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Inequalities in von Neumann algebras#

Huzihiro ARAKI

Research Institute for Mathematical Scilences
Kyoto University, Kyoto, JAPAN

Abstract Generalization of inequalities involving trace of matrices
to von Neumann algebras not having traces 1in general is

discussed.

§1. Introduction

There are some well-known useful inequalities involving the
trace of matrices: Let A* = A, B¥ =B, p >0, 0 >0 and x
be finite matrices.

(i) Golden-Thompson inequality ([15], [22]):

tr(efe®y > tr oA*B, (1.1)

(i1) Peierls-Bogolubov inequality ([11], [181])

tr B > (tr eMexpltr(e®B)/tr e}, (1.2)

(1i11) Powers-Sté¢rmer inequality ([19]):

1/2 1/2y 2
ID -G H H.S. (1-3)

up-ojtrz-
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May 22-24, 1975.



1/2} 1/2.

Here uxﬂtr = tr{(x*x) , “XHH.S.E {tr(x¥*x)}

(iv) Convexity of log tr eA in A ([161]).
(v) Lieb concavity ([16]): tr exp(A+log p) 1is convex in o
(vi) Wigner-Yanase-Dyson-Lieb concavity ([16], [24]): Let
0<s, 0<r, r¢ts < 1. Then tr(x*osxpr) is jointly concave in
p and o.
(vii) Properties of relative entropy ([17] , [23]): The

relative entropy
S(o/p) = tr(p log p)- tr(p log o) (1.4)

satisfies the following properties (in addition to being lower
semicontinuous in p and o ):

(a) Positivity: S(o/p) > 0 (S(o/p)=0 only if o=p)
if tr o = tr p.

(B) Convexity: S(o/p) 1is jointly convex in p and o.

(y) Monotonicity: Let E denote the conditional

N
expectation of matrices to a *-subalgebra N relative to the

trace. Then

S(Eyo/Egp) < S(0/p) (1.5)

In this review, we describe how to rewrite these lnequalities
without using "trace" so that the resulting expressions are meaning-
ful for a general von Neumann algebra and inequalities remains
true. We also sketch proofs for rewritten inequalities (ii), (v),
(vi) and (vii). The proofs of (i), (ii) and (iv) are given for
a general von Neumann algebra in [3] and (iii) in [4]. Alsoc see

[20]. The proof of (vi) and (viii) for a general von Neumann



algebra will appear in a forth coming paper ([7]). The proof of
(vi), (vii) (a) and (B) has already been given in [9].

Just to give an indication of what are our general idea,
consider (i), (ii), (iv) and (v). Let M be a * algebra of
matrices to which A,B and p belong. Any linear functional
¥ on M, which is positive in the sense that <(x*x) > 0 for
all xé&M can be expressed in terms of a density matrix p,e M

b
as

P(x) = tr(p"x) s Xe M. (1.6)
If we consider the case where pf = eA, then
tr efeP = <f(eB), (1.7)
A
tr e = (1), (1.8)
tr e®B = (B). (1.9)

Hence, i1f we somehow manage to define a positive linear functional

<§B on M from given <P with psp=eA and from B=B*¢ M, so that

$Bx) = tr (*Bx), (1.10)

then (1) and (ii) can be rewritten as
9(eB) 2 F(1) 2 H1)explop(B) ALY} (1.11)
(iv) is the convexity of log gp(l) in B and (v) is the

concavity of (ylogp(l) in »p.

For general van Neumann algebra M, EP is taken to be normal



faithful positive linear functional. Here "normal" refers to
a continuity of <P(x) in x€&€M relative to the o-weak (or o-

strong) topology in M. Faithfulness refers to the property that

9(x*x) = 0 occurs only if x=0. This property 1is equivalent to
p9>0 for the case of (1.6) and is automatically satisfied for
py=eA. The only part which requires more sophiscated tool is
the definition of EPB —— a perturbed functional. The theory

of modular operators [21] is used in an essential manner for

this purpose.

