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1. FORMULATION OF THE PROBLEM 

One of the most fauiliar problem in particle physics is what is 
called "Phase shift analysis" and which is more exactly "amplitude analysis", 
namely the problem of finding scattering or reactions amplitudes from 
measured cross-sections polarisations, etc... What is incredible but true 
is that even if we see hundreds of phase shift analyses performed and 
published this problem is not really solved, even "in principle", i.e., 
even if you start from extremely accurate measurements. 

Here we shall restrict ourselves to a particularly simple case 
which is that of spin zero elastic scattering A + B A + B at an energy 
which is below the first inelastic threshold. We assume that we know with 
perfect accuracy the differential cross-section at one given energy and for 
all physical scattering angles 

What we want is bo find 

- F ( ^ « 0 - ^(c^>e) (2) 

F is normalized in such a way that, when the partial wave expansion 
converges: 

where <^ # is real because there is no inelastic channel open; P (cos 0 ) 
is a Legendre polynomial. 

The problem is indeed the problem of phase shift analysis because 
once you know 0(cos 0) by Eq. (2) you can obtain the phase shifts by 

1 2 [_5TF dno& ' L f 1 - J I 
i *— - J (4) 
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To conclude this section I would like to say that I am perfectly 
aware of the fact that this idealized problem is rather far from reality. 
It is, however, my belief that studying it should bring some light. The 
only thing which is more favourable in practice is that one uses continuity 
and possibly analyticity in energy. Here we decided to disregard this 
constraint because of the instability of continuations along the energy cut. 
In fact if one assumes perfect knowledge of d<3T/dcos9 at all energies and 
all angles one finds that the amplitude is unique as shown by Bessis and 

1 ) ? ) myself for the pion-pion case and by Alvarez-Estrada for the general 
case, but the result seems to me rather academic. 

2. SUMMARY OF THE RESULTS 

The problem even in its simplest form is not completely solved, 
i) There is an obvious ambiguity 

If P(cosO) is an acceptable amplitude -F*(cosQ) is also an 
acceptable amplitude; going from one amplitude to the other amounts to 
reverse the sign of all the pnase shifts in Eq. (4). The only way to remove 
this ambiguity is to use analyticity with respect to energy, which is out­
side our programme. In what follows we shall only be interested in non-
trivial ambiguities. All the statements we shall make will be modulo the 
trivial ambiguity. 
ii) There exists a sufficient condition for the existence and uniqueness 

of the solution 

If we define F(12) as the scattering amplitude in which 1 and 2 
designate unit vectors in the initial and final directions of the particles 
we can construct the quantity 

~ ( V f l * ) / / ( 5 ) 

this is the spherical convolution of JF| with itself. It resembles very 
much the unitarity integral 

except for the fact that F and F* are replaced by their moduli. 
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Then we define 

all directions 1 and 2 \^(l2L^>\ 

What can be proved is this 3)>4),5)^ 

If sin|4<0.79, there is one and only one amplitude corresponding to the 
differential cross-section. 
If sinpL<1 there is at least one solution and, probably only one 
(but for the latter point, the proof is not complete). 

It must be realized, however, that this condition sin 1 is 
very restrictive. In particular it implies automatically j £^\ <^/^ f°r 
all £>0, which means that an amplitude with a resonating 1^0 wave will 
never fulfill the requirement sin |X< 1 . 

iii) Existence of non-trivial ambiguities 

Crichton ̂  has produced a very simple example in which two sets of 
phase shifts give exactly the same differential cross-sect ion. In this 
example the maximum angular momentum is 2. Then, for instance, the two sets 

give exactly the same cross-section. This is not a numerical accident. 
o C o 

More generally, if 1 2 321 < < 24 9 ' , to a given Cl ̂  correspond two 
couples ( (J* , <F^) , ( J"Q> d j) wnich give the same cross-section. One 
has therefore a one-parameter family of cross-sections which give rise to 
two distinct amplitudes. 
iv) Ambiguities in the general polynomial case 

