d\overline{f}}{d\tau} = -\frac{1}{\nu} F \overline{f} ; \frac{d}{d\tau} (f \overline{f}) = \frac{1}{\nu} (\overline{f} F f - f F \overline{f}) ,$$

c'est-à-dire, vu la définition de F:

$$\frac{d}{d\tau}(f\overline{f}) = \frac{1}{\nu}\left[\overline{f}\frac{d}{d\tau}(F_2\frac{d\overline{f}}{d\tau}) - f\frac{d}{d\tau}(F_2\frac{d\overline{f}}{d\tau})\right] = \frac{1}{\nu}\frac{d}{d\tau}\left[F_2(\overline{f}\frac{d\overline{f}}{d\tau} - f\frac{d\overline{f}}{d\tau})\right];$$
donc:

$$f \ \overline{f} \ -\frac{1}{\nu} \ F_2 \ (\overline{f} \ \frac{df}{d\tau} - f \ \frac{d\overline{f}}{d\tau}) \ = \sum_{s \in \mathbb{N}} \ \frac{c_s}{\nu^{2s}} \ (c_o = 1, c_s \in \mathbb{R}) \ .$$

c'est-à-dire, puisque les f_r sont réelles :

$$(\forall s \in \mathbb{N}) \sum_{s'=0}^{2s} (-1)^{s'} f_{2s-s'} f_{s'} = 2 F_{2} \sum_{s'=0}^{2s-1} (-1)^{s'} f_{s'} \frac{d}{d\tau} f_{2s-1-s'} + c_{s};$$

si s > 0, cette formule exprime f_{2s} au moyen de f_1 ,..., f_{2s-1} et de $c_s \in \mathbb{R}$, qu'annule un choix approprié de la constante d'intégration de f_{2s} .

Preuve de (2.21)₂ . - Vu (2.12) et (2.17) :

$$D_{L} f = -\frac{5}{4v} f ;$$

c'est-à-dire, vu la définition (2.9) de D_{L} :

$$\left[\begin{array}{c} a_{L^{2}}^{+} \left(v, x, \frac{1}{v} \frac{\partial}{\partial x}\right) - L_{O}^{2} + \frac{5}{4v^{2}} \right] \left(\sqrt{\chi} f e^{v \varphi_{R_{O}}}\right) = 0;$$

c'est-à-dire, vu l'expression (2.3) de $a_{L^2}^+$ et l'expression (2.6) de χ ,

puisque $\[\Delta_{_{\mbox{\scriptsize O}}} \]$ opère sur les restrictions des fonctions aux sphères R = cte et puisque $\[\phi_{_{\mbox{\scriptsize R}}} \]$ a l'expression (3.4) du $\[\S \]$ 1, où $\[\Omega \]$ ne dépend que de R :

$$\left(\frac{1}{v^2} \Delta_0 - L_0^2 - \frac{1}{4v^2}\right)$$
 U' $(v, x) = 0$,

U' étant défini par (2.20); U' est homogène de degré 0 en x; d'où (2.21) vu la définition (2.24) de Δ_0 .

<u>Preuve de</u> $(2.21)_1$. - De la définition (2.16) de f et de l'expression (2.10) de D_M résulte:

$$D_{\mathbf{M}} \mathbf{f} = 0$$
;

c'est-à-dire, vu la définition (2.8) - (2.9) de $\,\,^{\mathrm{D}_{\mathrm{M}}}$:

$$(a_{\underline{M}}^{+} - \underline{M}_{\underline{O}}) (\sqrt{\chi} f e^{\varphi_{\underline{R}}}) = 0 ;$$

le début du n° 2 a calculé :

$$a_{M}^{+} = \frac{1}{v} \left(x_{1} \frac{\partial}{\partial x_{2}} - x_{2} \frac{\partial}{\partial x_{1}} \right) ;$$

Ch. III, § 3

- 248 -

 a_M^+ annule donc les fonctions de la seule variable R ; vu l'expression (2.6) de χ et l'expression (3.4) § 1 de $\phi_{\mbox{\scriptsize R}_{\mbox{\scriptsize O}}}$, la relation précédente équivaut donc à (2.21) .

LEMME 2.3 . - Il existe un opérateur D , opérant sur les fonctions formelles g définies sur Γ [L_o , M_o] $\setminus \Sigma$, tel que :

(2.28)
$$D_{H} [f(v, \Psi) g(v, R)] = f(v, \Psi) Dg(v, R).$$

On a localement:

(2.29)
$$D = \sum_{s \in \mathbb{N}} \frac{1}{v^s} D_s (R, \frac{d}{dR})$$

 ${\rm D_{s}} \; ({\rm R} \; , \; \frac{{\rm d}}{{\rm d} \; {\rm R}} \,) \quad \hbox{\'etant un op\'erateur diff\'erentiel d\'efini sur} \quad \Gamma \; [{\rm L_{o}} \, , \, {\rm M_{o}} \;] \; \backslash \; \sum \; ;$

$$D_{o} = R H_{Q} \frac{d}{dR}.$$

 $\underline{ t Preuve}$. - Puisque $t D_H$ commute à $t D_L$, qui a l'expression (2.12) ,

$$\frac{d\tau}{d\Psi} \left(\frac{\partial}{\partial \tau} - \frac{1}{\nu} F \right) D_{H} \left[f(\nu, \Psi) g(\nu, R) \right] =$$

$$D_{H} \left[\frac{d\tau}{d\Psi} \left(\frac{\partial}{\partial\tau} - \frac{1}{\nu} F \right) f \left(\nu, \Psi \right) g \left(\nu, R \right) \right] = 0 ;$$

vu le lemme 2.2 3°), D_{H} [fg] est donc le produit de f par une fonction formelle, qui est définie sur Γ [L $_{o}$, M $_{o}$] $\setminus \Sigma$ et qui est notée D_{g} .

Le théorème 4 du chap. II, \S 3 prouve que D_H est du type :

$$D_{H} = \sum_{s \in \mathbb{N}} \frac{1}{v^{s}} D_{H,s} \quad (R, \Psi, \frac{\partial}{\partial R}, \frac{\partial}{\partial \Psi}) ,$$

 $D_{H,s}$ étant un opérateur différentiel ; il en résulte que D est du type (2.29). Puisque les caractéristiques de H vérifient (2.14), \S 1, ce même théorème prouve que :

$$D_{H}$$
 (fg) dt = d (fg) mod. $1/\nu$, pour dR = RH, dt, dY = H, dt;

or:

$$f = 1 \mod 1/\nu$$
;

donc:

$$D_{H}(fg) = RH_{Q} \frac{dg}{dR} \mod 1/\nu$$
;

cette relation équivaut à (2.30).