§2. Modular operators

Let ¥ and ¢ be cyclic and separating vector of a von
Neumann algebra M on a Hilbert space 1;. (¥ cyclic if MY

is dense in é.; separating if x¢M and x¥=0 imply x=0 or

equivalently M'Y 1s dense.) Let S be an antllinear operator

¢,V
defined on MY by

S x¥, = x¥*¢, X e M. (2.1)

Then S¢ ¥ has a closure SQ yo whose absoclute square defines
2 >

the relative modular operator:

A = (S

, =
o,¥ ¥ S

o,¥ o,v - (2.2)

The special case A? ¥ 1s denoted by AW and called the modular
3
operator. For given VY, Aq> y depends only on the normal faithful
3

positive linear functional

P(x) = (¢, x8), x€M (2.3)



and not on its representative vector 0.
One of the main ingredients of Tomita-Takesakil theory ([21],

also see [12]) is that xeM implies

cf(x) = (o )% Yy P e m (2.4)

o,¥ ,Y

for all real <. og is a continuous one-parameter group of

automorphisms of M, called modular automorphisms. q? depends

only on P and not on ¥ nor on the choice of the representative

vector ¢ of <.

The polar decomposition

- 1/2
Sw,w = Jy(By) (2.5)
defines an antiunitary involution Jy. (Namely (wa, Jwg) =
(2,9), (JW)2 = 1.) The other main ingredient of Tomita-Takesaki

theory is that xeé M 1implies

Jy(x) = JyxJy € M'. (2.6)

The closure of the set of vectors (A l/uxw where X runs

y)
over all positive elements of M 1is called natural positive cone

and denoted by VW (C4]3, [8], [13]). It is a pointed closed
convex cone, which is selfdual (i.e. (f,g) > 0 for all g(&VW
if and only if fé€ V\{,). For any <bqu, and xeM, xj\y(x)cp EV‘P

and the set of xjw(x)w for all x¢M 1is dense in V. Any

vector deV is cyclic if and only if it is separating. For

Y
such ¢ in VW’ J® = JW and V® = VW (the universality). For a

general cyclic and separating ¢, there exists a unitary u' 1n



= t = ! LAY
M' such that V¢ u VW’ J® u Jw(u ) and

=y 1/2
s = u'Ty (8, )77,

oy (2.7)

o,Y

In our disscussion, we can use a fixed natural positive
cone and hence we drop the suffix Y from JW’ VW and jw in
the following.

Any normal positive linear functional 97 of M has a

unique representative vector E(QP) in V:

P(x) = (E(P), xE(P)). (2.8)

The mapping £ 1is a concave monotone increasing (relative to the
positive cones M+ and V) homeomorphism, homogeneous of degree

1/2, satisfying

H 5“701) + €(CP2)“ Hi(‘aol) - E(()02)”

2y -l 2 ) -l 5 (2.9
For faithful %P of (2.3), E(gﬁ is given by

y1/2y (2.10)

E(P) = (By
(For general < with a support projection e, 5(3’) is obtained
by the same formula in the subspace ej(e)%- with ¥ replaced
by ej(e)¥ and with A defined relative to eMe.)
To understand all formulas above, we go back to the simple
case of M being a matrix algebra and see what newly defined

quantities look 1like.

Let the Hilbert space é} be M itself with inner product



<n(x), n(y)> = tr x¥*y (2.11)

where we have used the notation n(x) for an element in f; to
distinguish it from the operator X ¢ M, which is faithfully re-

presented by the left multiplication:

m(x)n(y) = n(xy). (2.12)

The left multiplication
7' (x)n(y) = n(yx) (2.13)
defines operators w'(x) which generates 7 (M)'. 1(M) which is

isomorphic to M will take place of M 1in our general discussion.

