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The generalized three circle- and other convexity theorems with

application to the construction of envelopes of holomorphy

H.J. Borchers

Institut fiir Theoretische Physik, Universitdt Géttingen

- Summary: If G;cC C™ and H1 C (fm are natural domains
and if GOC G‘r1 and HOC H1 are domains then we will con-
struct the envelope of holomorphy of G0 x H, U G1 X Ho .
On the way we will prove convexity theorems for the logarithms
of the moduli of holomorphic functions. The connection between
the convexity theorems and the construction of envelopes of holo-
morphy will be established by technics of Hilbert-spaces of holo-

morphic functions,
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Résume: Si G;C (Cn et Hl C [w\ sont des domaines
naturels d’ holomorphie et si GO et Ho sont des domaines
respec'tivement contenus dans G1 et Hl’ on construit 1’ en-
veloppe d’holomorphie de G_o X H1 U G1 X Ho' On démontre
sirmultanément des théorémes de. convexité pour les logarithmes
des modules de fonctions holomorphes. La relation entre les
théorémes de convexité et la construction des enveloppes d’holo-

morphie est etablie au moyen de techniques d’ espaces de Hilbert

de fonctions holomorphes.
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I. Introduction

In some examples of constructive field theory the euclidean version of
this theory has been used, and in particular the measure theoretic version
of it, These examples have revived the interest in this field, in particular
in the question whether every Wightman field theory in the euclidean region
can be represented by a measure or whether this is a particularity of special
models. Lately J.Yngvason and the author [ 1] gave necessary and sufficient
condition that a Wightman field theory has such a representation. These con-
ditions are given in terms of growth estimates of the Wightman functions at
Schwinger points, these are points where the time co-ordinates are purely
imaginary and the space components are real. One gets the Wightman func-
tions at these points by analytic continuation starting from the real (Minkowski)
region.

The real region is also the physical space where the axioms of field theory
are valid, Therefore the proof of estimates in the complex has to start from
the reals where one can get estimates from the assumptions of the theory,
Afterwards methods of analytic completion have to be used in order to carry
these estimates into the complex.

The basic estimates follow usually from positivity conditions of the theory
which are consequences of the probability interpretation of quantum mechanics.
These positivity conditions do allow the use Cauchy-Schwarz inequality and in
many c ases one obtains estimates on domains of the form Go X H1 U G1 X Ho
where G C G, C (" and H CH C (™ . Since the same estimate holds

in the envelope of holomorphy one would like to know the answer for this

problem,
In all examples which have been solved so far the answer has the form
4
U GA x H where G, resp. H, are interpolating domains of the
A=0 -1

pair Go, G1 resp. Ho , H . It is the aim of this paper to prove that

1
the answer to the above problem is always of this form provided the pairs
G , G and H , H
o 1 o
next section,

] have some properties which will be defined in the

In the next section we give a characterization of these pairs and define an

interpolating family of domains for such pairs. Furthermore we show that

these definitions have some universal properties. From these properties
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we derive in section 3 a generalization of the Hadamrd three circle theorem
and other convexity results for holomorphic functions, In section 4 we will
treat Hilbert-spaces of analytic functions, which we need in section 5 as a
tool for converting the convexity theorems into theorems of envelopes of

holomorphy.

II. Interpolating families of domains of holomorphy

We start our investigations with some notations and remarks

II. 1, Notations:

Let (; be a domain in fh then we denote by
a) A(G) the set of functions which are holomorphic inG . A(G) is fur-
nished with the topology of uniform convergence on compact subsets of G
With this topology A(G) 1is a nuclear locally convex topological vector
space,.

b) P(G) ihe set of functions which are pluri-subharmonic on G ,

c) Let FC P(G) be a family of pluri-subharmonic functions, such that
the elements of ¥ are uniformly bounded on every compact set of G , then
there exists a pluri-subharmonic majorant p(z, F) &€ P(G)

The function p(z) = sup { f(z); fe F% will not be upper semi-conti-

nuous is general, therefore we put
p(z, F) =.1im sup p(z)
z> z
(see e.g. [3]).
d) Let M ¢ C”L be any set then we denote by ‘—I\E the closure of M and
by M° the interior points of M,

With these notations we introduce the following concepts:

II. 2. Definitions:

n
1) Assume GOC Gl c C such that G1 is a domain of holomorphy.
H
We call G, G, + an Hadamard pair and write GO C G1 if the

following conditions are fulfilled:
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o

(= o
a) G {Go N Gl}
b) For every connected component | of G, wehave G_N Y7

c) To every point z € Gl\ G, and every neighbourhood U of 2z
exists a plurisubharmonic function p ¢ P(Gl) with the properties
(1) p(z) ¢ 1 on G,
(ii) P(z) € O for z ¢ Go
(iii) there exists a point 2, € U (the neighbourhood of Zo ) with

pl(zy) > 0 y

2) Let G1 be a domain of holomorphy and G0 C G1 , denote by

F ¢ P(Gl) the set of pluri-subharmonic functions fulfilling the

condition c¢(i) and c(ii) of definition 1) then this family contains a

pluri-subharmonic majorant which we denote by p_ (z, G G, )

H
3) Let G, ¢ " be a domain of holomorphy and let G C G,
Furthermore let p_ (z) be the pluri-subhgrmonic majorant Py (z, G, G,)
then follows (since f(z) = O is pluri-subharmonic) from a) and c)

o
= . = W i 0 < £ 1
that GO { Z € G1 ;o p(2z) 0} . We define for A

GA = {z; pm\zu/l}
All the GR are domains of holomorphy [ 2] and they form an interpola-

ting family of domains because of the maximum principle.

It is our aim to study this interpolating family in some detail. We want to
show that this definition has some universal properties, and that for this
family an ananalogon of the Hadamard three circle theorem is fulfilled. We

start with some preparations,

1.3, Lemma:
Let Gl1 Id GIH-1 'd G1 , i=1,2,... be domains of holomorphy.

. . . H .
In addition let G2 ¢ GM*1C G besuchthat G, C G, , i=1,2,... and

| B .
H . .
G < G L If G}\ are the interpolating domains of G; and G;
then follows
i i+1
G)‘ C GA C G,\ .
i i
If furthermore J GL = G, and {J G, =G holds, then
: ]
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follows for every ) ¢ [O, 1]

i
@.J G = G, .
Proof:
Let pin( z) be the pluri-subharmonic majorant belonging to the pair
I3 » i -
G, G|  (Def.Il.2.2) then we know that P, (2)  is defined on G,
From Gqu Gfl1 and the maximality of p;n (z) follows

i+1 i i
P2« P (2) ¢ p_(2) on G,

This implies by definition of G,L the relation

Gl C. G1+1 c G .
A A

For the second statement we remark that p:" (Z) 1is a decreasing sequence,
Thus
f(z) = lim pin (z) 2> p_(2)

i-00
i
is a pluri-subharmonic function in the region where it is defined. From U G, =G,
i

follows that f(z) is defined on Gl and that f(z) € 1  holds because it is
true for all prln (z) . From Gg = Go follows furthermore the
equation f(z) =0 for z € G_ . Hence we get by maximality of p_ (2)
the inequality

f(z) < pm(Z)

which implies together with the above inequality the relation f(z) = p_ (z)

In terms of domains this means
i _
(1) G, = G,

In order to derive further consequences of the definition of the family of
interpolating domains we need some preparations. The last lemma suggest
that it is sufficient to look at bounded domains, So the first step would be to
show that we can approximate Go and Gl by bounded domains, But before

doing this we want to show that Go is a Runge domain in G . (We say Go

1

is a Runge domain in G1 if A(Gl) is dense in A(Go) ).

