RECHERCHE COOPÉRATIVE SUR PROGRAMME Nº 25

HUZIHIRO ARAKI

Inequalities in Von Neumann Algebras

Les rencontres physiciens-mathématiciens de Strasbourg - RCP25, 1975, tome 22 « Exposés de : H. Araki, H.J. Borchers, J.P. Ferrier, P. Krée, J.F. Pommaret, D. Ruelle, R. Stora et A. Voros », , exp. nº 1, p. 1-25

http://www.numdam.org/item?id=RCP25_1975__22__A1_0

© Université Louis Pasteur (Strasbourg), 1975, tous droits réservés.

L'accès aux archives de la série « Recherche Coopérative sur Programme nº 25 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Inequalities in von Neumann algebras*

Huzihiro ARAKI

Research Institute for Mathematical Sciences Kyoto University, Kyoto, JAPAN

Abstract Generalization of inequalities involving trace of matrices to von Neumann algebras not having traces in general is discussed.

\$1. Introduction

There are some well-known useful inequalities involving the trace of matrices: Let $A^*=A$, $B^*=B$, $\rho \geq 0$, $\sigma \geq 0$ and x be finite matrices.

(i) Golden-Thompson inequality ([15], [22]):

$$tr(e^{A}e^{B}) \ge tr e^{A+B}. \tag{1.1}$$

(ii) Peierls-Bogolubov inequality ([11], [18])

$$tr e^{A+B} \ge (tr e^{A})exp\{tr(e^{A}B)/tr e^{A}\}.$$
 (1.2)

(iii) Powers-Stormer inequality ([19]):

$$\| \rho - \sigma \|_{tr} \ge \| \rho^{1/2} - \sigma^{1/2} \|_{H.S.}^2$$
 (1.3)

^{*} An expanded version of the talk given at Vingtieme Rencontre entre Physiciens Theoriciens et Mathematiciens at Strasbourg, May 22-24, 1975.

Here $\|x\|_{tr} = tr\{(x*x)^{1/2}\}, \|x\|_{H.S.} = \{tr(x*x)\}^{1/2}.$

- (iv) Convexity of log tr e^A in A ([16]).
 - (v) Lieb concavity ([16]): tr $exp(A+log \rho)$ is convex in ρ .
- (vi) Wigner-Yanase-Dyson-Lieb concavity ([16], [24]): Let $0 \le s$, $0 \le r$, $r+s \le 1$. Then $tr(x*\sigma^S x \rho^r)$ is jointly concave in ρ and σ .
- (vii) Properties of relative entropy ([17], [23]): The relative entropy

$$S(\sigma/\rho) = tr(\rho \log \rho) - tr(\rho \log \sigma)$$
 (1.4)

satisfies the following properties (in addition to being lower semicontinuous in ρ and σ):

- (a) Positivity: $S(\sigma/\rho) \ge 0$ ($S(\sigma/\rho)=0$ only if $\sigma=\rho$) if tr $\sigma=$ tr ρ .
 - (β) Convexity: $S(\sigma/\rho)$ is jointly convex in ρ and σ .
- (γ) Monotonicity: Let \textbf{E}_N denote the conditional expectation of matrices to a *-subalgebra N relative to the trace. Then

$$S(E_N \sigma/E_N \rho) \le S(\sigma/\rho)$$
 (1.5)

In this review, we describe how to rewrite these inequalities without using "trace" so that the resulting expressions are meaningful for a general von Neumann algebra and inequalities remains true. We also sketch proofs for rewritten inequalities (ii), (v), (vi) and (vii). The proofs of (i), (ii) and (iv) are given for a general von Neumann algebra in [3] and (iii) in [4]. Also see [20]. The proof of (vi) and (viii) for a general von Neumann

algebra will appear in a forth coming paper ([7]). The proof of (vi), (vii) (α) and (β) has already been given in [9].

Just to give an indication of what are our general idea, consider (i), (ii), (iv) and (v). Let M be a * algebra of matrices to which A,B and ρ belong. Any linear functional φ on M, which is positive in the sense that $\mathscr{G}(x^*x) \geq 0$ for all $x \in M$ can be expressed in terms of a density matrix $\rho_{\varphi} \in M$ as

$$\varphi(x) = tr(\rho_{\varphi}x), \quad x \in M.$$
 (1.6)

If we consider the case where ρ_{ϕ} = e^{A} , then

$$tr e^{A}e^{B} = \varphi(e^{B}), \qquad (1.7)$$

$$tr e^{A} = \varphi(1), \qquad (1.8)$$

$$tr e^{A}B = \varphi(B). \tag{1.9}$$

Hence, if we somehow manage to define a positive linear functional φ^B on M from given φ with $\rho_{\varphi}=e^A$ and from B=B* \in M, so that

$$\mathcal{S}^{B}(x) = tr \left(e^{A+B}x\right), \qquad (1.10)$$

then (i) and (ii) can be rewritten as

$$\mathcal{G}(e^{B}) \ge \mathcal{G}(1) \ge \mathcal{G}(1) \exp{\{\mathcal{G}(B)/\mathcal{G}(1)\}}.$$
(1.11)

(iv) is the convexity of $\log \varphi^B(1)$ in B and (v) is the concavity of $\varphi^{\log \rho}(1)$ in ρ .