Let and D? be density matrices defined in (1.6). Let

¥ be n(pw%/2). Then for xeM
Aé,wn(x) = n(p?xpw°l), (2.14)
In(x) = n(x*), (2.15)
v = nty, (2.16)
£(9) = n(og”?), (2.17)
of (n(x)) = m(ppxpy t). (2.18)

It is now possible to rewrite inequalities (ii1i), (vi) and

(viil) as follows. First note that



/2 1/242

le(P) - e l° "yt ey s,

- = (x) -9,(x)

ey -] ﬂi?gl [, (x) -4, (x) |
= sup |tr(p, =0y, x| = o, - 0, .-
nxﬁil % ﬂ 1 Vb‘tr

Hence the second inequality of (2.9) is the generalization of

the Powers -stdrmer inequality (iii).

Next note that

)S/sz - n(ps/2 (1-s)/2

which implies

s/2 u2 - tr(x*psxpl_s

xY $XPy ). (2.19)

“ (Aq,,\y)

Hence the concavity of (2.19) generalizes the concavity in (vi)

for r + s =1. (The case r + s <1 1in (vi) follows from the
case r + s =1 and the operator concavity of p ~» pp for 0 <
pgl.)

Finally

S(P/¥) = -(¥, (logh, )Y) (2.20)

coincides with (1.4) with o = p_, and p = Py- Hence the positivity

¥
for @(1) = ¥(1), convexity and monotonicity of (2.20) generalize

(vii), where the conditional expectation EN in (1.5) is to be

replaced by the restriction of a functional to von Neumann sub-



algebra N of M, because of the following circumstances: EN(p)

is defined as the unique element in N satisfying
tr px = tr EN(p)x

for all xeN. For op = it coincides with the definition of

P>
the density matrix for the functional

yN(x) = tr px = $(x), X €N,

wheih is the restriction of ¢ to N.

We note that the concavity and monotonicity of & correspond

to the operator concavity and monotonicity of p - pl/2.

§3. Perturbation of functionals.

To generalize the perturbed functional ‘?B given by (1.10)
to a general von Neumann algebra M, we define avector ¢(h)eV

for given ¢ €V and h = h*¥e M so that
" (x) = (8(n), xa(n)), xeM (3.1)

is the desired perturbed functional. The formula (2.14) and (1.10)
suggest

log A - log A, = h (3.2)

o(h),o
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which implies, due to (2.10),

¢(h) = exp {(log Ayt h)/2}¢. (3.3)

An alternative expression can be found by using the expansion

t
® t n-1
e (A*BIE -tA _ 7 J dtl...J at of, (B)...0%, (®),
n=0 ‘0 0 n 1
cf(B) - olbAp -ith
+ 2 -
to the representative vector (e(A B)/2e A/2)eA/2 . Where

P(x) = tr(eAx). The resulting expression, written in terms of

the modular operator AQ of ¢ = eA/2 is
®  1/2 n-1 6t b 6t
o(h) = ) J dtl...J dt 8, hh, L he. (3.4)
N=0 ‘0 0 n

We adopt (3.4) as the definition of ¢&(h) and (3.1) as the
definition of Vh for a general von Neumann algebra M. The
absolute convergence of (3.4), uniform over h e(M)k (the ball
of radius k in M), follows from the following Lemma ([2],

Theorem 3.1):

Lemma 1 (1) A cyclic and separating vector ¢ 1is in the

domain of the operator

Zl Z2 zn
for any integer n, any Qjelm (J=1,...,n) and any complex number
z., (j=1l,...,n) 1in the tube domain

J
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Tl/‘? = {Z=

1 (zl,...,zn); Re z

1_>__O,...,Re zn;O,

1/2;Re(zl+...zn)}. (3.6)

(2) The vector-valued function Q(z)®¢ of 3z = (zl,...,zn)
is strongly continuous on Tﬁ/2
I1/2 fl/2

n n

, holomorphic in the interior
of and uniformly bounded by |[¢] anﬂ"'Iin'