11.4. Lemma: .

2 ‘
Let G - G, then follows that G, is a Runge domain in Gl

But the converse is not true in general.
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Proof:

Let us first show the second statement, Assﬁme G1 = (}:4 and Go is
the unit-circle then it is clear that GO is a R;mge domain in ( ‘. Let now
DR be the circle of radius R > 1 then D1 C DR , since_tlhe conditions
of definition II. 2 are obviously fulfilled by the function logR logizi. Using

the Hadamard three circle theorem, which also holds for subharmonic functions

one concludes -1
(log R) " log Iz| , 1€ 1Z1 £ R

pm(z » Dy, DR) = { o izl e 1

L

From this follows that

lim pm(z, Dl’ D) =0

R >0

R

which implies by Lemma II. 3 that D1 , (]:4 is not an Hadamard pair.

In order to prove the first part, we have to show that the A(Gl) -hull of
every compact set in G liesin G_ . Let d(z) be a distance in "

depending only on |z;] and K (C Go be a compact set of Go then follows:
] n
5=mf{d(z—w}-ze’<,we(f\60i > 0
Let now Y’(Z) € Cm ((fn) be such that
a) ({’ >0 for dez) « -g—
b) Y =0 for dizy » S
¢ , 5 )
c) 5(?(2) A/l =4 where c[/\ denotes the Lebesgue measure on f and
d) Y= QUZA,IZy0, e 12,0),

Denote furthermore as usual

GQ=[ZGG-) diz-w) >¢ for all we(ﬁn\G}

Nogv, the function pm(z, Go’ Gl))$ ﬁf = p(z) is plgri-subharmohic
on Gl/l . From construction follows p(z) =o for z & GO/Q' and p(z) > o
for zc¢ GS? \ (—;3_/1 . Since K is a compact set in Gj/a’ it follows that the
P(Gls/m ) hull of K staysin G_ . But the P(Gls/1 ) and the A(Gf/l) hull
coincide (see e.g. [6] Theorem 4, 3, 4) which implies that the A(Ggl" ) hull of

1
K is compact in Go . On the other hand it is well known that Gflﬁ is a

~ . . S
Runge domain in G1 , which implies that A(ul) is dense in A(G*2) and
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hence the A(Gl) hull of K is compact in Go , which proves the lemma.

After this preparation we show:

I11.5, Lemma:
Let Gog_ G1 , then we can find increasing sequences of domains G;

i=1,2,... with the properties:
i i i, i . i
a) G0 C G1 and Go is relatively compact in G1

b) G1 C G1+1C G such that {J G; = Go and Go1 is relatively com-
L

pact in G

i +1 i ' i

c) Gl1 C G1 C G such that U Gl1 = C-1 and Gll is relatively
compact in G1 -

d) G:) and Gl1 are the interior points of their closure and these closures

are all A(Gl) convex.

Proof:

According to well known theorems we can find an increasing sequence of
-domains Gli fulfilling the condition c¢) and d) of the lemma (take for instance
analytic poly-hedrons, see e.g. [5] th.11.6.6.). Without loss of generality we
might assume Gi N G, = ot *,@’ Let now K be a compact set in
and K its A(G, )hull then follows ® C G, since G_ is a Runge domain
in Gl (Lemma 11.4) and also K C G since G is a Runge domain in

Gr1 by construction., Hence X c Now (_P‘)E is relatively compact in r
and also  A(G,) convex. Hence we can find a domain G; such that

e

4 ~ L
(FMYfc 6 ¢ (M)
such that 1ts closure is A(G ) -convex and it is the interior of its closure,

Since U l" Goﬂ Gl o follows that all conditions of the lemma are
fulfilled.

11. 6. Remark:

S1nce the closure of G is A'(Gl)convex it follows immediately that
G C G . This lemma together with lemma II, 3 does allow to reduce all
further 1nvestigations to bounded domains which are relatively compact in C'r1
and also A(Gl) convex, this means to such domains G for which the bounded

analytic functions are dense in A (G)

[
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Our next aim will be the investigation and characterization of the interpola-

ting family of such domains.

I1.7. Lemma:

H n H m
Let G C G, C Cc . H C H, ¢ (' and let G, resp. H, be their inter-

polating families. Assume

¢ =y, foal ¢ A6
is such that

§6,) ¢ Ho and £ (6,) ¢ H,
then follows g ( GR)C H, -

Proof:
Let pm
to Ho and H

(w,H_, H,)  be the maximal pluri-subharmonic function belonging
1 then follows that pm( g(z ), Ho’ Hl) is pluri-subharmonic
on G1 and bounded by 1. Since -g (Go) C Ho it follows that pm(g(z); H, Hl)

vanishes on Go . This implies
Py (§(2)5 H, H) < p_ (2, G, G))
and hence we get for 2z € GR , the inequality pm(g(z); Ho’ Hl) £ pm(Z,Go,le,{
which implies g( 2)eH, .
First we will investigate absolutely convex domains. The reason for this is
that we need the following result in the next section. Recall a set G

is called absolutely convex if it is convex in the usual sense and if it contains

with Z also )2z with |)]| ¢ 4 .

II1.8. Lemma:

Let G oC Gr1 c " be bounded absolutely convex domains then we have
G &G, .

o 1 ' "
For G € " denote by (a,7) = 209;2; ; andby

m,(Q) = sup {ICQ,Z)(; Z'SGL% “',i=o0, 1 then we have

4-)
Gl = { pA éG”- 1(0,2)]4 m,(Q) m}(a) for all ¢ *O}

In addition the function Pm(z, Go’ Gl) is continuous on Gl

If we define for 72 ¢ 3 GO (the boundary of G0 ) the function
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sup{(“; Mo Mz e G, z2e9d6, NG,

Y(z) = %
4 Ze G, NG,

we have also

G :{/uz.’ 2 ¢ 96, and og/x4Tl(2>§

A

Proof:

Since Go is absolutely convex it follows that every point in the complement
of Go is separated from Go by a linear functional. Since G1 is bgunded
it follows that this functional is bounded on G1 which implies G0 C G1

Let now f(z) be a bounded non-negative pluri-subharmonic function on
(?r1 and z,+0 with 2z ¢ G1 then g(w) =1f(w.Z) 1is sub-harmonic in Wéfj
Define  n.(Zo) = sup {\vvl L WZo€ Gi%, i=0,1 and mitzo,f# sup fg(w) ;

fw)< n, (Zo) S then we get by the Hadamard three circle theorem:
=) YN
sup { Quwis tw! <, (Zo) n,,.tzo)} $AM, (2o, (14 U2V o (Z,, £)

If we take in particular f(z) = p_(z, G, G,) then follows m (z ,f) = o,
m (o] 1 o o

m, (zo, f) = 1 and hence
e A=) A v
sup % En(\A/«Zo’ Go , G4 )7 {wl ¢ NG (Zo) M, (Zo‘)_} £ A

From this we get by maximality of p_ (z, G, G,) wz € G
) y m o’ 1 ) A
A~ I
exactly if Iw/| <N, ‘(2) n, (2,) . Using the fact that G_ and G, are abso-
lutely convex then we get from this the first characterization of G .
If we choose Zz_€ aGo then we have n (z ) =1 and n, (Zo) =r(z)
and we get the second characterization,
Let now izl be anormon {" . It follows from the convexity that |z i
is a continuous function on a G1 and 9 Go . Hence r(z) which is the
quotient of these function is continuous. From the second definition of G,

and from pm(Z, Go’ Gl) = sup i A  2€ G;\ % follows the continuity of p_ .

As a next step let us drop the assumption that Go and G. are bounded,

1
but, assume further on that they are absolutely convex.