A very simple but non-rigorous count Lng argument leads to believe 
that there are never more than two solutions differing in a non-trivial way. 
The case L., =2 has already been explicitly solved by Crichton as we have "Max 'v v 
seen. It has recently been checked that for L K = 3 and L,, = 4 

Tax Max , 
the maximum number of solutions is indeed 2. What has been shown in general 
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for the polynomial case is that the solution is unique if the cross-section 
is small enough: 

v) Ambiguities if the amplitude is an entire function of cos 9 (but 
not a polynomial) 

9) 
In that case we have explicitly shown that there are never more 

than two solutions if the entire function is of finite order, i.e., if 

is finite. If the order is non-integer there is no ambiguity. 

vi) The question of amplitudes analytic in ellipses 

This is of course the realistic case. A very useful tool for the 
study of this proDlem has been built by Atkinson, Mahoux and Yndurain 
They have been able to prove the existence and local uniqueness under 
certain sufficient conditions on the cross-sections which differ from what 
is described in ii), but so far they have no statement about the maximum 

11) 

number of solutions. Atkinson has recently been able to prove that 
there exists at least two fold ambiguities in that case by making small 
perturbations to a cross-section giving rise to the Crichton ambiguity. 

Because of lack of time and lack of competence I shall not give 
any more details on this case. 

3. THE CASE sin^< 1 

We have introduced the quantity 

over all directions | f^^l | 

If this integral over solid angles seems unfamiliar we can produce an 
equivalent definition 
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er»*y =r . 

W I T H ^ _ ^ 0 - ^ * J - ^ * 2 V * » e ' ' J 2 I n * c * , * L e " ] 

Now, let us try to explain in an intuitive way how this quantity 
appears naturally. The unitarity condition reads 

= ^ ir(ivlffXtsiltnQ>(»)-ftt3]letQ.3 <6» 

Now assume that either 0 is small or 0 is not varying appreciably over 
the physical region. Then, as a first approximation we could neglect 
cos 13) -0(233 i n t h e right-hand side of (8) and get 

Then one would like to extract 0 q from this equation and to substitute 
0 q in the right-hand side of (8). To be able to do this we must make sure 
that we never get from (9) a quantity sin 0^ which is larger than unity! 
This is precisely the case if sin fL< 1 J Then, in addition, sin 0 q is 
strictly less than 1 at all angles, and if we decide that the scattering 
amplitude should be continuous, and in addition that O<0^ (© = 0)<T /2 
(which removes the trivial ambiguity), we have 0 <0o<7T/2 at all angles 
and there is no ambiguity in going from sin 0 to 0 q. The condition 
sin pL< 1 not only ensures that the first approximation is meaningful, 
it also guarantees that we shall be able to continue the iteration procedure. 
Suppose now that 0 is not a solution but a trial phase. Then inserting 
it in the right-hand side of the equation we get 01 in the left-hand side 



- 6 -

Clearly, if sin l¿L< 1, for any 0 we get 

<*>'! < < * 

Equation (10) defines a non-linear mapping of the space of con­
tinuous functions 0 on itself. Solutions of Eq. (8) are "fixed points" 

of the mapping. What can be established, using standard mathematical 
1 2) 

techniques , is that this mapping has at least one fixed point if 

sin 1 , such that O^/S^Jrf.. if sin < 1 there exists at least 

one unitary amplitude with modulus | F | . 

Let us now return, however, to the iteration procedure. We know 

that we shall never be stopped, but what about convergence? To study this, 

consider two trial amplitudes 

Ffii) « • if V l l ) = ± f¡F| i'F| ̂ f f (^-(i^jc/iZj 

Take now the difference: 

^ J ' L
 2 - " 5 - J 

then, since cos (0 1 + v|/'/2) > cos ̂ C, we easily get 
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Therefore we see that if 

Now, if we iterate n times we get 

So we conclude 
i) if we start from any two trial functions 

*f <f ; 0 ^ < 0 ^ < h ~ 

the difference between the n^ iterates approaches zero; 
ii) the successive iterates of 0 form a Cauchy sequence because 
(if m>n) . 

which goes to zero with n-*ao . So the 0 v / fs converge. 
iii) they converge to a solution; 
iv) the solution is unique among the continuous functions varying between 
zero and |L< . On the other hand, we can easily prove that there are no 
solutions outside this domain. 