THEOREME 2. - 1°) Le problème (2.1) , défini au début de ce n°2, n'est possible que si :

$$c_{L} = L_{0}^{2} - \frac{5}{4v^{2}}$$
, $c_{M} = M_{0}$.

2°) CE PROBLEME (2.1) EQUIVAUT AU PROBLEME (2.31) dont voici l'énoncé : $\frac{\text{définir sur}}{\text{définir sur}} \Gamma \left[L_0, M_0 \right] \setminus \sum, \text{mod. } 1/v^{r+1}, \text{ une fonction formelle}$

$$g(v) = \sum_{s \in \mathbb{N}} \frac{1}{v^s} g_s (g_o = 1, g_s : \Gamma[L_o, M_o] \setminus \Sigma \rightarrow C)$$

satisfaisant aux conditions :

$$\begin{cases}
D_g = 0 \mod 1/v^{r+1}; \\
(H_Q)^{3r} g & est régulière, mod. 1/v^{r+1}, sur \Gamma[L_o, M_o].
\end{cases}$$

Toute fonction formelle satisfaisant aux conditions $(2.31)_r$ est, mod. $1/v^{r+1}$, le produit de g par un nombre formel de phase nulle.

<u>La condition que</u> g <u>est solution du problème</u> (2.31) <u>équivaut évidemment à la suivante</u>:

g est solution du problème $(2.31)_{r-1}$;

$$\begin{cases}
R H_{Q} \frac{d g_{r}}{d R} + \sum_{s=1}^{r} D_{s} g_{r-s} = 0 \text{ sur } \Gamma [L_{o}, M_{o}] \setminus \Sigma; \\
(H_{Q})^{3r} g_{r} \text{ est régulière sur } \Gamma [L_{o}, M_{o}].
\end{cases}$$

Ω <u>étant défini par</u> (2.8), § 1, <u>définissons sur</u> $Γ[L_o, M_o] \setminus Σ$ <u>la fonction formelle</u>

$$U''(v) = \frac{ge^{v\Omega}}{\sqrt{R^{3}H_{Q}}};$$

alors U'(ν) U"(ν) est l'expression U_{R_o} d'une solution U du problème (2.1)_r.

Toute solution du sytème (2.1)_r, définie sur V[L_o, M_o], est, mod. $1/\nu^{r+1}$,

le produit de cette solution par un nombre formel.

Supposons g solution du problème $(2.31)_{r-1}$; il existe alors une fonction $g_r: \Gamma[L_o, M_o] \setminus \Sigma \to \mathbb{C}$ vérifiant $(2.32)_r$, quand on y remplace Γ par son revêtement universel Γ ; g_r est définie à une constante additive près. La condition que g_r est définie sur $\Gamma[L_o, M_o] \setminus \Sigma$ équivaut à la possibilité de résoudre les problèmes équivalents $(2.1)_r$ et $(2.31)_r$.

<u>Preuve de 1°</u>) . - Les lemmes 2.1 2°) et 2.2 2°).

<u>Preuve de</u> 2°). - (2.6), (2.8), les lemmes 2.1 2°), 2.2 2°) et 2.3, les théorèmes 5 et 7.2 du chap. II, § 3.

Preuve de 3°) . - Ces théorèmes .

3. UN CAS PLUS SPECIAL . - Pour préciser ce théorème 2, choisissons, comme au § 1, n° 4:

(3.1)
$$H[L, M, Q, R] = \frac{1}{2} \{P^2 - \frac{1}{R^2} K[R, M]\} = \frac{1}{2R^2} \{L^2 + Q^2 - K[R, M]\};$$

choisissons K <u>fonction affine de</u> M : la condition (1.1) est vérifiée ; vu au § 1, (4.5), l'opérateur associé à H a pour expression dans R :

(3.2)
$$a = \frac{1}{2v^2} \Delta - \frac{1}{2R} K \left[R, \frac{1}{v} \left(x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1} \right) \right].$$

(3.3)
$$L_o^2 + Q^2 - K[R, M_o] = 0 \quad \text{sur la courbe} \quad \Gamma[L_o, M_o];$$

 \sum est l'ensemble des points de cette courbe où Q = 0 .

LEMME 3. - On a:

$$D = \frac{Q}{R} \left[\frac{d}{dR} - \frac{1}{v} G \right],$$

où G opère sur les fonctions

$$g : \Gamma [L_o, M_o] \setminus \Sigma \rightarrow C$$

et vaut:

$$Gg = G_1 g + \frac{d}{dR} \left[G_2 \frac{dg}{dR} \right],$$

(3.6)
$$G_1(R,Q) = \frac{G_3(R)}{Q^5}, G_2(R,Q) = -\frac{1}{2}\frac{R}{Q},$$

où
$$G_3(R) = -\frac{5}{32} R (K_R)^2 + \frac{1}{8} (K - L_0^2) (K_R + R K_{R^2})$$
.

<u>Preuve.</u> - L'opérateur D s'explicite comme suit, à l'aide du théorème 4 du chap. II, $\S 3$: dans la formule (4.5) de ce théorème s=2 et

(3.7)
$$e^{\frac{1}{2} < \frac{\partial}{\partial \mathbf{x}}, \frac{\partial}{\partial \mathbf{p}} > \mathbf{H}^{(2)}(\mathbf{x}, \mathbf{p}) = e^{\frac{1}{2} < \frac{\partial}{\partial \mathbf{x}}, \frac{\partial}{\partial \mathbf{p}} > \frac{1}{2} \mathbf{p}^2 = \frac{1}{2} \mathbf{p}^2;$$

les équations (2.14) § 1 des caractéristiques impliquent :

(3.8)
$$dR = \frac{Q}{R} dt, d\Psi = \frac{L_0}{R^2} dt;$$

ce théorème donne donc, vu la définition (2.9) de \mathbb{D}_H , quand β dépend des seules coordonnées (R, Y) de V:

$$D_{H} \beta dt = d\beta + \frac{1}{2\nu} \chi^{-1/2} \Delta (\beta \chi^{1/2}) dt$$

pour dt, dR, d \(\text{vérifiant (3.8)} \); c'est-\(\alpha \)-dire :

$$D_{H} \beta = \frac{\partial \beta}{\partial R} \frac{Q}{R} + \frac{\partial \beta}{\partial \Psi} \frac{L_{o}}{R^{2}} + \frac{1}{2\nu} \chi^{-1/2} \Delta (\beta \chi^{1/2}).$$