11,9, Lemma:

Let GOC Gl C .d:n be absolutely convex domains. Let L1 be the

H
maximal linear subspace contained in G1 , then G0 C G1 if and only if

LICGO
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Since L1 is also absolutely convex it is isomorphic to some (Em. Hence
' ' i
we can write { = (fmxfm,m+m’=n, Co’(fm"Go and G‘zﬁmx(;"

with GO , G1 bounded and absolutely convex. If G;‘ are their interpolating

domains then we abtain Gl - C™x G; .

Proof:

Since G1 is absolutely convex follows from the bi-polar-theorem that G1
is a cylinder this means C‘r1 + L1 - G1 . Since (I:n is finite dimensional

M )
we can write G‘ = C X 64 with Cm isomorphic to L., Therefore

1

H

if L1C Go then follows Go C G1 and the structure of G'1 from the pre-
H

vious lemma, If we assume on the other hand GOC G1 then follows from the

argument given in the proof of Lemma 11,4 that L C Go'

1

In the next step we are turning to more general domains,

11,10, Lemma:
Let G ¢ (" be a domain of holomorphy and let G,C G, C G be such that

a) Go is relatively compact in G, and G1 is relatively compact in G,

1

b) Both domains coincide with the interior of their closures.

c) _C-So and_(.:r1 are A(G) convex,

d) Each component of G, contains a component of Go'

1
H

Then we have Go C Gl'

If we define for every f &€ A(G)

M) =suwp §If) ;2 ¢G,} and mif) = sup {If@rl - 22 G,

then we obtain
- S , °
Gl:ize G;\F(I)léw\(f; M\(} for all fsA(G)i

Since 60 and 61 are compact sets in G it follows that M(f) and m(f) .
are finite numbers. Since Eo is A(G) convex there exists for every Z,¢ G\ Eo
a function f e A(G) with [ fcz.)] > m(f)

Hence we have Go 2 Gl'
Every f(z)¢ A(G). maps G_ into the circle |w|< m(f) and G,

into the circle iw; < M(f). Hence we get from Lemma II.7. the inequality
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- )
iF(z)\ £ ‘wr(f\” M f) for ze @,

If we define for every f with M(f) + m(f) the pluri-subharmonic function

-4
M(Fl) . log | feal
mif) mif)

pgn_) = ( log

and by q(z) the pluri-subharmonic majorant of all p.z) then we get from
£ g

the above argument
gz) ¢ o, (z,6,, G,

In order to show that the two functions are equal we make use of an argument
due to H, Bremermann [4] showing that the functions J log f(z) )>o are total
in P(G) if G is a domain of holomorphy. If we denote by Dr the circle of
radius r in * then the envelope of holomorphy of Go X D1 U G1 x D

1/e
is given by

Hgi(z.“")'} 2664 and (wlce ™% G"‘G‘)j

If F(z,w) ¢ A(H) then it can be written as FLz)w) = 2 fntl) WVl

The radius of convergence r(z) is given by

A . 4

log — = lim sup — lo (2]

g 7o), m sup [ log | f

If log é{'ﬂ denotes the upper semi-continuous majorant then we have

A
Pm(2| 60,64) 2 log g.a)

and pm(z, Go’ G) is the pluri-subharmonic majorant of all the log <)

Since G1 is A(G) convex we obtain a dense set of function F(z,w) = 2 fn(z)w‘h

&€ A(H) by choosing fn(z)e A(G).

Since G xD. ¢ H and G_ xD, ¢ H follows
o 1 %

1

lim sup log M(f ) £ O and
n - oo n

lim sup log M(Fh) 4 A1
n —eo

and consequently we get from previous inequality
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R L AR LA

which means

log i— Z ;\L for Z €& GA
Y (z)

Since this holds for all F we get

Oz, 6, G,) = G(2)

Since the majorant of the log 4 coincides with P

§z)
This shows the lemma,

The last lemma gives us for the special situation some more information.

We obtain

I1.11, Corollary:
Under the assumptions of Lemma 11,10, we get for O+ A % 4

a) GA = ( Gh,\ )o and E: is A(G) convex

b) GR is relatively compact in G1 and

is relativel ti .
c) Go is atively compact in GA
d) if we extend pm(z’Go’Gl) to G1 by putting it equal to one on Q) G1 ,

then pm(z’Go’Gl) is continuous on 61.

Proof:

Let us first show statement b),
Since Go is relatively compact in G1 follows that for every f € A(G) we
have m(f) £ M(f) except for the constant function, Therefore for f not con-

stant the function

, _ -4 '
P(Z,F)*— maxLO (logl\lfﬂ) . log_‘_EE‘-)L
) mip)
1 m ()

is well defined, pluri-subharmonic and continuous. pm(z, Go’ Gl) is the
pluri-subharmonic majorant of the p(z,f) on Gl' Since —(51 is A(G)-convex
there exists for every 2 € a G4 a function f with pP(Zz,, f) > 4'-59:
Since f is continuous there exists a neighbourhood Uza of Z, such that

pl(z,f) >1-¢ for 2 & (Uz . Since 9(_; is compact there exists a
o
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finite covering UZ_ ,i=1.,.,.n of 864 such that max {p_(z‘ f,-) § >1 -£
[3
in {J Uz . Choosing £ < A-2 we see that 6) is relatively compact
', t
in Gl' We also see that pm(z,Go,Gl) is continuous at the boundary of Gl'

Since p(z,f) is continuous follows that the set {z : Pz, F) £ 3} is

closed, Hence follows that

l—; :{-Z.’ p(z, flg | foral f-’é A(G‘\g

is a closed compact A(G) convex set, Let A >0 be fixedand £ >0
then we can find to every point Z, e 0 l—; again a function f(z) with
P (2, {’) > A-€ . Therefore we find by compactness of l_'R and the

same arguments as above

I
r;. C PA for A <]
)
Since Gl = r{ follows from this
)
GA' is relatively compact in G/\ for l L 2

but from this follows that pm(z, Go’Gl) is a continuous function on Gr1 and

by the above argument also in Gl' This proves d). The other statements of

Corollary are easy consequences of this.

11.12, Corollary:
Under the assumption of Lemma II.10 we get for () < ,},4 V4 12 <A

H
a) -
qu GASL
b) If we denote Ho = G) 1 and H1 = G) 9 then we have

H 3
a Gu-,u),],-f/ull !

Proof:

Statement a) is obtained by applying Lemma II. 10, to the results of Corollary
11,11, The proof of b) will be obtained in three steps.
First step:

Let 14 =0 | /\24= A , then we find:

P (2, G, H)) = ;-’['; b, (2,6, G,) for zeH,
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Proof:

{ :
Wehave 3 Ry (26, 6.) € Pp(z, G, H,) inH

fince the right hand-side is the pluri-subharmonic majorant,

Define the function f(z) on G1 by
Az |QW(Z)GO) H4) Zé H :G)1

[(z) =
pm (2‘ Go‘ G4 ) 2 & 64 \ H‘

Since the functions on the right hand-side are taking both the value 12 on
the boundary of H2 follows that f(z) is continuous., Furthermore we know
that f(z) is pluri-subharmonic with the possible exception of the points in

a Hl' But we want to show that it is also pluri-subharmonic in these points.
Let ZoeaH1 and w'gch such that Z_+ T w ¢ 64 for ITI ¢4
(Such  exist since H, =

1 Ao
inequality and the definition of f(z) we have F(z 12 Pz, G, G,).

is relatively compact in Gl). By the first

Hence -we get

F(Zo) = P, (20\60‘& } ¢ glgm(-zo-te“‘fwl GO;G“)J?