(3) Let (M);°% be the ball of radius k 1in M, equipped
with ¥-strong operator topology. The vector Q(z)¢% 1s strongly
continuous as a function of

kst ¥st
(Q .--Qn)é UW)k Xooox (M) >

1

the continuity being uniform in ZqeeeZ, over any compact subset
of the tube I-/%. (k>0 1is arbitrary.)
(For the proof of (3), see Remark at the end of the section.)
The perturbed vector ¢(h) 1is automatically a cyclic and

separating vector in the same natural cone as ¢ and satisfies

(3.2), (3.3) and the following properties ([2]):

<1>(h1) = d>(h2) if and only if h; = h,. (3.7)
[6(h)1(hy) = o(h +h,). (3.8)
(e(h)I(-h) = ¢. (3.9)
[o(A1)] = e 2. (3.10)
10g Ay py = 108 By + b - J(h). (3.11)
ofhm = u ol ou) (3.12)
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_ it . -it
e = (Ao(h),¢) By

o ot n-1

= 7 J dt ...J at_oF (n)...o¥ (n). (3.13)
n=olo 1 o nt, by
o
(a/at) oy (x) - cg(x)} = ilh,x]. (3.14)
£=0

(a/dt)u, = utofm). (3.15)

From Lemma 1(3) and the uniform bound of Lemma 1(2), it follows
that @(h) 1s strongly continuous as a function of h é(M)k.

For our application, it is important to find an analytic
continuation in h. For example, the vector ¢(h) can be defined
for arbitrary heM by (3.4). It is then seen from the uniform
bound of Lemma 1(2) that &(h(z)) is holomorphic in =z if h(z)
is holomorphic in 2z. The following Lemma ([2], Theorem 3.2) yields

such result for yp(l):

Lemma 2 (1) For any Qje M (J=1,...,n+l), the following
1

formula defines a single-valued function f(z) for z«efﬁ (defined
by (3.6) in which 1/2 is replaced by 1):
z z z
- j2. ¥ j+l n.*
Fre1(2) = (857705 18,7 78y Q0
z z A
Jl j"l 1 \
Acp QjA® ...A® QIQ), (3.16)
where
z = (z,,. z ) é fl Z., = 2 z
1777250 S o SIS DRAS L



oy
@
[\
+
+
3
+
N
N
A

+
Re(zj2 zZ.

(2) The function fn+l(z) so defined is continuous on It

j+l

- 13 -

1/2,

+...+2 )
n

I~

1/2.

n?
1 71

holomorphic in the interior Irl of In , and uniformly bounded

=1

on I by o} ﬂQlﬂ...lQn+1H.

(3) The values of fn+1(z) at distinguished boundaries of

In are given by

L s - we? %
fn+l(1t1 16,0051t ltn+1) ga(ot (Qn+l)"'0t (Ql)), (3.17)
nt+l 1
fn+1(1t1—1t2,...,1tj—1tj+1+1,...,1tn—1tn+l)
- % 4 P ¥
= $P(a7(Q,)...07 (Q,)o (Q_ ,y)...0 (Q,,1)), (3.18)
tj J tl 1 tn+l n+l tj+l J+1
where tl""’tn+1 are real and Jj=1,...,n.
(4) fn+l(z) is a continuous function of

st st
(QqsevsQup) €M7 X x(M)P¥

the continuity being uniform in 2z over any compact subset of

=1

operator topology.

3.4 and Remark 3.5

Remark (1)

dependence on Q =

In. (k>0 1is arbitrary.) Here (M)k is equipped with strong

(For Bergman-Weil formula, see [ {1 ], Corollary

.)