Vu (2.6)

$$\chi = [QR \sin \Psi \sin \Theta]^{-1}$$
, $\Theta = \text{const.}$;

donc, vu la définition (2.24) de Δ_0 , qui opère sur les restrictions des fonctions aux sphères R = const.;

$$\chi^{-1/2} \Delta \left(\beta \chi^{1/2}\right) = \frac{1}{\mathbb{R}^2} \sqrt{\sin \Psi} \Delta_0 \left(\frac{\beta}{\sqrt{\sin \Psi}}\right) + \sqrt{QR} \left(\frac{\partial^2}{\partial R^2} + \frac{2}{R} \frac{\partial}{\partial R}\right) \left(\frac{\beta}{\sqrt{QR}}\right)$$

remplaçons Δ_0 par son expression (2.26) et portons le résultat dans (3.9); nous obtenons:

$$D_{H} \beta = \frac{Q}{R} \frac{\partial \beta}{\partial R} + \frac{\sqrt{QR}}{2 \nu} \left(\frac{\partial^{2}}{\partial R^{2}} + \frac{2}{R} \frac{\partial}{\partial R} \right) \left(\frac{\beta}{\sqrt{QR}} \right)$$

$$+ \frac{L_0}{R^2} \frac{d\tau}{d\Psi} \left(\frac{\partial}{\partial\tau} - \frac{1}{\nu} F \right) \beta + \frac{1}{8\nu} \frac{\beta}{R^2}.$$

Choisissons

$$\beta (v, R, \Psi) = f(v, \Psi)g(v, R)$$

$$D_{H}(fg) = f Dg,$$

avec

$$Dg = \frac{Q}{R} \left[\frac{dg}{dR} + \frac{1}{2\nu} \frac{1}{\sqrt{QR}} (R^2 \frac{d^2}{dR^2} + 2R \frac{d}{dR}) (\frac{g}{\sqrt{QR}}) + \frac{1}{8\nu} \frac{g}{QR} \right].$$

Un calcul banal en déduit l'expression (3.4) de $\,$ D , G $\,$ ayant l'expression (3.5) , $\,$ G $\,$ et $\,$ G $\,$ valant :

$$G_1 = \frac{1}{4} \frac{d}{dR} \left[\frac{R}{Q^2} \frac{dQ}{dR} \right] + \frac{1}{8} \frac{R}{Q^3} \left(\frac{dQ}{dR} \right)^2, G_2 = -\frac{1}{2} \frac{R}{Q}.$$

Or, vu l'équation (3.3) de $\Gamma \left[{\rm L_o} \right.$, ${\rm M_o} \right]$:

$$Q^2 = K [R, M_0] - L_0^2;$$

d'où l'expression (3.6) de G_1 .

Le lemme précédent permet d'expliciter les propriétés du problème $(2.3)_r$, auquel le théorème 2 a réduit le problème $(2.1)_r$.

<u>Définition</u> 3 . - Une fonction $g: \Gamma[L_0, M_0] \setminus \Sigma \to C$ est dite <u>paire</u> ou <u>impaire</u> quand :

$$(\forall (\stackrel{+}{-}Q,R) \in \Gamma [L_{o},M_{o}] \setminus \Sigma) : g(Q,R) = \stackrel{+}{-}g(-Q,R).$$

THEOREME 3.1 . - (Complément au théorème 2). Faisons l'hypothèse (3.1).

1°) Si le problème (2.31) possède une solution g telle que $g_0 = 1$, alors il possède une solution unique telle que :

$$g_0 = 1$$
; $g_s = \frac{\text{est r\'eel et a la parit\'e de}}{s}$ s $(s \le r)$;

(3.10)
$$g\overline{g} = 1 - \frac{1}{2\nu} \frac{R}{Q} \left(\overline{g} \frac{dg}{dR} - g \frac{d\overline{g}}{dR} \right) \mod 1/\nu^{r+1}.$$

Cette formule (3.10) signifie que, pour $2 \le 2$ s \le r:

(3.11)
$$\sum_{s'=0}^{2s} (-1)^{s'} g_{2s-s'} g_{s'} = -\frac{R}{Q} \sum_{s'=0}^{2s-1} (-1)^{s'} g_{s'} \frac{d}{dR} g_{2s-1-s'};$$

elle exprime donc g_{2s} au moyen de g₁,..., g_{2s-1}.

2°) Si le problème $(2.31)_{2s-1}$ possède une solution, alors le problème $(2.31)_{2s}$ en possède une.

Note 3. - La fonction formelle U", définie sur Γ [L_o, M_o] \ Σ par le théorème 2 2°), vaut évidemment :

(3.12)
$$U''(v) = \frac{g(v)}{\sqrt{QR}} e^{v\Omega};$$

elle vérifie :

(3.13)
$$\frac{1}{v^2} \Delta U'' (v, R) = \frac{1}{R^2} \{ K[R, M_o] - L_o^2 - \frac{1}{4v^2} \} U'' (v, R),$$

où
$$\triangle$$
 est le laplacien : $\frac{d^2}{dR^2} + \frac{2}{R} \frac{d}{dR}$.

Preuve de 1°). - Supposons 1°) prouvé quand on substitue r-1 à r et supposons le problème (2.31) $_{\mathbf{r}}$ possible : vu le théorème 2 2°) et le lemme 3, $\mathbf{g}_{\mathbf{r}}$ est défini, à une constante d'intégration près, par les conditions :

$$(3.14)_{\mathbf{r}} \qquad \frac{\mathrm{d}\mathbf{g}_{\mathbf{r}}}{\mathrm{d}\mathbf{R}} = \mathbf{G} \, \mathbf{g}_{\mathbf{r}-1} \quad \text{sur} \quad \Gamma[L_{o}, M_{o}] \setminus \Sigma \,, \, Q^{3\mathbf{r}} \, \mathbf{g}_{\mathbf{r}} \, \text{est régulière sur } \Gamma[L_{o}, M_{o}].$$

Or G change la parité ; si r est impair, un choix convenable de la constante d'intégration rend donc g $_{\bf r}$ réelle et impaire ; si r = 2 s est pair , ${\bf g}_{2s}$ est donc paire .