1
o
_’L

<

S f(?o+ ; W) cl(f

This shows f(z) is pluri-subharmonic in G, and consequently f(z) £ P &, Cc C‘)

1
which implies  }, P’“ (2,6, H,) <P, (2, 6,.6,)on H, and hence

‘DM(Z‘GO\H4)= :;— ,DM(Z]G()\G")'

1

Second step:

- - - -

Let 14 + A and ).Q': A and define

R, for zZ € Gl.

(z R4)= {
q"‘ | P.‘.(Z)Go‘ 6,) for =z « 64 \ GA
p

then we obtain

A
lgm(z)“o'c,‘)‘—' :T <qm(2,)4)—}4)'
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By maximality of P, (z, Ho’ Gl) we obtain

. 4 -
(28,60 > 7 (9, 200 -3, )

Define again a function f(z) by:
F(Z): pm(Z)GOlG" ) for Z € Ho = GA4
A4+(4—)4)PM(ZIHO,G4) for Z € 64 \ H, .

We obtain again by the continuity of the two functions p, that also f(z)

is a continuous function and takes the values A, on @QH o - In order to
show that f(z) is pluri-subharmonic we only have to consider points of a H 0°
We remark again that f(z) » P, (z, Go’ Gl) and therefore we obtain as be-
fore f(z) is pluri-subharmonic. Therefore we find f(z) = pm(z, Go’ Gl)

which is equivalent to the statement we are looking for,

Last step:

By the second step we have for A . +4 |
A -
Pm‘Z;G;‘;Q.) = 5 (9, (2, - A,

From this follows that G A is a member of the interpolating family of the
2
pair G"l’ Gl' So we can use step one for the tripel G Ape G)z, G, and

1
obtain
-
P (2,6, ,6, ) = lif_. P (z, Gy, G, )
1 A -A,
- 4 (qm(’Z‘,A1)_A4) ‘
M -2,

Using the definition of H{u and of qmcz ; A p ) we obtain the desired resulf.

Next we want to generalize the result of the last corollary to arbitrary

Hadamard pairs of domains. As a preparation we prove first the following
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I1.13. Lemma: .
n H
Let G, C C be a domain of holomorphy and G, C G,. Let
H

H
0434 <A then we obtain Go C Gl‘l and G)IC Gl‘

Proof:

H

The first statement is trivial since Go C G,. Since we know the existence

1‘
of the function pm(z, Go’ Gl) follows that the conditions b) and ¢) of Defini-
tion 1I, 2, are fulfilled. It remains to show condition a) i.e. we have to show

that GAl = &E'\I N -Gl} © holds. Assume the contrary, then exists a point
— (o) ’
% € {G'k AN

point of an open set exists a neighbourhood U of this point which belongs to

which does not belong to G, 1 Since zZ, is an interior

the same open set. The points of U which do not belong to G A1 form a rela-
tively closed set without interior points. Therefore we canfind w € lf n

suchthat 2, +e€fw e U  and such that the set
g
g z,+e'w e UG, |

has Lebesgue measure zero., Since p (z, G , G.) <)), for z € (
m o 1 1 Mg
follows

Pon (24, 6o, 64 ) ¢ ,f;r glc),“(z(,J,ef‘fWl 6o, 6.)dy < A,

This proves the lemma.

Now we are prepared for the main result of this section

I1. 14, Theorem: "
Let G1 C 4:“ be a domain of holomorphy and assume Go C Gl'
If we choose _

H

then we have G“ C G} If we denote H°= Ghl and H1 = G/lé s

2 ®
then we find the relation

- : for Oé <4,
Hlu ) (;2"‘/“) 24* M Ay a
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Proof:

The first statemant follows directly from Lemma II, 13, The second state-
ment follows from Corollary II. 12 and the approximation results Lemma II. 3
and II. 5.

III. The generalized three circle- and other convexity theorems

In this section we'want to show that the definition of the interpolating domains
lead to a series of estimates for holomorphic functions. They are of the type of
the Hadamard three circle theorem and its generalization to Reinhardt domains,.
All these results are consequences of the maximality of the function pm(z, Go’-Gl)
which has as geometric version the Theorem II, 14,

We start with the correspondence of the three-circle theorem

III. 1. Theorem: »
n
Let G1 c € be a domain of holomorphy and let GOC G1 and let
G be their interpolating family of domains,
. »
For P(2) € | (G) denote by
M(A‘D) = sup { pe2) 2z € GA}
then follows that M(A‘.p-) is a convex function of A .
The usual estimate for holomorphic functions are obtained by taking

p(z) = log | f(2)].

Proof:

/
If m()) = co then this is true alsoforall A » A. . Hence there exists

A, with m(})=e0 for A >dp and m(A )< for R(Ao . Let
now h, < >\2 < Ao and assume m( }1) < m()\z). Under these con-
ditions is

-1

£y = (mO)-mO) (p)y-mn)

a pluri-subharmonic function with f(z) £ 1 for z € G)z and f(z) € o

for z e Gll and we get

F(_Z) & P, (z | G)_", G)z )',_
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For A, € A £ A‘«L we obtain by Theorem II, 14

sup PW\(Z\ 6‘)4t 6‘) ) = -\————)‘A‘
266) b )1"'A4

and hence by difinition of f(z)

cup F(Z)‘— ™ (2 - () ¢ A- Ay
2eb, W (3,) - m(d,) Ay - As

which proves that m(2 ) is a convex function of ) . Since m(} ) increases

with A follows that m(}) is convexin A in all situations.

This theorem allows some converse

111, 2., Lemma

Let G1 c € " be a domain of holomorphy and assume GbCH G1 with
Go# Gl' Let p(z) &€ P(Gl) be such that p(z)< 1 for z € G
for z € Go. Define for o0 < A< 1

H, .e{ze:Gn4 ; pcz)<l}

and for fe P(Gl)

1 and p(z) € o

wm(d f) = suw { fez) j ¢ € Hal o,

Assume for every fe P(Gl) the expression m() , f) is a convex function

of A , then follows HA = GA .

Proof:

Since pm(z, Go' Gl) &1 for z ¢ G‘r1 and = o for z € G0 follows by

assumption

sip P, (2,6, 6,) <2
zeH,

and consequently H, C G) . But using Theorem III,1 we get
sup pcz) < A
z€0,

and hence Gl C HA , which proves the lemma,

Our next aim is to discuss convexity theorems on direct products of domains,

We start with some preparation concerning absolutely convex domains.
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111, 3. Lemma:
n v
Let G.c G, C C" and H c H ¢ [ bebounded absolutely
convex domains, Assume L_ and Lm are injective complex linear mappings
m v v
of ﬂ“ resp. C into [: and denote for X' ‘)/6 G: the sumin_(J‘- = ()(13)

then we have with the abbreviation
Yn()x‘,u\ = sup { | (L“Z) LMW” } z CCQAand W e H{u }
the function log m(A ,/q) is convex on [.0, 1] 2 .

Proof:
. )
Assume (A ,{q ) and (} ,/u’ ) are two points in [0, 1] 2 then it is sufficient
to prove the inequality

¥ )
1ogm(’l§l . &%t)é%{logm(l'f*)‘r logm (2, M) .

If we put )'o = min (), )_’ ), /14 = max(}, l‘ ) and similar expressions for/u
then we can restrict ourselves to the rectangle A,¢A €A, and /uo $H <& M
Using Theorem ;I. 14 wg may identify (A o /‘40) with (0,0) and ( A 1’ /L( 1)

with (1, 1). This reduces the proof of the lemma to the two cases

4
4) € ml0,0) m a4

and

TN

m

?
wm( \31) ¢ m("‘mlw‘(ou")%.