For general van Neumann algebra M, φ is taken to be normal

faithful positive linear functional. Here "normal" refers to a continuity of $\mathcal{S}(x)$ in $x \in M$ relative to the σ -weak (or σ -strong) topology in M. Faithfulness refers to the property that $\mathcal{S}(x^*x) = 0$ occurs only if x=0. This property is equivalent to $\rho_{\mathcal{S}}>0$ for the case of (1.6) and is automatically satisfied for $\rho_{\mathcal{S}}=e^A$. The only part which requires more sophiscated tool is the definition of \mathcal{S}^B — a perturbed functional. The theory of modular operators [21] is used in an essential manner for this purpose.

§2. Modular operators

Let Ψ and Φ be cyclic and separating vector of a von Neumann algebra M on a Hilbert space \mathcal{H} . (Ψ cyclic if $M\Psi$ is dense in \mathcal{H} ; separating if $x \in M$ and $x\Psi=0$ imply x=0 or equivalently $M'\Psi$ is dense.) Let $S_{\Phi,\Psi}$ be an antilinear operator defined on $M\Psi$ by

$$S_{\Phi,\Psi} x\Psi, = x * \Phi, \quad x \in M. \tag{2.1}$$

Then $S_{\Phi,\Psi}$ has a closure $\overline{S}_{\Phi,\Psi}$, whose absolute square defines the relative modular operator:

$$\Delta_{\Phi,\Psi} = (S_{\Phi,\Psi})^* \overline{S}_{\Phi,\Psi} . \qquad (2.2)$$

The special case $\Delta_{\Psi,\Psi}$ is denoted by Δ_{Ψ} and called the <u>modular</u> operator. For given Ψ , $\Delta_{\Phi,\Psi}$ depends only on the normal faithful positive linear functional

$$\mathcal{G}(\mathbf{x}) = (\Phi, \mathbf{x}\Phi), \quad \mathbf{x} \in M \tag{2.3}$$

and not on its representative vector Φ .

One of the main ingredients of Tomita-Takesaki theory ([21], also see [12]) is that $x \in M$ implies

$$\sigma_{t}^{\varphi}(x) \equiv (\Delta_{\varphi, \Psi})^{it} x (\Delta_{\varphi, \Psi})^{-it} \in M$$
 (2.4)

for all real t. $\sigma_t^{\mathcal{G}}$ is a continuous one-parameter group of automorphisms of M, called <u>modular automorphisms</u>. $\sigma_t^{\mathcal{G}}$ depends only on \mathcal{G} and not on Ψ nor on the choice of the representative vector Φ of \mathcal{G} .

The polar decomposition

$$S_{\Psi,\Psi} = J_{\Psi}(\Delta_{\Psi})^{1/2} \tag{2.5}$$

defines an antiunitary involution J_{ψ} . (Namely $(J_{\psi}f, J_{\psi}g) = (g, \Psi), (J_{\psi})^2 = 1.$) The other main ingredient of Tomita-Takesaki theory is that $x \in M$ implies

$$j_{\psi}(x) \equiv J_{\psi}xJ_{\psi} \in M'. \tag{2.6}$$

The closure of the set of vectors $(\Delta_{\psi})^{1/4}x^{\psi}$ where x runs over all positive elements of M is called <u>natural positive cone</u> and denoted by V_{ψ} ([4], [8], [13]). It is a pointed closed convex cone, which is selfdual (i.e. $(f,g) \geq 0$ for all $g \in V_{\psi}$ if and only if $f \in V_{\psi}$). For any $\Phi \in V_{\psi}$ and $x \in M$, $xj_{\psi}(x)\Phi \in V_{\psi}$ and the set of $xj_{\psi}(x)\Psi$ for all $x \in M$ is dense in V_{ψ} . Any vector $\Phi \in V_{\psi}$ is cyclic if and only if it is separating. For such Φ in V_{ψ} , $J_{\Phi} = J_{\psi}$ and $V_{\Phi} = V_{\psi}$ (the universality). For a general cyclic and separating Φ , there exists a unitary u' in

M' such that $V_{\Phi} = u'V_{\psi}$, $J_{\Phi} = u'J_{\psi}(u')*$ and

$$S_{\Phi,\Psi} = u'J_{\Psi}(\Delta_{\Phi,\Psi})^{1/2}.$$
 (2.7)

In our disscussion, we can use a fixed natural positive cone and hence we drop the suffix $\,^{\psi}\,$ from $\,J_{\psi}\,,\,V_{\psi}\,$ and $\,j_{\psi}\,$ in the following.

Any normal positive linear functional φ of M has a unique representative vector $\xi(\varphi)$ in V:

$$\varphi(x) = (\xi(\varphi), x\xi(\varphi)). \tag{2.8}$$

The mapping ξ is a concave monotone increasing (relative to the positive cones M^+ and V) homeomorphism, homogeneous of degree 1/2, satisfying

$$\| \xi(\varphi_{1}) + \xi(\varphi_{2}) \| \| \xi(\varphi_{1}) - \xi(\varphi_{2}) \|$$

$$\geq \| \varphi_{1} - \varphi_{2} \| \geq \| \xi(\varphi_{1}) - \xi(\varphi_{2}) \|^{2}. \tag{2.9}$$

For faithful φ of (2.3), $\xi(\varphi)$ is given by

$$\xi(\varphi) = (\Delta_{\Phi,\Psi})^{1/2}\Psi. \tag{2.10}$$

(For general φ with a support projection e, $\xi(\varphi)$ is obtained by the same formula in the subspace ej(e) φ with Ψ replaced by ej(e) Ψ and with Δ defined relative to eMe.)