On a :

$$\frac{dg}{dR} = \frac{1}{v} \operatorname{Gg} \operatorname{mod.} 1 / v^{r+1}; \operatorname{Gg} = \operatorname{G}_{1} g + \frac{d}{dR} \left[\operatorname{G}_{2} \frac{dg}{dR} \right];$$

un calcul analogue à la preuve de (2.19) en déduit (3.10), à l'addition près d'un nombre formel $\sum_{s} c_{s} / v^{2s}$ ($c_{s} \in R$), qu'on annule en choisissant convenablement les constantes d'intégration des g_{2s} .

Preuve de 2°). - Supposons r = 2s pair et le problème $(2.31)_{2s-1}$ possible; vu le théorème 2.3°), le problème $(3.14)_{2s}$ possède une solution g_{2s} quand on y remplace Γ par son revêtement universel Γ ; la preuve de (3.11) reste valable; or (3.11) prouve que g_{2s} est définie sur Γ [L_o, M_o] \ \ \Sigma; g_{2s} est donc solution du problème $(3.14)_{2s}$.

Preuve de la Note 3. - Vu l'expression (3.2) de a et le théorème 2.2°) :

$$\left\{\frac{1}{v^2}\Delta - \frac{1}{R^2} \quad K \quad \left[R, \frac{1}{v}\left(x_1 \frac{\partial}{\partial r_2} - x_2 \frac{\partial}{\partial r_1}\right)\right]\right\} \left[U'(v, x) U''(v, x)\right] = 0,$$

où U' est homogène en x, de degré 0, et où U'' ne dépend que de R, ce qui implique :

$$\triangle (\mathbf{U'} \cdot \mathbf{U''}) = \mathbf{U'} \cdot \triangle \mathbf{U''} + \mathbf{U''} \cdot \triangle \mathbf{U'}.$$

D'où, (3.13), vu (2.21)₂.

Notations . - Soit $[R_1,R_2] \subset R \subset C$ l'ensemble des valeurs prises par R sur $\Gamma [L_0,M_0] \setminus \Sigma$; soit w un voisinage simplement connexe du segment réel fermé $[R_1,R_2]$ dans le plan complexe C; $R \in C$.

THEOREME 3.2 . - Supposons K holomorphe dans ω ; définissons par (3.3) Q holomorphe dans $C \setminus [R_1, R_2]$.

1°) <u>Si le problème</u> (2.31)_{2s} <u>possède une solution</u> g , <u>alors</u>

$$(\forall r \le 2 s) \quad Q^{3r} g_r (Q,R) = (-Q)^{3r} g_r (-Q,R)$$

Ch. III, § 3

- 255 -

est une fonction de R, holomorphe dans w.

En particulier, g_{2s} est une fonction de R, méromorphe dans w, de pôles R_1 et R_2 .

2°) <u>La condition que le problème</u> $(2.31)_{2s+1}$ <u>est possible - condition qui implique</u> <u>aussi la possibilité du problème</u> $(2.31)_{2s+2}$ - <u>est la suivante : la primitive de</u> (Gg_{2s}) dR <u>est définie</u> (c.à.d. uniforme) <u>dans</u> $w \setminus [R_0, R_1]$.

<u>Preuve</u>. - Supposons 1°) vrai; (1°) est évident pour s=0). Alors la fonction $g_{2s+1}: \Gamma[L_0, M_0] \setminus \Sigma \to C$ est évidemment la valeur prise, sur la coupure $[R_1, R_2]$ de C, par la primitive de (Gg_{2s}) dR, qui est définie sur le revêtement universel de $\omega \setminus [R_1, R_2]$. La condition que g_{2s+1} est définie sur $\Gamma[L_0, M_0] \setminus \Sigma$ équivaut évidemment à la condition que cette primitive est définie sur $\omega \setminus [R_1, R_2]$.

S'il en est ainsi, moyennant un choix convenable de sa constante d'intégration, cette primitive g_{2s+1} est, au voisinage de R_1 et de R_2 , une fonction méromorphe impaire de Q: elle prend des valeurs opposées sur les deux bords de la coupure $\begin{bmatrix} R_1 & R_2 \end{bmatrix}$, comme Q.

Pour R voisin de R_1 ou de R_2 , Q est voisin de 0, g_{2s} est une fonction paire de Q possédant en Q = 0 un pôle d'ordre 6s; vu (3.3), (3.5). (3.6) et (3.14):

$$\frac{d g_{2s+1}}{d Q} = \frac{d R}{d Q} G g_{2s} = 2 \frac{G_3}{K_R} g_{2s} \frac{1}{Q^4} - \frac{1}{4} \frac{d}{d Q} \left[\frac{R K_R}{Q^2} \frac{d g_{2s}}{d Q} \right], \text{ où } K_R \neq 0;$$

 g_{2s+1} est donc localement une fonction impaire de Q possédant en Q = 0 un pôle d'ordre 3(2s+1).

Par suite Q^{3} (2s+1) g_{2s+1} est holomorphe sur w .

(3.11) définit g_{2s+2} ; Q^{3} (2s+2) g_{2s+2} est donc holomorphe sur ω . Par suite 1°) vaut quand on remplace s par s+1.

4 . LE CAS DE SCHRÖDINGER - KLEIN - GORDON . - Pour établir la possibilité ($\forall r$) du problème (2.1) $_r$, que nous avons réduit au problème (2.31) $_r$, une hypothèse appropriée est évidemment nécessaire.

Nous n'avons pas réussi à en trouver d'autre que la suivante : K <u>est un poly-</u>nome du second <u>degré</u> :

$$K[R,M] = -R^2 A(M) + 2 R B(M) - C(M);$$

c'est-à-dire : l'expression de a dans R_0 est l'opérateur de Schrödinger - Klein-Gordon (§ 1, n° 4) ; A, B et C sont des fonctions affines de M .