IS

Since the domains in question are absolutely convex we have a characterization

of G 4 and H, Y given in LLemma II, 8, With the notation of that lemma we have
2

for 2¢9G, and we 9H,

A,

1,
* 2
§Z€G4/1for g4Y (2) and €we H% for €<4Y T(w).

From this we get:

42 4, .
m(%, 2) =suwp {l(an) Lo Wl ¥2) v w) ) 25960  WE 9“01
Writing now
o % ]45.
[(L, 2, LmW)| ¥ tr ¢ (W)= (L2, Lnw) | * [ 1Lz, LW v ] oy

4 %
= [l(an)me)lwzﬂ I[I(Lhz,L,nWH ron] )
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we obtain, by taking the supremum of each factor, the two inequalities
4/2 A,

m(% %) ¢ m0,00 wm44) " ov

4, 4
¢ mU,0) 2 m(9,4)

If we combine this lemma with the result of Lemma II. 7., then we obtain

the basis for the general convexity theorem

II1. 4. Corollary:
H "
Assume Goc Gl C C - and H C H1 C (U where G1 and H
are domains of holomorphy, Let F = (fl’ eeo £ )é A(G ) and (G --(g1

€ A(HI)N be such that the functions fi and g, are bounded. If we define

¥-109)

m(?«,(«) = sup {I(F(‘l)' G(WIH’- r4 GG) and wE H{t\f
then we have: log m(\ , /.) is a convex function on [0, 1]2

Proof:

Using the same argument as in the proof of the last lemma, which was

based on Theorem II, 14, we need only to prove the two inequalities
Y
™ li,%’) < m(o,oﬁ' m (4,4) awol

A
¢ mU0T mion"

-

In order to prove these inequalities we remark first: Let Ml’ M2 be

bounded sets in C and I (M ) their absolutely convex hulls then one gets
sup {I(x,%) ; Xe€ theﬂ,, = sup {t(x@l . X< MM, 4 (M) ﬁ .
The second remark we have to make is the following: If [ ( F ( G,) lies
in some complex linear subspace L ot d: v , then [ (F(G,)) lies in the
same linear subspace, because for any element Q € fﬁL the equation
(a, Fa)) = o on G_has an analytic extension to G,.
IfweputG = r(l-(Go)andG F(F(G\) and denote by G).
the mterpolating family of G and G then we find by Lemma II. 7,
F (G‘/z) C Gl/l . Since the sgme arguments hold for the domains H we can

use Lemma III, 3, and obtain:
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m(%‘%)l={sup [1(F), Giw))l 260y we Hg]jz
S {sup[i(xl‘é)l - XSgA/ ) Y€ Hl ]}1
sup[l(xla)\ xeGa,geH] sup [l(Kﬁ)IXEG,.)‘AGHJ

<

sup[1(x§) - XéG;)%eHo]' sup [I(X, 4)(, xeb, ye 0
From this we get by the first remark
!
mit,4) ¢ meon -wmu1)
<& m({140)-MmI(01)

We are now prepared for proving the main results of this section. The
first one is a characterization of interpolating domains of direct products
and the second result is a general convexity theorem for the logarithms of

the moduli of holomorphic functions.

I11. 5., Theorem:

T ¢ ne i .
Let G C G C 0: “, 4|Q,,--~'N be such that Gl1 are domains

-of holomorphy, then we get

G x gx...x(; C_g @x...xg

and the interpolating family is given by

- 4 4 v
(g @), = € Cxrn )

Proof:

It is sufficient to prove this statement for N = 2, The general result
follows by iteration of the special one,

For 31mp11fy1ng the notation we will work with the domains G C G
and H C H Let pm(z, Go’ Gl) and pm(w, Ho’ Hl)'

. subharmomc majorants belonging to the two pairs, Each one defines also

1
be the pluri-

a pluri-subharmonic function on G‘r1 x H, which does not depend on the other

1
variable, Therefore

p(z,w) = max {pmcz G, G. ) | Py, (W, Ho H, )}
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is a pluri-subharmonic function on G1 x H.. From construction of this

function follows plz,w) < 1 on G1 xHi and p(z,w)=0 on GO xHo .
If(z2,,W,) € G1 X Hl\ Go X Ho we have p(z,, W, ) > o. These propertiés
imply Go X Ho E G1 X H1 .

For proving the second statement assume first that Goc C:‘r1 C G are rela-
tively compact in G and Go and (}‘1 are both A(G) convex and the same for
H0 C H1 < H. Then follows that G0 x Ho C G1 x'ch G x H are relatively
compact with A(G x H) convex closures, For this case we can use Lemma II, 10
for the determination of the interpolating domains (G x H) e Since the _s/;lace
A(G x H) is a complete nuclear vector space follows A(G x H) = A(G) @ql_ A(H)
(the complete U -tensor-product of the two spaces A(G), A(H)), This means
every function f(z,w) can be approximated by sums w24 f;(z) 3 (W)

converging uniformly on every compact set, in particular on G1 X Hl' Denoting

m(} ,3 ) = sup {l 2 fi) %;(W) l; 2 GG) ‘Méwe.obtain from Corollary III. 4
H
>

4-)
MOATIE M (0,T) m(42)
Since the sums are dense in A(G x H) we obtain
4-) A
[_F(z‘w)“ ™m0 f) mif) for I‘WeGAxHA and FéA(Gs(H)
This implies by Lemma II. 10, the relation
) ¢
G) X H) ¢ (GxH )A

Using on the other hand the special functions f(z) + g(w) we get by the
characterization of G A and Hl the relation G‘\ x H’\ >(G x H)l . So we have
G) x H

2 (G x H)A

first for this special situation, but using the approximations of domains given
in Lemma II, 3. and II.5, we see that the result is true also for the general
case,

Now we can prove the general convexity property for holomorphic functions,

III. 6, Theorem:
sL M At nwe
Let (, C G“ cC ,i=1,... N be domains of holomorphy and

let Gf\ be the corresponding interpolating families.



- 65 -

Denote for F(ZT,..., ZN) € A(G} x G2

] ¥ eee X GT) and )\ € [O,1]N

m(L,F) = sup {lF(z1 geeey ZN)‘ 5oz € Gi'}

then follows log m(L,F) is a convex function on [0,1]N .

Proof : L1 and Lz are two points in [O,1]N it is sufficient to show the

inequality
1 2
At A 1 1 o 1
m('—'-_T'__' ,F) < m(& WF)2 m(_)\_ F)Z .
If the i-th component of L1 and Lz coincide then the domain G  is

A
i

a common factor in all considerations, so that we have to deal in reality only
with a problem in N-1 variables. Therefore we may assume without loss of

generality that all components of L1 and Lg are different .

. 1 2 , 1 2
If we put ) = (mln()\i ’ xi)) and A, = (max(xi ’ xi)) then by

Theorem II.14. the situation can be reduced to Lo = (040y¢440) 3

Ay = (1475e0+1) « Renaming the indices we get
2
L‘] = (0907'000’1,1"‘01) ; 2\._ = (1,1,-..1,0,0,.0.0)
1 2
and %(L + A ) = (157% 1009y %)

. 1 .
where we have in )\ K zeros and N-K ones and zeros and ones interchanged

for LZ o

Introducing now

1 X 1

GO = Go XeooX GO ’ G1 = G1 XeooX G1

g o= xoex eV, 1 =6 xxcl
o} o (o} 1 1 1

then by Theorem III.6. we get

1 K
GX = Gx XeoeX GX etc

so that we only have to prove the inequality

1 1
m(t,%,F) < m(1,0,F)2 m(0,1,F)2
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for two pairs of domains.