To understand all formulas above, we go back to the simple case of M being a matrix algebra and see what newly defined quantities look like.

Let the Hilbert space be M itself with inner product

$$<\eta(x), \eta(y)> = tr x*y$$
 (2.11)

where we have used the notation $\eta(x)$ for an element in $\frac{d}{dx}$ to distinguish it from the operator $x \in M$, which is faithfully represented by the left multiplication:

$$\pi(x)\eta(y) \equiv \eta(xy). \tag{2.12}$$

The left multiplication

$$\pi'(x)\eta(y) \equiv \eta(yx) \tag{2.13}$$

defines operators $\pi'(x)$ which generates $\pi(M)^{\tau}$. $\pi(M)$ which is isomorphic to M will take place of M in our general discussion.

Let ρ_{ψ} and ρ_{ϕ} be density matrices defined in (1.6). Let Ψ be $\eta(\rho_{\psi}^{-1/2}).$ Then for $x\in M$

$$\Delta_{\Phi, \Psi} \eta(x) = \eta(\rho_{\varphi} x \rho_{\Psi}^{-1}), \qquad (2.14)$$

$$J\eta(x) = \eta(x^*),$$
 (2.15)

$$V = \eta(M^{+}), \qquad (2.16)$$

$$\xi(\varphi) = \eta(\rho_{\varphi}^{1/2}), \qquad (2.17)$$

$$\sigma_{t}^{\varphi}(\pi(x)) = \pi(\rho_{\varphi} x \rho_{\varphi}^{-1}). \tag{2.18}$$

It is now possible to rewrite inequalities (iii), (vi) and (vii) as follows. First note that

$$\begin{split} \|\xi(\mathcal{Y}_{1}) - \xi(\mathcal{Y}_{2})\|^{2} &= \|\rho_{\mathcal{Y}_{1}}^{1/2} - \rho_{\mathcal{Y}_{2}}^{1/2}\|_{H.S.}^{2}, \\ \|\mathcal{Y}_{1} - \mathcal{Y}_{2}\| &= \sup_{\|\mathbf{x}\| \leq 1} |\mathcal{Y}_{1}(\mathbf{x}) - \mathcal{Y}_{2}(\mathbf{x})| \\ &= \sup_{\|\mathbf{x}\| \leq 1} |\operatorname{tr}(\rho_{\mathcal{Y}_{1}} - \rho_{\mathcal{Y}_{2}})\mathbf{x}| = \|\rho_{\mathcal{Y}_{1}} - \rho_{\mathcal{Y}_{2}}\|_{\operatorname{tr}}. \end{split}$$

Hence the second inequality of (2.9) is the generalization of the Powers-størmer inequality (iii).

Next note that

$$(\Delta_{\Phi,\Psi})^{s/2}x\Psi = \eta(\rho_{\varphi}^{s/2}x\rho_{\psi}^{(1-s)/2})$$

which implies

$$\| (\Delta_{\Phi, \Psi})^{s/2} x \Psi \|^{2} = tr(x * \rho_{\Psi}^{s} x \rho_{\Psi}^{1-s}).$$
 (2.19)

Hence the concavity of (2.19) generalizes the concavity in (vi) for r+s=1. (The case $r+s\leq 1$ in (vi) follows from the case r+s=1 and the operator concavity of $\rho \to \rho^p$ for $0\leq p\leq 1$.)

Finally

$$S(\mathcal{Y}/\psi) = -(\Psi, (\log \Delta_{\Phi, \Psi})\Psi)$$
 (2.20)

coincides with (1.4) with $\sigma=\rho_{\boldsymbol{g}}$ and $\rho=\rho_{\psi}$. Hence the positivity for $\boldsymbol{\mathcal{G}}(1)=\psi(1)$, convexity and monotonicity of (2.20) generalize (vii), where the conditional expectation E_N in (1.5) is to be replaced by the restriction of a functional to von Neumann sub-

algebra N of M, because of the following circumstances: $E_{N}(\rho)$ is defined as the unique element in N satisfying

$$tr \rho x = tr E_N(\rho) x$$

for all $x \in \mathbb{N}$. For $\rho = \rho_{\varphi}$, it coincides with the definition of the density matrix for the functional

$$\mathcal{S}^{N}(x) = tr \rho x = \mathcal{S}(x), \quad x \in N,$$

which is the restriction of ${\mathscr S}$ to N.

We note that the concavity and monotonicity of ξ correspond to the operator concavity and monotonicity of $\rho + \rho^{1/2}$.

§3. Perturbation of functionals.

To generalize the perturbed functional φ^B given by (1.10) to a general von Neumann algebra M, we define a vector $\Phi(h) \in V$ for given $\Phi \in V$ and $h = h^* \in M$ so that

$$\varphi^{h}(x) = (\Phi(h), x\Phi(h)), \qquad x \in M$$
 (3.1)

is the desired perturbed functional. The formula (2.14) and (1.10) suggest

$$\log \Delta_{\Phi(h),\Phi} - \log \Delta_{\Phi} = h \tag{3.2}$$

which implies, due to (2.10),

$$\Phi(h) = \exp \{(\log \Delta_{\Phi} + h)/2\}\Phi. \tag{3.3}$$

An alternative expression can be found by using the expansion

$$e^{(A+B)t}e^{-tA} = \sum_{n=0}^{\infty} \int_{0}^{t} dt_{1} \dots \int_{0}^{t_{n-1}} dt_{n} \sigma_{-it_{n}}^{\varphi}(B) \dots \sigma_{-it_{1}}^{\varphi}(B),$$