Alors, dans le théorème 3.2, $\omega=C$; dans la définition (3.5) de l'opérateur G, G_3 est un polynome en R de degré 3, G_1 et G_2 sont des fonctions holomorphes dans $C \setminus [R_1, R_2]$ et à l'infini, où G_1 s'annule 2 fois ; si g est holomorphe dans $C \setminus [R_1, R_2]$ et à l'infini, alors la primitive de (Gg) dR l'est aussi : tous les g_r existent donc, sont holomorphes dans $C \setminus [R_1, R_2]$ et à l'infini. Puisque g_r est holomorphe à l'infini et que $Q^{3r} g_r$ est holomorphe sur C, $Q^{3r} g_r$ est un polynome en R de degré R. Nous avons donc prouvé les deux théorèmes suivants :

THEOREME 4.1 (Existence et unicité) . - Supposons que a ait pour expression

dans R l'opérateur de Schrödinger - Klein - Gordon (§ 1, Exemple 4.1).

1°) La condition que le système lagrangien

(4.1)
$$a U = (a_{\underline{I}}^2 - c_{\underline{I}}) U = (a_{\underline{M}} - c_{\underline{M}}) U = 0$$
,

où cl et c M sont deux nombres formels tels que

(4.2)
$$c_L - L_o^2 = c_M - M_o = 0 \mod 1/v^2$$
,

possède une solution définie sur une variété lagrangienne COMPACTE V <u>est la suivante</u>:

i)
$$c_L = L_0^2 + \frac{1}{4v^2}, c_M = M_0;$$

ii) V est l'un des tores lagrangiens $V [L_0, M_0] = T (l, m, n)$, définis par le théorème 4.1 du § 1.

2°) <u>Il existe une solution lagrangienne</u> U de (4.1), <u>définie sur un tel tore</u>

V <u>et possédant l'amplitude lagrangienne</u>.

$$\beta_0 = 1$$
.

Toute solution lagrangienne de (4.1), définie sur V, est le produit de U par un nombre formel de phase nulle.

Note 4.1. - La projection de V sur X est

$$V_{x} : R_{1} \le |x| \le R_{2}, M_{0} |x| \le L_{0} \sqrt{x_{1}^{2} + x_{2}^{2}},$$

où R₁ et R₂ sont les deux racines de l'équation :

$$A_0 R^2 - 2 B_0 R + C_0 + L_0^2 = 0$$
 $(A_0, B_0, C_0 : valeurs de A, B, C en M_0).$

THEOREME 4.2 (Structure) . - Il existe une unique solution U de (4.1), définie sur un tel tore V , et ayant la structure suivante .

Son expression UR dans le repère Ro (§1, n° 1) est du type:

(4.3)
$$U_{R_0}(v) = U'(v)U''(v)$$
;

<u>la coordonnée locale</u> $\mathbf{x} \in V_{\mathbf{X}}$ <u>étant employée sur</u> V, U' (ν) <u>est une fonction</u> <u>de</u> \mathbf{x} , <u>homogène de degré</u> $\mathbf{0}$, <u>formelle</u>, <u>vérifiant</u>:

(4.4)
$$\frac{1}{v} \left(\mathbf{x}_1 \frac{\partial}{\partial \mathbf{x}_2} - \mathbf{x}_2 \frac{\partial}{\partial \mathbf{x}_1} \right) \mathbf{U}' \left(\mathbf{v}, \mathbf{x} \right) = \mathbf{M}_0 \mathbf{U}' \left(\mathbf{v}, \mathbf{x} \right) ; \frac{1}{v^2} \Delta \mathbf{U}' \left(\mathbf{v}, \mathbf{x} \right) = \frac{1}{R^2} \left(\mathbf{L}_0^2 + \frac{1}{4v^2} \right) \mathbf{U}' \left(\mathbf{v}, \mathbf{x} \right)$$

U''(v) est une fonction de R , formelle, vérifiant :

(4.5)
$$\frac{1}{v^2} \triangle U'' (v, x) = \frac{1}{R^2} \{ K[R, M_o] - L_o^2 - \frac{1}{4v^2} \} U''(v, x) .$$

U' et U" sont définies par les formules :

(4.6)
$$U'(v,x) = \frac{f(v,\tau)}{\sqrt{\sin \Psi}} e^{v(L_0 \Psi + M_0 \Phi)}, U'(v,x) = \frac{g(v,Q,R)}{\sqrt{QR}} e^{v\Omega},$$

 $\underline{o\dot{u}}$ $\tau = \cot g$ Ψ et $o\dot{u}$ Ω est la fonction de R définie par (2.8) Ω ;

arg. $\sin \ \Psi \ \underline{et} \ arg. \ Q \ \underline{ont les \ sauts} + \pi \ \underline{en \ les \ points} \ \Psi = 0 \ mod. \ \pi \ \underline{et} \ Q = 0$ $\underline{de} \ R \ \underline{et} \ \Gamma \ [L_O, M_O], \ \underline{orient\'es \ dans \ les \ sens} \ d \ \Psi > o \ \underline{et} \ Q \ d \ R > 0 \ ;$

$$f(v) = \sum_{r \in \mathbb{N}} \frac{1}{v^r} f_r \underline{et} g(v) = \sum_{r \in \mathbb{N}} \frac{1}{v^r} g_r$$

$$\frac{\mathrm{d}f}{\mathrm{d}\tau} = \frac{1}{\nu} \mathrm{Ff} \qquad , \qquad \frac{\mathrm{d}g}{\mathrm{d}R} = \frac{1}{\nu} \mathrm{Gg} ,$$

<u>les opérateurs différentiels</u> F <u>et G valant</u>:

(4.8)
$$F f = F_1 f + \frac{d}{d\tau} \left[F_2 \frac{df}{d\tau} \right], Gg = G_1 g + \frac{d}{dR} \left[G_2 \frac{dg}{dR} \right],$$

où: F₁ et F₂ sont les polynômes pairs de τ, de degrés 2 et 4, définis par le lemme 2.2 1°),

 Q^5 G_1 et Q G_2 sont les polynômes de R, de degrés 3 et 1, définis par (3.6); $f_0 = 1$; $g_0 = 1$; les fonctions f_r et g_r sont réelles et ont la parité de r;

$$(4.9) f \overline{f} = 1 + \frac{1}{\nu} F_2 \left(\overline{f} \frac{df}{d\tau} - f \frac{d\overline{f}}{d\tau} \right), g \overline{g} = 1 + \frac{1}{\nu} G_2 \left(\overline{g} \frac{dg}{dR} - g \frac{d\overline{g}}{dR} \right);$$

$$df_{2s+1} = (Ff_{2s}) d\tau, dg_{2s+1} = (Gg_{2s}) dR;$$

f est un polynôme en 7 de degré 3r;

Q^{3 r} g_r <u>est un polynôme en</u> R <u>de degré</u> 3 r.