Conclusion; If (11) is true there is one and only one solution, and it can be 
obtained by an iterative procedure. Notice, in passing, that this iterative 
procedure is perfectly tractable from a computer's point of view. 

3) 
With extra work I succeeded to prove that the solution is 

unique under the weaker condition 
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2 fa* 
L. Ll ± (13) 

which gives sin^<0.79. In addition Atkinson and Johnson succeeded to 
prove that if (13) holds the iterative method works. 

So far we are happy since under a well defined condition on the 
differential cross-section we find one and only one solution modulo the 
trivial ambiguity. Now, however, I snail try to show you that the condition 
sin jf < 1 is, in fact, very restrictive. Remember first of ail that 
sin < 1 implies 

This means that 

and hence for i > 1 ^ 

H ± H t = [ d - i № [ I ± > 0 

since |p,(x)| <1 and similarly Im f ± Imf . >0. Since f and f . lie 
on the unitarity circle this automatically implies that Im £̂<'i ^ o r 

JL >1 , i.e., if we make the convention to take - 77/2 < c/̂  < TT/2 (the 
phase shifts are defined modulo JT ) , we have 

( < £ / < ! " ror U > ± (15) 

This has been improved recently by the following argument: we have 
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where P̂  designates the positive part of P*(x) for -1 <x<+1, P~ 
designates the negative part. 

For the two separate pieces in (16) one can apply the Weierstrass 

nean value theorem (P is complexi) and find the maximum of (16) to be 

FrrH " T r P f i 

* £ f ^ H ^ o * [ \ \?\ W ( , 7 > 

[ L - i J U , J J 

Now, it is easy to prove that for i > 1 

Hence, if we expand |p(cos9)| in partial waves 

we get 

% U ± [ * < r + < , 9 ) 

Now, from |P| >0 we get 

Hence, 

t a > \ c Ì L \ <»> 



- 10 -

From sin |̂L< 1 

Hence, projecting over partial waves 

It is easy to see that if C q >'h tne combination of (20) and (21) implies 

Therefore, if C > i we get 

7 0 

This is maximum for C =h and gives if., < : . If G <^ then 
0 1 I' o 

so that in both cases 

The conclusion is that the condition sinp <i implies automatically 
that all partial wa/es, except possibly the S wave are non-resonating and 
small. This makes the physical interesx of the condition rather doubtful, 
since what is really exciting is resonating amplitudes. 

Let us point out, however, that if scattering amplitudes have normal 
threshold behaviour, the condition sin |LU< 1 will always be satisfied at 
energies sufficiently close to threshold, because since the phase shifts 
behave like A A , . 

the S wave will be dominant for k small enough if the scattering length 
aQ is not zero. Then the angular distribution will be approximately flat, and 
this implies sin |U.< 1. This has some importance for questions of principle and 
we shall come back on*that in the concluding remarks. 
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4. THE CASE OF POLYNOMIALS 

At the end o" Section 3 we had a peeling of dissatisfaction because 
resonances had to be excluded. Ideally one would like to get rid of the 
condition sin < 1 without making any additional assumption except, i 
perhaps, that the amplitude is analytic inside an ellipse. However, nobody 
has so far been able to make any statement about the multiplicity of the 
solutions in that case. So we shall now examine another face of the problem 
in which it is no longer assumed that d£T"/d£#>£ has some smoothness or that 
partial waves are small, but, on the other hand we restrict ourselves to 
amplitudes in which the angular momentum is bounded, i.e., amplitudes which 
are polynomials in z=cosQ . After all, in practical phase shift analysis, 
this is what is always assumed, even if it is not strictly correct because 
of the existence of an exponential tail of the partial wave amplitude dis­
tribution. 