Lemma 2(4) can be proved as follows: To make

(Ql""’Qn+1) explicit, we write
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2 2
F(z;Q) = e% o) L (a) (3.19)

where the Gaussian factor is introduced to make F uniformly

vanishing for infinite 2z 1n T§+l' It is enough to show that

for any ¢€>0,

|F(z;Q') - F(z;Q)] < ¢

for Q' 1in a suitable strong neighbourhood of Q within (M)it

X...X(M)St, the neighbourhood being independent of 2z as long as
z 1s in any given compact subset of T%+l'

in 2z and vanishing at infinite =z , |F(z;Q') - F(z;Q)]| 1is

Due to the analyticity

bounded by the supremum of its values on distinguished boundaries,

which consists of the following n+l planes:

B0 = {z ; Re z = 0} , (3.20)

By = {z;Rez =1 andRe z,=0 for % # §} , (3.21)

where J=1,...,n. Since F(z;h) tends to 0 as z+= from within
=1 '

st st
In+l’ uniformly in h G(M)k x...x(M)k , 1t 1s enough to see that

the supremum of |F(z;Q') - F(z;Q)| over 2z 1in some compact subset
of a distingulished boundary is bounded by a given €. For this it
is enough to see that F(z;Q) 1is a continuous function of (z,Q)e€
BjX(M)kx"'x(Mk) for j=0,...,n. The function f(z;Q) is given

by Lemma 2(3), which can be rewritten as the expectation value in

i(t +l-tl)
¢ of a product of some of operators Q,,...,Q s A n 3oy
1 n+l’" ¢
i(tn—tn+l) 1(tn+1-tl)
A¢ ,AQ in a certain order. Since a product of
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operators 1is simultaneously strongly continuous as long as

operators are in a uniformly bounded set, and since Aés is strongly
continuous in real variable s (with norm 1), we have the desired
continuity of f(z3;Q) in (z,Q) with 2z on distinguished

boundaries.

(2) Lemma 1 (3) can be proved as follows: Let

2 2

Z_+...+2
1 N a(z)e. (3.22)

$(z;Q) = e
We have to show that

[¢(z;Q') - ¢(z;Q)] ="§tﬁp I (¥,8(z;Q') - ¢(2z;3Q))] < ¢
=1

for Q' = (Qi...Qé) in a suitable strong neighbourhood of Q =
* *
(Q---Q) within (M)kStX...X(M)kSt, the neighbourhood being
independent of 2z as long as 2 1s in a given compact subset
=1
of In+

1 As above, the problem 1s reduced to the strong conti-

nuity of @¢(z;Q) in (z,Q) for =z 1in the distinguished bounda-

ries of Ti/z

* #
and Q in (M)kStX...X(M)kSt. This follows again
from the strong continuity of product of operators in a uniformly

bounded set applied to the followling expressions for real s =

(sl...sn):
isn isl
®(1sy...15 3Q) = Ay "Q_...A4 TQ9,
is is 1(s. +...4s,)
.a) = n J+1 1 J
Q(isl...isj+l/2...isn,Q) By Q-8 QJ+1AQ

-1s -is -is
#* 1 * 2 J-l
Q1A¢ Q2A¢ ...AQ QJQ.



- 16 -

—(z2+...+z2

(3) 1In the proof of Theorem 3.2 of [2], a factor e 1 n)
is missing from the definition of FB(z) on page 173. With this
factor, it is enough to prove the simultaneous continuity of
FB(x—ix(j)) in Q's and x's for each J, which follows again

from the strong continuity of product on bounded set.

§4i. Proof of Lieb convexity

We use the method of Epstein ([14]), for which we need an
analytic continuation of ?h(l) in h, given by the following

formula:

t

@ 1 n-1
£(Q,9) = 90(1)+9<Q>+n=2jodtl...jo gt £ (b1=b,,... b =t ).