Note $4 \cdot - g_{2s+1} - G_2 = \frac{dg_{2s}}{dR}$ est donc la fonction impaire sur $\Gamma[L_0, M_0] \setminus \Sigma$, primitive de la forme différentielle $G_1 = g_{2s} = dR$; cette forme est du type

- 259 -

 $\frac{\Pi'(R)}{Q^{6s+5}} dR, \Pi' \text{ étant un polynôme de degré } 6s+3 ; \text{ vu le théorème précédent}$ cette primitive est du type $\frac{\Pi(R)}{Q^{6s+3}}, \Pi \text{ étant un polynôme de degré } 6s+3.$

Donnons une preuve plus directe de ce fait essentiel :

LEMME 4.2. - $(V s \in N)$ la dérivation :

$$(4.10) \qquad \frac{d}{dR} \quad \frac{\Pi(R)}{Q^{2s+1}} = \frac{\Pi(R)}{Q^{2s+3}} \quad (Q^2 : \text{polynome en } R \text{ de degré 2 ; discr. } Q \neq 0)$$

définit un automorphisme $\Pi \mapsto \Pi'$ de l'espace vectoriel des polynômes de degré 2s+1.

<u>Preuve</u>. - Soit Π un polynôme de degré 2s+1; $\Pi(R)Q^{-2s-1}$ est holomorphe à l'infini, où sa dérivée a donc un zéro double; par suite (4.10) définit un polynôme Π' de degré 2s+1; l'application

est donc un endomorphisme d'espace vectoriel de dimension finie ; or c'est évidemment un monomorphisme ; c'est donc un isomorphisme.

CONCLUSION . - Ce § 3 a cherché, quand dim X = 3, un système lagrangien, d'inconnue scalaire, possédant une solution, unique à un facteur multiplicatif près, définie sur une variété lagrangienne COMPACTE. Il a trouvé un seul système de ce type : celui qu'emploie la mécanique ondulatoire des particules sans spin.

§ 4. L'équation aux dérivées partielles de Schrödinger - Klein - Gordon.

O. INDRODUCTION . - Nommons <u>problème</u> (0.1) le problème classique que voici : trouver les fonctions non nulles

$$u : E^3 \rightarrow C$$
.

de carrés sommables ainsi que leurs gradients, solutions de l'équation aux dérivées partielles :

$$(0.1)$$
 a $u = 0$,

où a est l'opérateur différentiel associé à l'hamiltonien :

(0.2)
$$H[L, M, Q, R] = \frac{1}{2} \{ P^2 - \frac{1}{R^2} K[R, M] \},$$

K étant une fonction affine de M [cf. §3, (3.1) et (3.2)];
cet opérateur est donc [cf. chap II, § 3, déf. 6.2];

(0.3)
$$a = \frac{1}{2v_0^2} \Delta - \frac{1}{2R^2} K[R, \frac{1}{v_0} (x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1})], \text{ où } v_0 = \frac{1}{4r}.$$

Le n° 2 suppose [cf. §3, n°4]:

(0.4)
$$K[R,M] = -R^2 A(M) + 2 R B(M) - C(M)$$

- A, B, C étant des fonctions affines de M: alors a est l'opérateur de Schrödinger Klein Gordon.
- Ce \S 4 rappelle brièvement la solution de ce problème classique (0.1) ; c'est à deux fins :
- i) établir des analogies formelles entre sa solution et celle du problème lagrangien (2.1) \S 3 : résoudre

$$a U = (a_{L^2} - c_{L}) U = (a_{M} - c_{M}) U = 0$$
 sur V compact;

ii) établir que la condition d'existence de la solution de ce problème lagrangien, [qui est celle de ce problème mod $1/v^2$, cf. (3.1), § 1],

se trouve être la même que celle du problème classique (0.1), dans le cas Schrödinger - Klein - Gordon, c'est-à-dire sous l'hypothèse (0.4); cette hypothèse est essentielle.

Note O. - L'équation de Schrödinger - Klein - Gordon est , pour des choix convenables de A,B,C, l'équation de Schrödinger et celle de Klein - Gordon , (4.21) et (4.22) du § 1 , où les termes en \mathcal{H}^2 ont été omis. L'usage est de traiter en "perturbation" les termes de ces équations linéaires en \mathcal{H} ; nous ne le ferons pas : nous étudions rigoureusement le problème (0.1) pour établir que l'affirmation ii) est rigoureuse.

1. ETUDE DU PROBLEME (0.1) , SANS L'HYPOTHESE (0.4) . - Rappel des propriétés des des harmoniques sphériques $u'_{\ell,m}$. - L'ensemble des polynomes en $x \in \mathbb{E}^3$, harmoniques, homogènes de degré ℓ , est un espace vectoriel sur ℓ ,

$$\mathbb{R}^{l} u^{i}_{l,m}$$
 (let mentions, $|m| \leq l$)

définis par le système, où u', m est homogène de degré 0 et vérifie donc

$$R^2 \Delta u' = \Delta_0 u' [cf. (2.4) et (2.24) § 3]:$$

(1.1)
$$\Delta u'_{\ell, m} + \frac{1}{R^2} \ell (\ell+1) u'_{\ell, m} = 0 ; (x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1}) u'_{\ell, m} = i m u'_{\ell, m}.$$

Soit S^2 la sphère unité de E^3 et σ sa mesure ;

de dimension 2l+1; il a pour base les polynomes

$$\int_{S^{2}} \left| \frac{\partial}{\partial x} u'_{\ell, m} \right|^{2} \sigma = \ell (\ell+1) \int_{S^{2}} \left| u'_{\ell, m} \right|^{2} \sigma;$$

 $\forall (l_1, m_1) \neq (l_2, m_2)$, < . , .> étant le produit scalaire sesquilinéaire :

$$\int_{S^{2}} < \frac{\partial}{\partial x} u'_{\ell_{1}, m_{1}}, \frac{\partial}{\partial x} u'_{\ell_{2}, m_{2}} > \sigma = \int_{S^{2}} u'_{\ell_{1}, m_{1}} \bar{u}'_{\ell_{2}, m_{2}} \sigma = 0.$$