A. The zeros and the counting argument 

A convenient way tc write a polynomial amplitude is to express it 
as a product over its zeros: 

F * * 3 ( a - » 0 ( 4 - a , } . . " (•-•»..) < 2 5 ) 

0 is proportional to the highest partial wave amplitude: 

Now, given that is an acceptable amplitude associated with the differ­
ential cross-sectioa 

du»6- k*- 1 T * ' ' I I 

what are the other possible amplitudes which produce the same cross-section? 
t'i 

If we disregard unitarity except for the LJ"* wave we see that we can replace 
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a subset of the zeros ẑ .-.ẑ  by their complex conjugates. Unitarity of 
the L^^ wave forces us to keep ^ fixed because |sin/^| is fixed 
and we choose 0<S ^<mK/2 to remove the trivial ambiguity [this convention 
differs from the one of Section 3, where we had decided to take ReF(P-0)>(S]. 

So, a priori, there seems to be 2^ possible amplitudes. However, 
unitarity has not been imposed on the 4 = 0, 1, 2, . . .L-1 partial wave 
amplitudes. Suppose there are N acceptable amplitudes: 

F * = A ( * - A , ; ^ - ^ ; • • • • 

3 (a.-**) 

| « « # • «. » 

R 

These N amplitudes depend on 2L + 1 parameters: O , the L real parts 
of the zeros, the L moduli of the imaginary parts of the zeros. We must 
impose unitarity on the partial wave amplitudes for 4 = 0. ..L-1; 

k = 1, 2, . . . ,N 
4=0, 1 , . . . ,L - 1 

Equations (25) constitute a system of NL non-linear algebraic equations. 
If these equations are really independent, the number of equations should 
be less or equal to the number of parameters 

(26) 

If N = 2 there'is one parameter left. So, if there is a two-fold ambiguity 
for a given maximum angular momentum L this ambiguity arises on a one 
dimensional variety of differential cross-sections. This is exactly what 
happens in the Crichton case which corresponds to L = 2. 



- 13 -

Admittedly this counting argument is not rigorous because we 
have no general proof so far that the system (25) is made of independent 
equations. However, in addition to the case L=2, the equations have been 

7) 8) 
studied explicitly for L = 3 and L = 4- . In both cases it has Deen 
shown that no more than two simultaneous solutions can be present. The 
case L = 4 is so complicated that Cornille and Drouffe had to use a computer. 
Their result, however, is rigorous, because they get strict inequalities which 
show the incompatibility of the system (25) for N = 3. For L > 5 all we can 
say is, following G-olberger, that nature would be unkind if the system (25) 
were not independent. 
B. The descending construction 

We would like to stress now another aspect of the polynomial case. 
In A we first imposed to the various amplitudes to have the same modulus and 
then tried to check that unitarity was satisfied. One can do the reverse 
and first try to find all possible unitary amplitudes compatible with a 
given d(T/d cos Q and see later which one has the correct modulus. Here 
we shall do something very unphysical but very straightforward from a 
mathematical point of view when you have perfect knowledge of dtf/dcosO 
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the cf? ̂  are squares of Clebseh G-ordan coefficients. 2L-K, I and m 
C.AJ — K 

satisfy triangular inequalities. It is easy to see that in ^"zl ,̂ for 

0<K<L, f appears only in Re R f L and f

L_ K_ n never appears. 

Suppose we already know f , f ^ , f̂  then 

O ¡ 3 0 |̂ fl̂ (Tj ^Vf̂  known terms 

Re (f*f^ K) = const. defines a straight line in the Argand diagram, which 

is perpendicular to f . It intersects the unitarity circle in two points 
and gives therefore two possible values for f . Then, choosing f 

Jj —is. h — iS. 
one can find f ^ and so on. In the end, from the knowledge of 

L-1 
(TZr (TZr &~ A one gets 2 possible unitary amplitudes. Then 
one has to compute <TT ffT (f* with these various sets and see 

Jj Ij — 1 o 

if they agree with the values given in advance. Here the maximum multiplicity 

is less transparent, but there are other interesting aspects. 