(4.1)

By Lemma 2(2), the expression (4.1) is convergent and defines a
holomorphic function of Q 1in the sense that f(Q(z), &) 1is
holomorphic in 2z Wwhenever Q(z) 1is holomorphic in =z. It is
also strongly continuous as long as Q 1s in a bounded set. If

Q = h = h¥*¥, then
£(h, 9 = $7(1), (4.2)

which can be proved as follows.
It is enough to prove (4.2) for a dense set of h and hence
we assume that cg(h) is an entire function of t. 1In this case

the following formula holds for real z and H = log A¢:
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t
. . o 1 n-1 .
+h) - .
Lz (H+h) ~izH _ ) (1z)nJ dtl"'J dtno;; (h)...ogl (h).
n=0 0 0 n 1
(4.3)
See, for example, [6] Theorem 14.) Due to H% = 0, we have
® 1 th-1
ctz(H¥h)y _ g (iz)nJ dtl...J at_o¥, (n)...o% (m)e, (4.4
n=0 0 0 n 1
at first for real z. Since

for any entire vector ¥ of H+h (which is selfadjoint) and
the inner product of ¥ with the right hand side of (4.4) are
both an entire function of 2z and coincides for real t, they
are equal. It follows that ¢ 1is in the domain of eiz<H+h)
and (4.4) holds for all z. For =z = -1/2, (L4.4) gives é(h)
(the right handside gives (3.4) and the left hand side gives

(3.3)). Hence

H+h

(1)

(¢, e 0)

© 1 t
P(1)+ ¢(h)+ J dtl...J “‘ldtn(a,o? (h)...6% . (n)e).

n=zJ0 0 -1t -ity
(4.5)
The desired result (4.1) follows (4.5) due to the formula
¥ ¥ = - -
(Q,ct (h)...ot (h)e) fn(it1 it2,...,1tn itn_l), (4.6)

n 1
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which obviously holds for real t and hence by analytic continuation
for all t where f'n is defined. This concludes the proof of
(4.2).

We now apply Lemma 3 of [14] to the function o + f(logp, )
defined on

D= (y{A; Re e 18

A > ¢} (4.7)
where the union is over real ¢ > 0 and 9é&l[-n/2, n/2], and
Re C denotes (C+C¥*)/2. The convexity of ¢(log p) = f(log p, )
in p ¢ M+ follows from the following conditions to be satisfied
by f:
(1) f 1is holomorphic in peD.

(ii) If Im p >0 and peD, then Im f(log p,®) > 0. If
Im p <0 and p € D, then f(log p, yﬁ < 0. Here 1Im p denotes
(p-p*)/(21).

(iii) For every real r and peD,

f(log (rp), ¥) = r°f(log p, ) (4.8)

where 0 < s < 1.

Since p + log p is holomorphic in the domain (4.7) ([141),

h+cl

(1) is satisfied. Since @ (1) = e%?h(l), the corresponding

equation holds for its analytic continuation and hence (4.8) holds
with s = 1.

To prove (ii), we introduce

2
hg = Jof(log p)e—t /Bdt/(2n8)l/2. (4.9)
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We can verify (ii) if we show that Im f(hB,gﬂ) >0 if Imp > O,
peD and f(hB,go) <0 if Im p > 0, peD, because Biig h8 = log p
and f(Q,%9) is continuous in Q.

Let E, for Ae[0,1] be the spectral projection of Aq>
for the spectral set [A, 1/A]. Then EAH is bounded and iig EA
= 1. By Remark 4 of [14], 0 < Im log p<m if Im p > 0. This
implies 0 < Im hB <7 if Im p>0. By Remark 2 of [14], 0 <

Im Sp hs < m where SP denotes the spectrum. Hence

HE)\+hB
Im Sp(e ) > 0 and

Im (¢, e B@) >0

whenever Im p > 0. We now prove

HE>\+hB
1lim(%, e ¢) = £(log p, @), (4.10)
A->0
which will complete the proof of Lieb convexity for a general von

Neumann algebra.