Now we approx1mate these domains from inside by an mcreasmg family,
If we denote by Am‘(} Ve f the maximum of |f| on G) x Hl we get
by Corollary III. 4, and the same dens1ty argument, as in the proof of the

previous theorem, the relation
4
i y &”»
(,““f) ¢ 1m0 f)m 64,9

for all f e A(G1 X Hl)' Taking the limit i ~ oo we obtain the desired
result,

IV, Interpolating domains and Hilbert spaces of holomorphic functions

It is our aim to convert the general convexity theorem of the last section
into statements of finding envelopes of holomorphy. In order to clarify the
situation let us assume Go <u: G1 and Ho g‘_ H1 and we have to compute
the envelope of holomorphy of Go X I-I1 v G1 x Ho’ We know that both domains

Go X H1 and G1 P Ho are Runge domains in G1 x H_. Therefore we can appro-

ximate every function given on the union of the two slmall domains by function

in A(G1 x Hl) as well on Go x H1 as on G1 x Ho. If we succeed to find an
approximation on the union of both small domains sirmultaneously then the
convexity theorem gives us an extension of the given function into a bigger
domain. That such approximations exist, at least for sufficiéntly many domains,
we will show by means of Hilbert spaces of analytic functions, (For an intro-

duction to the theory of Hilbert spaces of analytic functions see e. g. [7] )

IV.1, Notations

In the following we denote by G always a domain of holomorphy.
a) Let M be a measure on G, then we say /u is a regular measure

if the set ‘
2
[peace) o (rpat” o e
) G .
) ({9

is a closed subspace of b’ (6./« ) . We denote this subspace by Nl
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b) If 4 is a regular measure on G and if "J{( b e ) contains not only
the function o, then the kernelfunction is defined by means of an ortho-

normal basis { fii through the formula

Kiw,2) = Z fiw f(2),

This function is independent of the basis, defined on G x G, and analytic
in z and anti-analytic in w .,

c) If /u is a regular measure in G then we call /u completely regular if
el G" [‘) is a dense subspace of A(G).

IV.2. Lemma
Let (u be a regular measure on G.
)
a) Let t € A(G), then f — (t,f) defines a continuous linear functional i(t)

on 'X (GI],,).The vector i(t) is defined by the formula

1M = (1, K(w,z)).

b) The map i defines a continuous antilinear mapping from A (G) into
/X (G, lu ) such that the image of a compact convex set in Al (G) is a
compact set in ’X (G, /u ).

c) The image of i is always dense in CJC (G,{u ) and i is injective if and
only if (44 is completely regular,

d) For every continuous Hilbert semi-norm p on A(G) exist a ‘compact
operator §p 2 0 acting on /Z( (G,/«») such that for every f S'Jf(G,/A)
we get the identity

2
P = (¢ 1.

e) Denote by /3( the closure of /3( (G,/a) in A(G), and let p(-) be a
Hilbert seminorm on A(G). The corresponding operator gp has an

(unbounded) inverse if p restricted to ’43( is a norm on /3( .

Proof: ,
a)Letf ¢ 'X (G,{u) be such that- Jf | = 1, then it is member of some ortho-

normal basis. Consequently we get for any compact subset of G

j |
sup{lfm(;zélq < :up{K(z,z)ﬁ; 26K§= C(K) e |
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So we get in general
s {Ifz)] . 2ek| ¢ C (k) I,
If t is a continuous linear functional on A(G) then exists a compact set K
in G with
| 4,6)[ € m sup{lf(z)l; zéK} m > 0 and hence
we get for f € 'X (G,/a) :

l(t,0l¢ m C(K) 1 £l . Therefore exists by the Riesz represen-
tation theorem a vector i(t) € ﬁ((G,/n) with (t,f)A = (i(t), f)/J( .
If {fi'} is a basis of '3( (G,/—-) then we find ‘

Ji)f 2 . 2l .fi)l 2 Which implies

Lt w) =2 (?—;T;)(EF;) = (&, Kw,2)).

b) The antilinearity of i is clear., Let j be the natural injection of '3( (G, /u)

into A(G), then j is continuous since we have

sup{lf(z)\; z € K} < Cx e,

Since i is the transposed of j follows the continuity of i.
Since i is continuous follows that it maps compact sets onto compact
sets.

c) The density of i(A (G) ) is trivial. The map is injective if i(t) = 0
holds only for t = 0, But i(t) = 0 if and only if (i(t), f)q( = Q= (’c,f)A
for ail fe ‘}((G,Iu). Therefore i(t) = 0 if and only if (t,g) = 0 for all
ge 4 (the closure of "J{ in A(G)). Therefore i is injective if and only
it % = AG).

d) Let h(-) be a continuous Hilbert semi-norm then exist m> 0 and a
compactum K C G with

h(pr¢ = sup {1 fex)! ;zél/\} ¢ CH) il

m

where the last inequality holds only for elements in 'J{(G,/A ). Since h is

a Hilbert semi-norm exists a linear z?perator fh on ’3{ (G,/u) with

S, >0 and BT = (5,8, ] & 1 el .

The set { f € A(G);{ h(f) ¢ lg is open and has therefore a compact polar
~

denoted by K. Here we have used that A(G) is a Montel space. By the bi-
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polar theorem we get for f ¢ e (G,/u) :

% A
(r’gh f\ lsh(F) =sup{(i(k).f); ‘.'“")éi“/‘)i,
% - en follows for f e (1-
Let ¢ S 2 dE, | then follows for f < (1 B ) %@ p
MU g'ﬂﬁ’ Pl = -sup{(ut)fH L(e)el(&)g,

Since i(K) is compact in ﬁ( (G /u) follows (1- E ) ’Y (G /u) is finite di-
mensional and this implies g 2 is a compact operator

e) If p(-) is a norm on "3(, then we have for f 5'3(’((},/-
2
p(ﬂ-(f’gpf)*o for f ¥ 0

and hence § p is invertible.

Now we want to apply the results of the last lemma to pairs of domains,

We want to make for the rest of this section the following

1V, 3. Assumptions and notations

We choose G_< G, C G C (" such that
a) G is a domain of holomorphy

b} Go is relatively compact in ('_}1 and

G1 is relatively compact in G
= _fclo 1 falo
c) Go {Go} C"'1 {GA

d) Go and G1 are A(G) convex

e) dv denotes the Lebesgue measure on C

f) We write for short '3(’4 = "jf(Gl, dv) and /3(0 = /S((Go, dv

IV.4. Lemma:
Assume 1V.3, then we can find numbers S i 2 1 and an ortho-
normal basis { fil of 'X(‘ , such that {6’ i fik is an orthonormal basis

Of o
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Proof:

Since Go is compact 1n G follows that every fe A(G ) is bounded on
Go' Hence p(f) = {f f(z) dfdvj is a Hilbert semi-norm on A(G ).

Hence by Lemma IV, 2,d exist a compact operator §p on '3(/
9
win  (£¢ f), = §ifal dv = (fF),
Go

Since (f, f = p (f) o holds only for f = o follows that fp is invertible,
this means all eigenvyalues of 9 are positive, This implies we can find an

orthonormal basis {fi} of ’3(

-2

with S f; N G,i-'t f: G, >0

Now we get:
(= ?; ) © &)o AN (e"nﬁ\.)o agffgi\'(fl‘)?f’ {d)

-GS © f, B, ,J

This shows {‘5" fig is an orthonormal system in 4(0 . Since Go is A(G)
convex follows that the set of functions which are bounded on Go are dense

4n 4(0 but these functions can be approximated by the {‘5‘; fiﬁ and there-
fore they form a basis in /J(, . From the definition of p(g) follows immediately
lpré 1 which implies &> 1.