$$\sigma_{t}^{\varphi}(B) = e^{itA}Be^{-itA},$$

to the representative vector $(e^{(A+B)/2}e^{-A/2})e^{A/2}$, where $\mathcal{G}(x)=\mathrm{tr}(e^Ax)$. The resulting expression, written in terms of the modular operator Δ_Φ of $\Phi=e^{A/2}$ is

$$\Phi(h) = \sum_{N=0}^{\infty} \int_{0}^{1/2} dt_{1} \dots \int_{0}^{t_{n-1}} dt_{n} \Delta_{\Phi}^{t_{n}} h \Delta_{\Phi}^{t_{n-1}-t_{n}} h \dots \Delta_{\Phi}^{t_{1}-t_{2}} h \Phi. \quad (3.4)$$

We adopt (3.4) as the definition of $\Phi(h)$ and (3.1) as the definition of \mathcal{G}^h for a general von Neumann algebra M. The absolute convergence of (3.4), uniform over $h \in (M)_k$ (the ball of radius k in M), follows from the following Lemma ([2], Theorem 3.1):

Lemma 1 (1) A cyclic and separating vector ϕ is in the domain of the operator

$$Q(z) = \Delta_{\Phi}^{z_1} Q_1 \Delta_{\Phi}^{z_2} Q_2 \dots \Delta_{\Phi}^{z_n} Q_n$$
 (3.5)

for any integer n, any $Q_j \in M$ (j=1,...,n) and any complex number z_j (j=1,...,n) in the tube domain

$$\overline{I}_{n}^{1/2} \equiv \{z = (z_{1}, ..., z_{n}); \text{ Re } z_{1} \geq 0, ..., \text{Re } z_{n} \geq 0, \dots, 1/2 \geq \text{Re}(z_{1} + ... z_{n})\}.$$
 (3.6)

- (2) The vector-valued function $Q(z) \Phi$ of $z = (z_1, \ldots, z_n)$ is strongly continuous on $\overline{I}_n^{1/2}$, holomorphic in the interior $I_n^{1/2}$ of $\overline{I}_n^{1/2}$ and uniformly bounded by $\|\Phi\| \|Q_1\| \ldots \|Q_n\|$.
- (3) Let $(M)_k^{*st}$ be the ball of radius k in M, equipped with *-strong operator topology. The vector $Q(z)\Phi$ is strongly continuous as a function of

$$(Q_1...Q_n) \in (M)_k^{*st} \times ... \times (M)_k^{*st}$$
,

the continuity being uniform in $z_1...z_n$ over any compact subset of the tube $\overline{I}_n^{1/2}$. (k>0 is arbitrary.)

(For the proof of (3), see Remark at the end of the section.)

The perturbed vector $\Phi(h)$ is automatically a cyclic and separating vector in the same natural cone as Φ and satisfies (3.2), (3.3) and the following properties ([2]):

$$\Phi(h_1) = \Phi(h_2) \quad \text{if and only if} \quad h_1 = h_2. \tag{3.7}$$

$$[\Phi(h_1)](h_2) = \Phi(h_1 + h_2). \tag{3.8}$$

$$[\Phi(h)](-h) = \Phi.$$
 (3.9)

$$\lceil \Phi(\lambda \mathbf{1}) \rceil = e^{\lambda/2} \Phi. \tag{3.10}$$

$$\log \Delta_{\Phi(h)} = \log \Delta_{\Phi} + h - j(h). \tag{3.11}$$

$$\sigma_{t}^{\boldsymbol{\varphi}^{h}}(x) = u_{t}\sigma_{t}^{\boldsymbol{\varphi}}(x)u_{t}^{*}, \qquad (3.12)$$

$$u_{t} = (\Delta_{\Phi(h),\Phi})^{it} \Delta_{\Phi}^{-it}$$

$$= \sum_{n=0}^{\infty} \int_{0}^{t} dt_{1} \dots \int_{0}^{t} dt_{n} \sigma_{t_{n}}^{\varphi}(h) \dots \sigma_{t_{1}}^{\varphi}(h). \qquad (3.13)$$

$$(d/dt) \{ \sigma_t^{\varphi^h}(x) - \sigma_t^{\varphi}(x) \}_{t=0} = i[h,x].$$
 (3.14)

$$(d/dt)u_t = u_t \sigma_t^{\mathscr{g}}(h). \tag{3.15}$$

From Lemma 1(3) and the uniform bound of Lemma 1(2), it follows that $\Phi(h)$ is strongly continuous as a function of $h \in (M)_k$.

For our application, it is important to find an analytic continuation in h. For example, the vector $\Phi(h)$ can be defined for arbitrary $h \in M$ by (3.4). It is then seen from the uniform bound of Lemma 1(2) that $\Phi(h(z))$ is holomorphic in z if h(z) is holomorphic in z. The following Lemma ([2], Theorem 3.2) yields such result for $\varphi^h(1)$:

Lemma 2 (1) For any $Q_j \in M$ (j=1,...,n+1), the following formula defines a single-valued function f(z) for $z \in \overline{I}_n^1$ (defined by (3.6) in which 1/2 is replaced by 1):

$$f_{n+1}(z) = (\Delta_{\Phi}^{\overline{z}})^{2} Q_{j+1}^{*} \Delta_{\Phi}^{\overline{z}}^{j+1} \dots \Delta_{\Phi}^{\overline{z}} Q_{n+1}^{*} \Phi ,$$

$$\Delta_{\Phi}^{z} Q_{j} \Delta_{\Phi}^{z}^{j-1} \dots \Delta_{\Phi}^{z} Q_{1} \Phi), \qquad (3.16)$$

where

$$z = (z_1, ..., z_n) \in \overline{I}_n^1$$
, $z_j = z_{j1} + z_{j2}$,

$$Re(z_1^{+...+z_{j-1}^{+z_{j-1}}}) \le 1/2,$$
 $Re(z_{j2}^{+z_{j+1}^{+...+z_{n}}}) \le 1/2.$

- (2) The function $f_{n+1}(z)$ so defined is continuous on \overline{I}_n^1 , holomorphic in the interior I_n^1 of \overline{I}_n^1 , and uniformly bounded on \overline{I}_n^1 by $\| \Phi \| \| Q_1 \| \dots \| Q_{n+1} \|$.
- (3) The values of $\,f_{n+1}(z)\,$ at distinguished boundaries of $\overline{I}_n^1\,$ are given by

$$f_{n+1}(it_1-it_2,...,it_n-it_{n+1}) = \mathcal{Q}(\sigma_{t_{n+1}}^{\mathcal{P}}(Q_{n+1})...\sigma_{t_1}^{\mathcal{P}}(Q_1)),$$
 (3.17)

$$f_{n+1}(it_1-it_2,...,it_j-it_{j+1}+1,...,it_n-it_{n+1})$$

$$= \mathcal{S}(\sigma_{t_j}^{\mathcal{S}}(Q_j)...\sigma_{t_1}^{\mathcal{S}}(Q_1)\sigma_{t_{n+1}}^{\mathcal{S}}(Q_{n+1})...\sigma_{t_{j+1}}^{\mathcal{S}}(Q_{j+1})), \quad (3.18)$$

where t_1, \ldots, t_{n+1} are real and $j=1, \ldots, n$.

(4) $f_{n+1}(z)$ is a continuous function of

$$(Q_1, \dots, Q_{n+1}) \in (M)_k^{st} \times \dots \times (M)_k^{st}$$
,

the continuity being uniform in z over any compact subset of \overline{I}_n^1 . (k>0 is arbitrary.) Here (M) $_k$ is equipped with strong operator topology. (For Bergman-Weil formula, see [1], Corollary 3.4 and Remark 3.5.)

Remark (1) Lemma 2(4) can be proved as follows: To make dependence on $Q = (Q_1, \dots, Q_{n+1})$ explicit, we write

$$F(z;Q) = e^{(z_1^2 + \dots + z_n^2)} f_{n+1}(z)$$
 (3.19)

where the Gaussian factor is introduced to make F uniformly vanishing for infinite z in \overline{I}_{n+1}^1 . It is enough to show that for any $\epsilon>0$,

$$|F(z;Q') - F(z;Q)| < \varepsilon$$

for Q' in a suitable strong neighbourhood of Q within $(M)_k^{st} \times \ldots \times (M)_k^{st}$, the neighbourhood being independent of z as long as z is in any given compact subset of \overline{I}_{n+1}^1 . Due to the analyticity in z and vanishing at infinite z, |F(z;Q') - F(z;Q)| is bounded by the supremum of its values on distinguished boundaries, which consists of the following n+1 planes:

$$B_0 = \{z ; Re z = 0\},$$
 (3.20)

$$B_j = \{z ; Re z_j = 1 \text{ and } Re z_l = 0 \text{ for } l \neq j\}$$
, (3.21)

where j=1,...,n. Since F(z;h) tends to 0 as $z + \infty$ from within \overline{I}_{n+1}^l , uniformly in $h \in (M)_k^{st} \times \ldots \times (M)_k^{st}$, it is enough to see that the supremum of |F(z;Q') - F(z;Q)| over z in some compact subset of a distinguished boundary is bounded by a given ε . For this it is enough to see that F(z;Q) is a continuous function of $(z,Q) \in B_j \times (M)_k \times \ldots \times (M_k)$ for $j=0,\ldots,n$. The function f(z;Q) is given by Lemma 2(3), which can be rewritten as the expectation value in f(z;Q) of a product of some of operators f(z;Q) is f(z;Q), f(z;Q), f(z;Q) in a certain order. Since a product of

operators is simultaneously strongly continuous as long as operators are in a uniformly bounded set, and since Δ_{Φ}^{is} is strongly continuous in real variable s (with norm 1), we have the desired continuity of f(z;Q) in (z,Q) with z on distinguished boundaries.

(2) Lemma 1 (3) can be proved as follows: Let

$$\phi(z;Q) = e^{z_1^2 + \dots + z_n^2} Q(z)\phi.$$
 (3.22)