Les restrictions des $u'_{\ell,m}$ à S^2 forment un système complet de fonctions sur S^2 : toute fonction $u:E^3\to C$, de carré sommable ainsi que son gradient, possède un unique développement série :

$$u = \sum_{\ell, m} u'_{\ell, m} u''_{\ell, m}$$

les u" $_{\ell$, m étant des fonctions de la seule variable R > 0, telles que :

$$\int_{\mathbb{R}^3} |\mathbf{u}|^2 \, \mathrm{d}^3 \mathbf{x} = \sum_{\ell, m} \int_{\mathbb{S}^2} |\mathbf{u}'_{\ell, m}| \, \sigma \int_{0}^{+\infty} \mathbf{R}^2 |\mathbf{u}''_{\ell, m}|^2 \, \mathrm{d} \, \mathbf{R} < \infty ,$$

$$\int_{\mathbb{R}} \left| \frac{\partial}{\partial x} \mathbf{u} \right|^2 d^3 \mathbf{x} = \sum_{\ell, m} \int_{\mathbb{S}^2} \left| \frac{\partial}{\partial x} \mathbf{u}'_{\ell, m} \right|^2 \sigma \cdot \int_{\mathbb{S}^2} \left| \mathbf{u}'_{\ell, m} \right|^2 d\mathbf{R} + \sum_{\ell, m} \int_{\mathbb{S}^2} \left| \mathbf{u}'_{\ell, m} \right|^2 \sigma \cdot \int_{\mathbb{S}^2} \left| \frac{d}{d\mathbf{R}} \mathbf{u}''_{\ell, m} \right|^2 d\mathbf{R} < \infty.$$

Résolution du problème (0.1). - La condition que la série u soit solution du problème (0.1) s'énonce, vu (0.3) et (1.1): (¼ 1, m)

$$(1.2) \quad \left(\frac{d^2}{dR^2} + \frac{2}{R} \frac{d}{dR}\right) \quad u''_{\ell, m} \left(R\right) + \frac{1}{R^2} \left\{\frac{1}{R^2} K \left[R, Km\right] - \ell \left(\ell + 1\right)\right\} u''_{\ell, m} \left(R\right) = 0.$$

D'où, évidemment, en notant $Ru''_{\ell,m} = v$:

THEOREME 1.1. - Le problème (0.1) équivaut au problème (1.3) que voici. Trouver les entiers ℓ , m et les fonctions non nulles $v:]0, +\infty[\rightarrow \mathbb{R}$ tels que :

$$|\mathbf{m}| \leq \mathcal{L}$$

(1.3)
$$\frac{d^2 v}{dR^2} + \frac{1}{R^2} \left\{ \frac{1}{R^2} K \left[R, K m \right] - \ell \left(\ell + 1 \right) \right\} v = 0 ;$$

(1.4)
$$\int_{0}^{+\infty} (1 + \frac{1}{R^{2}}) v^{2} dR < \infty , \int_{0}^{+\infty} (\frac{dv}{dR})^{2} dR < \infty .$$

Note 1.1 . - Le problème (0.1) est donc possible si et seulement si le suivant l'est. Trouver deux entiers ℓ , m et une fonction non nulle $u:E^3 \to \ell$, de carré sommable ainsi que son gradient, tels que :

$$|\mathbf{m}| \leq L$$

(1.5)
$$au = 0$$
, $\Delta_0 u + \ell (\ell + 1) u = 0$, $(x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1}) u = imu$.

Rappelons que ce système (1.5) joue un rôle essentiel en physique.

Note 1.2 . - Les équations (1.1) , (1.2) et le système (1.5) s'obiennent <u>formel-lement</u> en remplaçant

par

ν , σ, σ, σ,

dans les équations (2.21), (3.13) et dans le système (2.1) du §3, compte-tenu du théorème 3, § 1 et du théorème 2, §3, qui imposent :

$$L_0 = \aleph \left(\ell + \frac{1}{2} \right)$$
, $M_0 = \Re m$, $c_L = L_0^2 - \frac{5}{4v^2}$, $c_M = M_0$,

c'est-à-dire, vu (2.3) § 3:

$$a_{L^{2}}^{+} - c_{L} = \frac{1}{v^{2}} \Delta_{o} - \kappa^{2} \left[\ell + \frac{1}{\epsilon} - \frac{i}{2v \kappa} \right] \left[\ell + \frac{1}{\epsilon} + \frac{i}{2v \kappa} \right] ,$$

$$a_{M}^{+} - c_{M} = \frac{1}{\nu} (x_{1} \frac{\partial}{\partial x_{2}} - x_{2} \frac{\partial}{\partial x_{1}}) - \hbar m$$
.

Supposons K fonction holomorphe de R à l'origine . - Notons :

(1.6)
$$C_0 = -K[0, 4m], \gamma = \sqrt{(l+\frac{1}{2})^2 + C_0 x^{-2}};$$

le théorème de Fuchs construit deux solutions indépendantes de l'équation (1.3); si 2γ n'est pas entier, leurs quotients respectifs par $\mathbb{R}^{\frac{1}{2}}$ sont holomorphes à l'origine. Si γ est imaginaire pur, toute solution non nulle de (1.3) fait donc diverger les intégrales (1.4) à l'origine. Il en est de même si $\gamma = 0$ (cf. Fuchs). Supposons $\gamma > 0$; la solution $\gamma = 0$ (1.3) qui est le produit de

 $R^{\gamma + \frac{1}{2}}$ par une fonction holomorphe fait converger les intégrales (1.4) à l'origine, les autres solutions de (1.3) les font diverger (cf. Fuchs). Donc, puisque le problème (1.3) équivaut au problème 0.1:

THEOREME 1.2. - Si K est holomorphe à l'origine, alors la possibilité du problème (0.1) équivaut à celle du problème suivant. Trouver deux entiers £ et m tels que:

$$|\mathbf{m}| \leq \mathbf{1}, \ \gamma > 0$$

et que la solution v de (1.3), dont le quotient par $R^{\gamma+1/2}$ est holomorphe, non nulle, à l'origine, vérifie :

(1.7)
$$\int_{1}^{+\infty} v^2 dR < \infty , \int_{1}^{\infty} \left(\frac{dv}{dR}\right)^2 dR < \infty.$$

2. LE CAS DE SCHRODINGER - KLEIN - GORDON . - Dans ce cas, c'est-à-dire sous l'hypothèse (0.4), le théorème précédent peut-être explicité. Notons :

$$M_{o_{i}} = X_{i} m, A_{o} = A (M_{o}), B_{o} = B (M_{o}), C_{o} = C (M_{o}),$$

$$\alpha = \sqrt{A_{o}} X_{o}^{-1}, \beta = B_{o} X_{o}^{-2}.$$

L'équation (1.3) devient <u>l'équation hypergéométrique confluante</u> :

(2.2)
$$\frac{d^2 \mathbf{v}}{dR^2} + \left[-\alpha^2 + \frac{2\beta}{R} - \frac{\mathbf{v}^2 - 1/4}{R^2} \right] \mathbf{v} = 0 ,$$

où:
$$\alpha^2$$
, β , $\gamma \in \mathbb{R}$, $\gamma > 0$:

si $\alpha^2 > 0$, alors nous choisissons $\alpha > 0$.