As we will see in the next section, this lemma leads together with the con-
vexity the:‘)rem of the last section to the following result: Let Go é G1
and Ho < H1 then the envelope of holomorphy of Go X H1 U G1 X Ho is
exactly ;J Glx Hl-,l « We will need this result in the next lemma., But we
need it only in a special form which is covered by the known semi-tube theorem,

IV.5. Lemma:
Let &; be the numbers and {fill the orthonormal basis described

in the last lemma. Define
' 2.(4 i)
K, (W, 2) = fw! f(z)

then the sum converges on (S'rl x Gk and defines a kernel function on G K
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Proof: ¢ 57—

The function K? (w, 2) = 2 G" F{(\;) r“ (Z) is for Re ? { o
defined on G1 X Gl' since fﬁ > 1. For_f{e ¢ <1 -1i is defined on Gox Go‘
The interpolating family of Go x Go and Gl x G1 is G/\ x G)\ by Theorem
II1. 5 (E A denotes here the complex conjugate domain of GA ). Since this func-

tion is analytic in (‘f »w s2) follows that it is also analytic in the envelope of
holomorphy of these two domains. This can be computed by the theorem to be
proven in the next section or the semi-tube theorem. Using the semi-tube result,
we have to compute the maximal pluri-subharmonic function which is zero on
60 x Go and bounded by 1 on 61 x Gl' But this is exactly the function which
characterizes the interpolating domains. Hence
V\% (W ,2) is also holomorphic in

’Re?\(,(-)‘ and (w,2) € G)

This shows K) (w ,2) is defined on G} X G,‘l .

xGl.

In order to show that KR is a kernel function we must proof the positivity
iti q, (2 >
condition ‘Z 2 K,\ ,(,2/5) 00/3 >0 (see [7] Satz V.1.).
We get

— - — o __2W4-2)>———
T K 20 =3 57D fras

| o
"2 (oS M )

WP
(4-2 )

This proves the lemma.

Since we have a kernel function on G , we also have a Hilbert space of
holomorphic functions. But, we can notvexpect this to coincide with % (G) , dv,.
The reason for this is the fact that the pluri-subharmonic function Kl( z, 2)
does not define the domains G ’r this means, in the general situation there
will be no functional relation between Kl(z, z) and pm(z, Go’ Gl)' But never-

theless we can use these kernel functions to prove the following

IV.6. Lemma: ‘
Let {G’.l and {fi} as in Lemma IV,.3, then for every /U > o we have

a) 2 g;_-'u < oo
' 4-2-¢
b) for every z € G, with A < 1 wefindfor & > o {G' fi(z)} €1

1
and there exists a constant M( ¢) with < C-;':'A'?‘slf,‘ (2)[¢M(),€) ¢oo

for all ZEG}..
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Proof:

a) Since all G; > 1 follows that the sum is decreasing with increasing M
Hence we can restrict ourselves to the case o (,4.. < 2, Putting /h =22

we have 0 < A ¢ 1 and we write

— -M -2 92 (4-7) -1 .
2607 . 2s < (f: ),

2(4-2) -
- 29, (£ 6, :ZG?M . g | f;u)!zolv
G
(4-2 ) 0
- §2€’ (f:mllclv = K K)(Z,Z)of.\/
Go‘ &0

Since according to Corollary II, 11, GO is relatively compact in G)
follows that Ki\ (z,z) is bounded on Go and thus the integral is finite.

b) From the existence of the kernel function follows

A-2
=% |€.‘(1H € L:z, for z € 6;.

By a) we have {G"--slell c 12 ) hence we get

4~p~§
{G’, fi(z)jel1 for z € G, with A < 1

A .
' )
But for 4 ) A' > A the set of vectors {G{' |fi(z)|} is a
bounded set in 12 . Since Kx (z,z) is bounded in G , + Hence

A-»-2§ )
{Q;‘, fi(z)} is a bounded set in 1, for z € Gl .

1

With this lemma we can prove the main convergence theorem of this

section,

IV.7. Theorem: v ;
Assume IV,3, and let {G',} be the set of numbers and {fi(z)g

be the orthonormal basis described in Lemma IV. 4.

a) Let S(z) = Z a, fi(z) be a sequence such that

. loglajl
lim sup Eg-c-:’;‘i' = ML
i

L= oo

andletlu' = max (o,/,‘) ,
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then S(z) converges in Gl—
with 27< 1- M.
Assume on the otherhand ) > o and F(z) ¢ A(Ga) then F(z) has

and it converges uniformly in every 6 )c

’“)

a representation

F(z) = 2 a, fi(z)
with
log a4 |

£ 1-
logs', 4

lim sup
i

By a) follows that this sequence converges uniformly on every é ! with
Al ¢ ) .

Remark:

Since we do not know enough about the functions fi(z), we cannot claim

( M > o) that the series in a) diverges for 2 # G . But b) tells us that

there exists at least some sequences fulfilling a) which diverge outside of G

(Because there exists functions in A(G

1-p

domain of definition,)

Proof:

a)

b)

For every £ > o we have by assumption

log lajl ' .
< +¢ for almost all i
loge | ™

This implies
Iai[ < G pe except for a finite number of terms.

Hence we get: ,
[2a; f.‘(ﬂ | ¢ Slastl f’.‘(‘z)l ng;‘“‘E | ‘?‘,(7_), ‘

By the previous lemma this series converges in G

and uniformly
in G '

1-p- ¢
- -2€° Since £ was arbitrary follows the result.

Let F(z) GG,\ then by compactness of G N\ in G/\ for )' awl
follows F(z) is bounded in G PU Hence it is an element of the Hilbert

space defined by the kernel function K /\' . So F(z) has a development

- = 4=
Fay =2 a, futz) = Z bs £, 2)

1-p

) which have Gl- p as their exact
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which convergeson G 2! in the sense of that Hilbert space. Hence we
have lbn | e 1, . This implies

4-2
[ an' < G;l for almost all n

or

t
lim sup lig_’_a_n’ < 1-2a
n —oe ogg

Since this holds for all }' ¢ A we obtain

lim sup —g—lin“ 1-2

n 3 oo gG

V. Construction of envelopes of holomorphy

Combining now the technics of the last section with the convexity theorems
of section III we obtain a series of results, which contain the tube theorem,
the theorem on Reinhardt domains and the semi-tube theorem as special cases.
The two first results are based on Lemma IV,4. only and they contain the in-

formation needed for the proof of Lemma IV. 5,

V.1, Theorem:
Let G, C e and H ¢ €™  be domains of holomorphy and assume
G0 é G, and Ho C H1 » then the envelope of holomorphy of G x H V) G xH

1
has the following representation

s
Q
¢
a3

hull (Go x H1 U G1 x Ho)

>
"
o

Proof :
First let us show that the right hand side represents a domain of holomorphy.
The function

plzw)=p_(z, G, G) + p_(w,H, H)

1

is defined on G1 b'¢ H_1 and is pluri-subharmonic. Hence the set

&(2|W)£ G4x H4 ; P(2,W)</1'}
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defines a domain of holomorphy. But, by definition of the interpolating

families this domain coincides with U G/\ P H1 3
3 -

For the other part we have to show that every function F(z,.w ) defined
and holomorphic on Go X H1 U G1 X Ho can be extended analytically into
gj Gx X Hl-,) . To this end we make use of Lemma II. 5. which states that
we can approximate the G’ s and the H’ s from inside by relatively compact

L L
domains which fulfill the conditions of Lemma IV.4. Let G% , G} , H
«
=1,2,... be these domains then F(z, w) is bounded on G x Ho( and