We have to show that

$$\|\Phi(z;Q') - \Phi(z;Q)\| = \sup_{\|\Psi\|=1} |(\Psi,\Phi(z;Q') - \Phi(z;Q))| < \varepsilon$$

for $Q' = (Q_1' \dots Q_n')$ in a suitable strong neighbourhood of $Q = (Q_1 \dots Q_n)$ within $(M)_k^{*st} \times \dots \times (M)_k^{*st}$, the neighbourhood being independent of z as long as z is in a given compact subset of \overline{I}_{n+1}^1 . As above, the problem is reduced to the strong continuity of $\Phi(z;Q)$ in (z,Q) for z in the distinguished boundaries of $\overline{I}_n^{1/2}$ and Q in $(M)_k^{*st} \times \dots \times (M)_k^{*st}$. This follows again from the strong continuity of product of operators in a uniformly bounded set applied to the following expressions for real $s = (s_1 \dots s_n)$:

$$\begin{split} \Phi(\mathrm{is}_1 \dots \mathrm{is}_n; \mathbb{Q}) &= \Delta_{\Phi}^{\mathrm{is}_n} \mathbb{Q}_n \dots \Delta_{\Phi}^{\mathrm{is}_1} \mathbb{Q}_1 \Phi, \\ \Phi(\mathrm{is}_1 \dots \mathrm{is}_j + 1/2 \dots \mathrm{is}_n; \mathbb{Q}) &= \Delta_{\Phi}^{\mathrm{is}_n} \mathbb{Q}_n \dots \Delta_{\Phi}^{\mathrm{is}_j + 1} \mathbb{Q}_{j+1} \Delta_{\Phi}^{\mathrm{i}(s_1 + \dots + s_j)} \\ \mathbb{Q}_1^* \Delta_{\Phi}^{-\mathrm{is}_1} \mathbb{Q}_2^* \Delta_{\Phi}^{-\mathrm{is}_2} \dots \Delta_{\Phi}^{-\mathrm{is}_j - 1} \mathbb{Q}_j^* \Phi. \end{split}$$

(3) In the proof of Theorem 3.2 of [2], a factor $e^{-(z_1^2+\ldots+z_n^2)}$ is missing from the definition of $F^{\beta}(z)$ on page 173. With this factor, it is enough to prove the simultaneous continuity of $F^{\beta}(x-i\lambda^{(j)})$ in Q's and x's for each j, which follows again from the strong continuity of product on bounded set.

§4. Proof of Lieb convexity

We use the method of Epstein ([14]), for which we need an analytic continuation of $g^h(1)$ in h, given by the following formula:

$$f(Q, \varphi) = \varphi(1) + \varphi(Q) + \sum_{n=2}^{\infty} \int_{0}^{1} dt_{1} \dots \int_{0}^{t_{n-1}} dt_{n} f_{n}(t_{1} - t_{2}, \dots, t_{n-1} - t_{n}).$$

$$(4.1)$$

By Lemma 2(2), the expression (4.1) is convergent and defines a holomorphic function of Q in the sense that $f(Q(z), \mathcal{G})$ is holomorphic in z whenever Q(z) is holomorphic in z. It is also strongly continuous as long as Q is in a bounded set. If $Q = h = h^*$, then

$$f(h, \mathcal{G}) = \mathcal{G}^{h}(1), \qquad (4.2)$$

which can be proved as follows.

It is enough to prove (4.2) for a dense set of h and hence we assume that $\sigma_t^{\boldsymbol{y}}(h)$ is an entire function of t. In this case the following formula holds for real z and H = log $\Delta_{\bar{\Phi}}$:

$$e^{iz(H+h)}e^{-izH} = \sum_{n=0}^{\infty} (iz)^n \int_0^1 dt_1 \dots \int_0^t n^{-1} dt_n \sigma_{zt_n}^{\mathscr{G}}(h) \dots \sigma_{zt_1}^{\mathscr{G}}(h).$$

$$(4.3)$$

See, for example, [6] Theorem 14.) Due to $H\Phi = 0$, we have

$$e^{iz(H+h)} \Phi = \sum_{n=0}^{\infty} (iz)^n \int_0^1 dt_1 \dots \int_0^{t_{n-1}} dt_n \sigma_{zt_n}^{\varphi}(h) \dots \sigma_{zt_1}^{\varphi}(h) \Phi, \quad (4.4)$$

at first for real z. Since

$$(e^{-i\overline{z}(H+h)} \Psi, \Phi)$$

for any entire vector Ψ of H+h (which is selfadjoint) and the inner product of Ψ with the right hand side of (4.4) are both an entire function of z and coincides for real t, they are equal. It follows that Φ is in the domain of $e^{iz(H+h)}$ and (4.4) holds for all z. For z=-i/2, (4.4) gives $\Phi(h)$ (the right handside gives (3.4) and the left hand side gives (3.3)). Hence

$$\begin{split} \boldsymbol{\mathcal{G}}^{h}(1) &= (\boldsymbol{\Phi}, \ e^{H+h}\boldsymbol{\Phi}) \\ &= \boldsymbol{\mathcal{G}}(1) + \boldsymbol{\mathcal{G}}(h) + \sum_{n=z}^{\infty} \int_{0}^{1} dt_{1} \dots \int_{0}^{t_{n-1}} dt_{n}(\boldsymbol{\Phi}, \boldsymbol{\sigma}_{-it_{n}}^{\boldsymbol{\mathcal{G}}}(h) \dots \boldsymbol{\sigma}_{-it_{1}}^{\boldsymbol{\mathcal{G}}}(h) \boldsymbol{\Phi}). \end{split}$$

$$(4.5)$$

The desired result (4.1) follows (4.5) due to the formula

$$(\Phi, \sigma_{t_n}^{\mathscr{S}}(h) \dots \sigma_{t_1}^{\mathscr{S}}(h)\Phi) = f_n(it_1 - it_2, \dots, it_n - it_{n-1}), \qquad (4.6)$$

which obviously holds for real t and hence by analytic continuation for all t where f_n is defined. This concludes the proof of (4.2).