By the formula (4.3) with H replaced by HE, and iz by
-HE

l, we obtain by using e Aé = ¢
HE,+h, 1 n-1
(¢, e ¢) = § J dtl...J dt g(ty...t ), (4.11)
n=0/0 0
(t_ .-t _)HE (t,-t.,)HE
g(ty---ty) = (8, hge n-1 "n""7A L 72 Ah34>). (4.12)

We replace each exponential in (4.12) by the formula

sHEx s
e = {A¢EX + (l—EX)}
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and obtain 2771 terms of the following type

4 »
(o, hBen—lo—is <h8)"'elo—is (h8)¢), (4.13)
n-1 1
where
ey = e4E; + (1-£4)(1-E,),
nil ( )
s, = e, (t,~t s
J 9= L7782 T+l
and

ej is either 0 or 1. By the continuity of the product
of uniformly bounded operators, (4.13) is continuous in (A,sl,...,
Sn—l) and hence tends to zero as A =+ 0, except that the term with

all = 1 +tends to

€5

4 2 '
(o, hBa_i(tn_l_tn)(hB)...o_i(tl_tn)<h8)o)

= 12 $
(o, o7l (hB)...c__it (h8)¢)
n 1
where all convergence is uniform in (ti...tn) within the compact

region of integration in (4.11). (4.13) is also bounded by
n-1 - n 2
" Haup[o%(ng) 7Y s]

independent of (A,tl,...,tn). Hence the series (4.11) is absolutely

convergent uniformly in X and we obtain (4.10) from the conver-

gence of (4.13).
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§5. Relative Entropy

Let Ek be the spectral projection of A¢ e Then the
3

definition (2.20) is

S(®/y) = —J log X d(¥,E,¥). (5.1)
0
By a numerical inequality
log A £ A -1, (5.2)

we have

S(e/y)

v

j (1—A)d(W,EAW)
0

2 1/2y¢2
[¥1° - 1, )77

W) -P(1). (5.3)

Hence we have the positivity

S(¥/y) 2 0 (5.4)

if (1) = p(1). Since the equality in (5.2) holds only if A =1,

the eqality in the inequality of (5.3) holds if the measure

d(W,EXW) is concentrated at X =1, i.e.

_ /2y _
¢ = (AQ’?) ¥ =

Hence if ¢ (1) = y(1), then
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S(g/v) =0

holds if and only if = ¢. (Strict positivity.)
h-cl

We now consider perturbed functional @ where h = h¥¢ M
and the number ¢ 1s chosen to be
h
c = log(y (1)/9(1)) (5.5)

so that @7 %Y(1) = ¢(1). By (3.2) and bg® = ¢, we have

b=l ) = —@(h-c1)

P(1l)c - p(h). (5.6)

S(y

The positivity and (5.5) imply
p(n) < @(1) log(¢™(1)/p(1)), (5.7)

which is the Peierls-Bogolubov inequality (the second inequality of
(1.11).

The WYDL concavity has been generalized ([7],[9]) to the
joint concavity of |(A¢’?)p/2xW|2 in faithful normal positive

functionals ¥ and ¥ for O0<pZl. This implies the concavity of

“.p
5, (9/¥) fox a(¥,E,¥)

| (8 )P 2¥1? (5.8)
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and hence the convexity of

S@/y) = 1im p Ty (1)=s_(P/v))} (5.9)
p>0 P
Jointly in ¢ and .

This convexity can by used to prove the monotonicity

S(P/v) 2 S(EGY/Exb) (5.10)

where EN denotes the restriction of funectlonals to N and the

proof has been found so far ([7]) for a general M and for a

von Neumann subalgebra N of M belonging to one of the following

cases:

N® N for N, = MAN'.

(1) M 1 1

(2) N A'AM for a finite dimensional abelian von Neumann
subalgebra A of M.
(3) N 1is an approximate finite von Neumann algebra. This

includes any finite dimensional N, which is the case needed in

applications ([5], [10]).
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