G x H’L Let f (z)" be the basis and G“ be the sequence descrlbed in

Lemma 1V. 4, then we can find for F(2, w) the develoﬁments
_ 1 14 | < 4
"‘(le)f Z f.‘ (2)_8;(\4/) in 64 X HO

— A 4 o
4 A . .
=26 f,u)g,(w) in &,

where the g (W) are holomorphlc in H From the identity on G X H

follows % (Wl G- 3 (w) Thls implies the second sum con-
verges in G'( x H v G‘( H"( By ch01ce of the domains follows that the
sum converges absolutely in Gi 1 xH 1 U G‘ -1 x H;( 1 and hence by
the convexity Theorem III. 6. in G -l x Hl- 1 . Since G =G
by Lemma II, 3, follows that F( , ) has an extension into G x Hi-

A simple generalization of this result is the

V.2, Theorem on generalized Reinhard domains

Let Gl1 C d:m" ,i=1, ..., N be domains of holomorphy and assume

i #
G; C Gl1 . Denote for A € [0, IJN the domain
1 2 N
G = G, x G X... xG
i Ac )'2. AN

Let S ¢ [0, 1] N be a closed set and Co S its convex hull then we get

nat U G, = () 6,
265 7 2eloS

Proof:

From the last theorem we find together with Theorem III, 5. the result

»H , H
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A
hull (3 U G Y
_a{ A’L ‘L(:O 6'/424 +V’/‘"}_1

This shows that the envelope of holomorphy we are looking for contains the

union of the right hand side.  So it remains to show that the right hand side is

a domain of holomorphy.

To this end remark that [0, 1] N becomes a semi-ordered space by intro-

ducing the relation

Ai €Ay ift @‘)L ¢ @1)5 for i=1,2,...N
From definition of the GA follows with this semi-ordering G, £ G

: y N A A di
iff A, < Aq . For Sc[0, 1J" define § as follows

S ={A ; 3 j'é' § with 2 £ h,g

then we always get

U Gl - U, GA

AeS AeS ~
If S is convex then this is obviously also true for § I % is convex then
it can be written as intersection of sets in [o, 1] N which are bounded by

boundery points of [O, 1] N and a hyperplane, But there appear only such
hyperplanes which have a normal vector n lying in [0, 1] N

Since the intersection of domains of holomorphy defines again a domain of
holomorphy, we have reduced the problem to the situation where S is given
by ' :

v
s={2e0043 ; (n,2) <c]

s i i i
and ¢ ¢ 2 n, . If we put for short writing p (zi) = ‘pm(zi, Go , G1 ) and
define
N i
P(zys 250 oon zy) = 2 m, p(z))

1 N
then this represents a pluri-subharmonic function on (?r1 X... X (':‘r1 . Therefore

{(zl, vees 2 5 P(Zys eae, 20 £ c}

defines a domain of holomorphy. But looking at the definition of Gll we find

that this domain coincides with U G.
des 4

This proves the theorem,



- 17 -

Next we want to give two generalizations of this theorem. The first one is

a generalized semi-tube theorem.,

V.3. Theorem:
n m
Let H ¢ and G, C C he domains of holomorphy and assume
H
Go c Gl‘ Let f'C'fn+m be defined as follows:

T{ewizel mi we G,,,

Then [° is a domain of holomorphy exactly if A(Z) isa pluri-super-

harmonic function on H .

Proof:

Assume first that A(2) is pluri-superharmonic function on H ., Then
follows that

p(z,w) = 1-24(2) +p (W, G, G)

is a pluri-subharmonic function on H x Gl‘ But from the definition of G,

follows

P ={(z,w)€ HxG, ; pl(z,w) ¢ 1}.

Since p(2,w) is pluri-subharmonic follows that ™ is a domain of holo-

morphy. |
For proving the converse statement we remark first, that.the function A (2)

in the definition of [7 has to be lower.semi-continuous in order that | be-

comes a domain, If G; . Gl1

is an increasing approximation of Go , G
such that U G; = G )M we have shown that the theorem holds for
i

1

l"iz{(‘z,w) . 2eH, we G, l

)] PYE R

then it is true also for [ , since UPL={".
)y i i ! :
If qu » G‘ll is an increasing approximation as described in Lemma II. 3.
then we put G; = GA; and G; = Gl1 in order that we can use the conver-
. ' : _

gence Theorem IV, 7, r" is supposed to be a domain of holomorphy then
(with the notation of Theorem IV.7.) F(z,w) € A( r") posessed a develop-

ment ‘
F(z,w) = 2 alz) f(w)

1)
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with ai(z) € A(H) and

lifn sup —:ll—f;—g—l-——‘;i.(gl €1 - A(z)
1 ~D oo 1
Denoting by p(z, F) the pluri-subharmonic limit of the left hand side and by
p(z) the pluri-subharmonic majorant of all the p(z, F) then we have p(z) £ 1- X(z).
But singe l"z is a domain of holomorphy folbws that there exists functions
with ["°  as their natural domains. Hence we get p(z) =1 -1 (z). This proves
the theorem.

We want to end this paper with a generalization of the first theorem of this
section, There we have constructed the envelope of holomorphy of G oX H v G xH
where G C G H C H1 are all domains of holomorphy. In many appll-
cations we find a more general situation namely one has to construct the domain
of holomorphy of G0 b4 H1 U G1 X Ho where all four domains are natural do-
mains but where the G’s and the H’s do not form Hadamard pairs. For the
treatment of this problem the last theorem plays an essential role, Before we

can state the result, we need some notations.

Let G1 be a domain of holomorphy and GOC G1 a domain, then the set
FC P(Gl)

={(p(z)€ P(Gl); p(z) € 1  and p(z) € 0 for z eGé}

is well defined. This contains a pluri-subharmonic majorant prgz

If we define G =V{ze:Gl, pm(z)soio then we have G C G and

o
pm(z) =P, (z, 60, Gl)‘ With ’(:’\ we denote the _interpolatmg fam11y of the
pair /é' C" G

V.4, Theorem:
Let G, C ¢ and H < C™ be domains of holomorphy and assume
Go C Gl and Ho - H1

then we obtain with the above notation

are domains (not necessarily domains of holomorphy)

~ e d
hull G xH, U G, xH_ -12) G, x H_, ,
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Proof:

Let us denote the envelope of holomorphy we are surching for by I .,

Then we define
A ~ 0
GA={Z€G452XH4 CP}

From Theorem V,4, follows that GA is characterized by a pluri-subharmonic

A
function which implies that the G, are itselves domains of holomorphy. Further-

>

A
more we have by assumption Go P G0 *+ X(, so that we are not talking about

empty sets,

n A
Let us denote by Dr cl the poly-circle of radius r and let z, € GA

< G '
1 G) . Since

Pa
G) C G1 follows r

then exists r., suchthat z +D C G, and r withz + D
o ry- 1 o o Yo

1 > L Therefore we have

~~ 8
+ + -
zZ, Drox Hl_)‘l}zo Drlx Ho c
and therefore also

hull z°+Drox Hl-,\u zZ, DP1 x Ho c |

H
Since D. € D, follows by theorem V, 3. that this hull is given by the maxi-
o ~
mal pluri-subharmonic function )\ (W) which is bounded by 1 on Hl-)« and
zero on H_ with Dp = Drol (V) r; (1- A(W)) . This implies together with

Theorem II, 14 and the defin_ition of ’I:I’ A

~ e e
+ + B
z Drole_) X z Drl x Ho c |,

A
Taking the union over all D, we see that

: (s
G—1 xHo < r'.

e ~
But by symmetry we get G1 x Ho V) Go x H, ¢ [ and the result follows from

Theorem V, 1,

1
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