We now apply Lemma 3 of [14] to the function $\rho \rightarrow f(\log \rho, \varphi)$ defined on

$$D = \bigcup \{A; Re e^{-i\theta} A \ge \epsilon\}$$
 (4.7)

where the union is over real $\epsilon > 0$ and $\theta \in [-\pi/2, \pi/2]$, and Re C denotes $(C+C^*)/2$. The convexity of $\Phi(\log \rho) = f(\log \rho)$ in $\rho \in M^+$ follows from the following conditions to be satisfied by f:

- (i) f is holomorphic in $\rho \in D$.
- (ii) If Im $\rho > 0$ and $\rho \in D$, then Im $f(\log \rho, \varphi) \ge 0$. If Im $\rho < 0$ and $\rho \in D$, then $f(\log \rho, \varphi) \le 0$. Here Im ρ denotes $(\rho \rho^*)/(2i)$.
 - (iii) For every real r and $\rho \in D$,

$$f(\log (r_{\rho}), \varphi) = r^{S} f(\log \rho, \varphi)$$
 (4.8)

where $0 < s \le 1$.

Since $\rho + \log \rho$ is holomorphic in the domain (4.7) ([14]), (i) is satisfied. Since $\mathcal{G}^{h+c1}(1) = e^c \mathcal{G}^h(1)$, the corresponding equation holds for its analytic continuation and hence (4.8) holds with s = 1.

To prove (ii), we introduce

$$h_{\beta} = \int \sigma_{t}^{\beta} (\log \rho) e^{-t^{2}/\beta} dt / (2\pi\beta)^{1/2}. \tag{4.9}$$

We can verify (ii) if we show that $\operatorname{Im} f(h_{\beta}, \varphi) \geq 0$ if $\operatorname{Im} \rho > 0$, $\rho \in D$ and $f(h_{\beta}, \varphi) \leq 0$ if $\operatorname{Im} \rho > 0$, $\rho \in D$, because $\lim_{\beta \to +0} h_{\beta} = \log \rho$ and $f(Q, \varphi)$ is continuous in Q.

Let E_{λ} for $\lambda \in [0,1]$ be the spectral projection of Δ_{Φ} for the spectral set $[\lambda, 1/\lambda]$. Then $E_{\lambda}H$ is bounded and $\lim_{\lambda \to 0} E_{\lambda} = 1$. By Remark 4 of [14], 0 < Im $\log \rho < \pi$ if Im $\rho > 0$. This implies 0 < Im $h_{\beta} < \pi$ if Im $\rho > 0$. By Remark 2 of [14], 0 < Im $Sp h_{\beta} < \pi$ where Sp denotes the spectrum. Hence $\lim_{\lambda \to 0} Sp(e^{\lambda}) \geq 0$ and

Im
$$(\Phi, e^{HE} \lambda^{+h} \beta_{\Phi}) \ge 0$$

whenever Im $\rho > 0$. We now prove

$$\lim_{\lambda \to 0} (\Phi, e^{HE_{\lambda} + h_{\beta}} \Phi) = f(\log \rho, \varphi), \qquad (4.10)$$

which will complete the proof of Lieb convexity for a general von Neumann algebra.

By the formula (4.3) with H replaced by HE $_{\lambda}$ and iz by 1, we obtain by using e $^{-\rm HE}{}_{\lambda}$ = Φ

$$(\Phi, e^{HE_{\lambda}^{+h}\beta}\Phi) = \sum_{n=0}^{\infty} \int_{0}^{1} dt_{1} ... \int_{0}^{t_{n-1}} dt_{n}g(t_{1}...t_{n}),$$
 (4.11)

$$g(t_1...t_n) = (\Phi, h_{\beta}e^{(t_{n-1}-t_n)HE_{\lambda}}...e^{(t_1-t_2)HE_{\lambda}}h_{\beta}\Phi).$$
 (4.12)

We replace each exponential in (4.12) by the formula

$$e^{sHE_{\lambda}} = \{\Delta_{\Phi}^{s}E_{\lambda} + (1-E_{\lambda})\}$$

and obtain 2^{n-1} terms of the following type

$$(\Phi, h_{\beta} e_{n-1} \sigma_{-is_{n-1}}^{\varphi}(h_{\beta}) \dots e_{1} \sigma_{-is_{1}}^{\varphi}(h_{\beta}) \Phi), \qquad (4.13)$$

where

$$e_{j} = \varepsilon_{j} E_{\lambda} + (1 - \varepsilon_{j})(1 - E_{\lambda}),$$

$$s_{j} = \sum_{\ell=j}^{n-1} \varepsilon_{\ell} (t_{\ell} - t_{\ell+1}),$$

and ϵ_j is either 0 or 1. By the continuity of the product of uniformly bounded operators, (4.13) is continuous in $(\lambda, s_1, \ldots, s_{n-1})$ and hence tends to zero as $\lambda \to 0$, except that the term with all ϵ_j = 1 tends to

$$(\Phi, h_{\beta}\sigma_{-i}^{\varphi}(t_{n-1}-t_{n})^{(h_{\beta})} \dots \sigma_{-i}^{\varphi}(t_{1}-t_{n})^{(h_{\beta})\Phi})$$

$$= (\Phi, \sigma_{-it_{n}}^{\varphi}(h_{\beta}) \dots \sigma_{-it_{1}}^{\varphi}(h_{\beta})\Phi)$$

where all convergence is uniform in $(t_1...t_n)$ within the compact region of integration in (4.11). (4.13) is also bounded by

$$2^{n-1} \{ \sup_{0 \le s \le 1} \| \sigma_{-1s}^{\varphi}(h_{\beta}) \| \}^n \| \Phi \|^2$$

independent of $(\lambda, t_1, \dots, t_n)$. Hence the series (4.11) is absolutely convergent uniformly in λ and we obtain (4.10) from the convergence of (4.13).