First of all we shall snow that if the condition sin pL< 1 of 
Section 3 holds and if the number of partial waves, however large, is finite 
the amplitude is unique. Indeed from (22) 

Now, suppose there are two solutions. For j£-=L, L-1, L-k+1 the partial 
waves are common. For i - L-k they differ, and from the geometrical 

construction (see the Figure) 

V 

It is easy to see that if I ^ ^ J , i ^ - ^ U ' ^ L ' A R E A 1 1 L E S 3 T H A N 

condition (28) cannot be satisfied, and the solution is therefore unique. 
In fact, in Ref. 3) it is shown that if Re F> 0, Im F X) (which is weaker 
than sin )A < 1 ) and if the number of partial waves is finite the solution 
is unique. 

Second we shall show that if the total cross-section is small enough 

the solution is again unique. Looking again at the geometrical construction 
1 2 ^ ~̂  we see that i(lmf ' . + Im fT . ) is certainly larger than i[~1 - IsinO^I I. L-k L-k • ^ L1 ̂  
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Therefore, the common cross-section is certainly larger than the mean contri­
bution of the L - k̂ *1 wave plus that of the L̂ *1 wave 

This reaches its minimum for L-k= 1 , L=2, (L - k = 0 is excluded) and 
one finds 

Hence if 

the amplitude is unique. It must be realized that this condition is funda­
mentally different from the condition sin ̂ L< 1 . If (31) holds the diffe­
rential cross-section may have very violent oscillations, very deep minima 
which would produce a violation of sin jJL < 1 . On the contrary sin jJL< 1 
does not exclude very large total cross-sections, provided the partial wave 
distribution is smooth enough. 

5. THE CASE OF ENTIRE FUNCTIONS 

As we have seen, the case of polynomial amplitudes is not completely 
settled. It represents anyway a rather extreme case in which the partial wave 
distribution stops abruptly. A case which seems closer to physical reality 
is that in which there are infinitely many partial waves. As we already 
said we have not been able to treat this case in general and in particular 
we have no answer for the case of exponentially decreasinĝ  partial wave 
amplitudes, which corresponds to F(z) analytic inside an ellipse. The 
case we want to treat here is that of partial wave amplitude which decreases 
with I faster than any exponential, i.e., the case where F(z) is an 
entire function of z. It may be worth pointing out that polynomial ampli­
tudes cannot be reproduced by short range potentials while entire functions 
naturally appear with potentials decreasing faster- than any exponential. In 
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particular finite range potentials correspond to F(z) of order ^, i.e., 

What miraculously happens is that the case of entire functions of finite order, 
which, a priori, would look more complicated than that of polynomials, is 
in fact much easier. Why is it so? First of all, if the partial wave 
expansion does not stop: 

the only way for this expansion to converge in the entire complex plane is 
to have f 6 -> 0 for 4->oo. That means that for large I unitarity simpli-

I I I I 2 

fies: Im f̂  = |f̂ | ~|Ref^| . On the otner hand, it is the large t be­
haviour which determines the dominant behaviour of F(z) for z -> OD , 
because the small i behaviour will only affect F(z) by polynomials. In 
the limit of z large, therefore, F(z) is dominated by the dispersive part, 
i.e., 

So, the quantity 

is dominated almost everywhere by 

This obviously should simplify things since, "approximately" we are only 
left with a sign ambiguity. 

Before giving details let us recall what is the "order11 of an 
entire function. In mathematical terms the order ^ is given by 
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This means thai: a function of order j$ behaves approximately like 
exp(r)^ in some direction. For instance exp z is of order 1. What is 
also needed is some property of the unitarity integral. 

The absorptive part of the scattering amplitude A is given by 

sJ 

[This equation coincides with (8J] , or 

The problem is to continue the unitarity condition (33) outside the physical 
region. Let us choose as z axis the bissector of the angle 12. Then 

Make now 0 q complex and assume that F is analytic inside an ellipse Eq^ 
with foci -1 , +1 going through cos . Then without any contour deform­
ation we see that the argument of F lies on the segment connecting the 
points cos (0 + 0) and cos (0 q -0) which both lie on the ellipse Eq 0 * 
The same holds for the argument of F*. So both arguments are inside the 
ellipse of analyticity and A(cos 2Qq) has a meaningful expression. In 
particular, if we take Q q =i 
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With the notation M^(x) = maximum of |P| inside the ellipse of semi-major 
axis x, and foci - 1 , + 1 , we get from (36) 

x real>1 (37) 

(remember that A, a sum of Legendre polynomials with positive coefficients 
is maximum at the right extremity of an ellipse). 