Notons v la solution non nulle de (2.2) telle que v $R^{-\gamma-1/2}$ soit une fonction entière de R: elle est définie à une constante multiplicative près (Fuchs).

LEMME 2 . - La convergence des intégrales (1.7) équivaut à la condition :

(2.3)
$$\frac{\beta}{\alpha} + \frac{1}{2} - \gamma \quad \text{est entier} > 0.$$

<u>Preuve</u> . - Donnons à v l'expression :

(2.4)
$$\mathbf{v}(\mathbf{R}) = \mathbf{R}^{\mathbf{V} + 1/2} \quad \mathbf{e}^{-\alpha \mathbf{R}} \sum_{\mathbf{s} \in \mathbf{N}} \mathbf{c}_{\mathbf{s}} \mathbf{R}^{\mathbf{s}} ; (\mathbf{c}_{\mathbf{s}} \in \mathbf{c}) ;$$

en la portant dans (2.2) , on obtient (Fuchs) la formule de récurrence définissant les c_s en fonction de c_o :

(2.5)
$$s(s+2 \gamma) c_s = 2 \left[\alpha \left(s + \gamma - \frac{1}{2} \right) - \beta \right] c_{s-1}$$

La condition (2.3) équivaut donc à la suivante :

$$\sum_{s \in \mathbb{N}} c_s R^s$$
 est un polynome;

elle implique $\alpha^2 > 0$, donc $\alpha > 0$, donc la convergence des intégrales (1.7).

Prouvons que (1.7) n'a pas lieu quand (2.3) n'est pas vérifié.

 $\underline{\text{Cas}}: \alpha > 0$. - Si $\sum_{S} c_{S} R^{S}$ n'est pas un polynome, alors, pour un choix

approprié du signe de co:

 $c_s>0$, pour s voisin de $+\infty$. où c'>0;

Soit :

$$\epsilon \in]0, \alpha[$$
;

(2.5) donne:

 $s c_s > 2 \varepsilon c_{s-1}$, pour s voisin de $+\infty$, où c' > 0;

donc :

$$\sum_{S} c_{S} R^{S} > c' e^{2 \epsilon R}$$
 , pour R voisin de + ∞ ,

l'intégrale (1.7), diverge donc :

<u>Cas</u>: $\alpha^2 < 0$. - L'expression classique de v par une intégrale donne une expression asymptotique classique de v : pour R voisin de + ∞ ,

$$v = c e^{\alpha R} R^{-s/\alpha} + c e^{-\alpha R} R^{s/\alpha} + \dots$$

où c et \bar{c} sont constants, α imaginaire pure. L'intégrale $(1.7)_1$ diverge donc . (Cf. Whittaker and Watson, Modern Analysis, [18], chap. XVI. The confluent hypergéometric function, Asymptotic expansion).

<u>Cas</u>: $\alpha = 0$, $\beta < 0$. - Vu (2.5):

$$\mathbf{v}(\mathbf{R}) = \mathbf{R}^{\gamma + \frac{1}{2}} \sum_{\mathbf{s} \in \mathbb{N}} \mathbf{c}_{\mathbf{s}} \mathbf{R}^{\mathbf{s}}, \text{ où } (\forall \mathbf{s}) : \mathbf{c}_{\mathbf{s}} > 0;$$

l'intégrale (1.7), diverge donc .

<u>Cas</u>: $\alpha = 0$, $\beta > 0$. - $R^{-\gamma - \frac{1}{\epsilon}}$ v vérifie une équation différentielle à coefficients linéaires; d'où, par la méthode de Laplace:

$$v(R) = \sqrt{R} \int_{T} t^{-2\gamma-1} e^{\sqrt{2\beta R}(t-t^{-1})} dt$$

T étant le bord d'une demi-bande de \mathbb{C} contenant la coupure $]-\infty$, o[; d'où par la méthode du col, la valeur asymptotique, pour \mathbb{R} voisin de $+\infty$:

$$v(R) \simeq R^{1/4} [c e^{2i\sqrt{2\beta R}} + c e^{-2i\sqrt{2\beta R}}];$$

l'intégrale (1.7), diverge donc :

Le théorème 1.2 et le lemme 2 , où α et β sont définis par (2.1) et γ par (1.6), prouvent ceci :

THEOREME 2 . - Quand a <u>est l'opérateur de Schrödinger - Klein - Gordon</u>, alors 1°) <u>le problème classique</u> (0.1) , <u>dont nous venons de rappeler l'étude</u>,

2°) <u>le problème lagrangien</u> (2.1) <u>du</u> § 3 :

$$a U = (a_{L^2} - c_L) U = (a_M - c_M) U = 0 \underline{sur} V \underline{compact},$$

3°) ce même problème mod. $1/v^2$, c'est-à-dire le problème (3.1) du $\S 1$,

ont tous trois la même condition de possibilité : l'existence d'un triplet d'entiers

(l, m, n) vérifiant la condition (4.11) du théorème 4.1, § 1.

Note 2. - La comparaison du théorème 1.2 et du théorème 3.1 1°) § 1 prouve que le théorème précédent ne s'applique pas à tout opérateur a associé à un hamiltonien H du type (0.2).

CONCLUSION . - Bien que les problèmes aux limites classiques et les problèmes lagrangiens soient absolument indépendants, il se trouve qu'ils définissent les mêmes niveaux d'énergie des équations de Schrödinger et de Klein - Gordon.

Les niveaux d'énergie observés en physique sont ceux de l'équation de Dirac, qu'étudie le chapitre suivant.