§5. Relative Entropy

Let E $_{\lambda}$ be the spectral projection of $\Delta_{\Phi,\Psi}.$ Then the definition (2.20) is

$$S(\mathcal{G}/\psi) = -\int_{0}^{\infty} \log \lambda \ d(\Psi, E_{\lambda}\Psi). \tag{5.1}$$

By a numerical inequality

$$\log \lambda \le \lambda - 1, \tag{5.2}$$

we have

$$S(\varphi/\psi) \ge \int_0^\infty (1-\lambda)d(\Psi, E_{\lambda}\Psi)$$

$$= |\Psi|^2 - |(\Delta_{\Phi, \Psi})^{1/2}\Psi|^2$$

$$= \psi(1) - \varphi(1). \tag{5.3}$$

Hence we have the positivity

$$S(\mathbf{\mathcal{Y}}/\psi) \ge 0 \tag{5.4}$$

if $\mathcal{G}(1) = \psi(1)$. Since the equality in (5.2) holds only if $\lambda = 1$, the equality in the inequality of (5.3) holds if the measure $d(\Psi, E_{\lambda}\Psi)$ is concentrated at $\lambda = 1$, i.e.

$$\Phi = (\Delta_{\Phi, \Psi})^{1/2} \Psi = \Psi.$$

Hence if $\varphi(1) = \psi(1)$, then

$$S(\varphi/\psi) = 0$$

holds if and only if $\varphi = \psi$. (Strict positivity.)

We now consider perturbed functional \mathcal{P}^{h-cl} where $h=h^*\in M$ and the number c is chosen to be

$$c = \log(\varphi^{h}(1)/\varphi(1)) \tag{5.5}$$

so that $\mathcal{G}^{h-cl}(1) = \mathcal{G}(1)$. By (3.2) and $\Delta_{\Phi}^{\Phi} = \Phi$, we have

$$S(\varphi^{h-c1}/\varphi) = -\varphi(h-c1)$$

$$= \varphi(1)c - \varphi(h).$$
(5.6)

The positivity and (5.5) imply

$$\varphi(h) \leq \varphi(1) \log(\varphi^{h}(1)/\varphi(1)), \qquad (5.7)$$

which is the Peierls-Bogolubov inequality (the second inequality of (1.11)).

The WYDL concavity has been generalized ([7],[9]) to the joint concavity of $\|(\Delta_{\Phi,\Psi})^{p/2}x^{\Psi}\|^2$ in faithful normal positive functionals φ and ψ for $0\leq p\leq 1$. This implies the concavity of

$$S_{p}(\mathcal{Y}/\psi) = \int_{0}^{\infty} \lambda^{p} d(\Psi, E_{\lambda}\Psi)$$

$$= |(\Delta_{\Phi, \Psi})^{p/2}\Psi|^{2}$$
(5.8)

and hence the convexity of

$$S(\mathcal{G}/\psi) = \lim_{p \to 0} p^{-1} \{ \psi(1) - s_p(\mathcal{G}/\psi) \}$$
 (5.9)

jointly in φ and ψ .

This convexity can by used to prove the monotonicity

$$S(\mathcal{Y}/\psi) \ge S(E_N \mathcal{Y}/E_N \psi) \tag{5.10}$$

where $\mathbf{E}_{\mathbf{N}}$ denotes the restriction of functionals to N and the proof has been found so far ([7]) for a general M and for a von Neumann subalgebra N of M belonging to one of the following cases:

- (1) $M = N \otimes N_1$ for $N_1 = M \cap N'$.
- (2) $N = A' \cap M$ for a finite dimensional abelian von Neumann subalgebra A of M.
- (3) N is an approximate finite von Neumann algebra. This includes any finite dimensional N, which is the case needed in applications ([5], [10]).

References

- [13] A.Connes, Caractérisation des algèbres de von Neumann comme espaces vectoriels ordonnés.
- [14] H.Epstein, Commun. Math. Phys. <u>31</u>, 317-325 (1973).
- [15] S.Golden, Phys. Rev. <u>137</u>, Bl127-1128 (1965).
- [16] E.H.Lieb, Advances in Math. 11, 267-288 (1973).
- [17] G.Lindblad, Commun. Math. Phys. 39, 111-119 (1974).
- [18] R.Peierls, Proc. Camb. Phil. Soc. <u>32</u>, 477-481 (1936).
- [19] R.T.Powers and E.Størmer, Commun. Math. Phys. <u>16</u>, 1-33 (1970).
- [20] M.B.Ruskai, Commun. Math. Phys. <u>26</u>, 280-289 (1972).
- [21] M. Takesaki, <u>Tomita's Theory of Modular Hilbert Algebras and</u>
 its Applications, Springer Verlag, 1970.
- [22] C.Thompson, J. Math. Phys. 6, 1812-1813 (1965).
- [23] H.Umegaki, Kodai Math. Sem. Rep. 14, 59-85 (1962).
- [24] E.P.Wigner and M.M.Yanase, Proc. Nat. Acad. Sci. U.S.A. 49, 910-918 (1963); Canad. J. Math. 16, 397-406 (1964).