Inequality (37) is the key for the study of amplitudes which are 
entire functions. In the limit of x very large the ellipses become very 
close to circles (with an error of the order of 1/x). Equation (37) shows 
that if P, is an entire function of order p A is entire function of 
order |5/2. Indeed ' 

arbitrarily small. 
A. The case of entire functions of order _0<_£ <1 

Suppose we have two amplitudes P and P ' giving the same cross-
section: 

D % ) ^ A V ) S D ' ^ A R ) ^ A ' Y a ) (38) 

if P is of order D >0 A is of order |0/2, and D is of order yO . 
This implies that D» is of order and A' of order ^ / 2 . P and P1 

have to have the same order. Now (38) can be written as 

(39) 
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The right-hand side is of order P / 2 . The left-hand side must also be of 
order ^/2. i 

Here comes an important decomposition theorem of entire functions 1 ̂ : 
let f(z) be an entire function of order(T<l such that f(o)^0. Then 
f(z) =c|70-(z/zj), where the product, extending over all zeros of f is 
absolutely convergent. Furthermore, any product over a subset of the zeros 
is also an entire function of order < 

Now D-D' and D + D' are separately entire functions of order ^ 
< 1 and can be written as absolutely convergent products over zeros. The 
zeros of D-D' are a subset of the zeros of (A-A1 ) (A+A1 ) . Hence D-D! 

is necessarily of order P/2. So is D + D1. Therefore D and D' are 
separately of order P / 2 , which contradicts the assumption unless YD = 0. 
Hence there is most one amplitude of order 0< P <1 reproducing a given 

2 12 
differential cross-sect ion. We have excluded of course the case A -A =0 
which admits as a solution Df = -D which is the trivial ambiguity» 
B. The case of entire functions of order 1<LP<2 and its generalization to 

arbitrary finite order X). 

Again, if there are two solutions F and Ff they are both of the 
same order . A and Af are of order ^/2< 1 and hence A-A' and 
A + A' can be written as convergent products over zeros: 

/ i ^ A , L = C T T f i - * , \ 
f 

From (39) we see that the zeros of D + Df from a subset of the z.!s: 
1 

where the z. 's for::, a subset 01 the z. fs and E(z) is an entire function 
without zeros of order <2. The only such function is cexp^Jz. Hence 
D -f D' = exp$ z)l'}{ 1 -(z/z ,) ) , where f"|0-(z/zj) is of order j>/2 < i , 
D + D' = exp̂ J) zj 0 ( z) where 0(z) is of order <1 . 

Similarly, D-D1 = exp- 3 2 l̂ (z) when (j>( z) is of order <1 . 
Therefore, 
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Z D ' s ¿ ^ ( 3 * ) 

We see that D and Df are of order 1 . So, if 2>^»1 we meet 
again a contradiction, and there can be only one amplitude. On the other 

hand, for P = 1 we cannot exclude the possibility of two solutions. Then 
is it possible to have more than two solutions? If there are three solutions 

there are two decompositions of the type (41) : 

Z D=r « ^ ( A s r ) <f>(«0 + * * / < ^ * ) ( 4 2 ) 

where 0, , 0', are of order <1 . Then, it is easy bo see that 
(assume £ > 0 & F>0) for z real-»+ go the first terms in (42) dominate 

and one is forced to have $ ' . After this is established it is not difficult 

to show that ¡6=0* ^ = {̂/'. Therefore, the decomposition of D is unique 

and there are only two solutions at most. 

It is not difficult, as was done in Ref. 9)? to generalize this 
argument to arbitrary finite order >0. Indeed, if p >2 it is still pos­
sible to write (A - A1)(A + Af) as a product over zeros provided extra con-

1 3) 

vergence factors are added . For instance, if 2<p< 4 , i.e., 1 < ̂  / 2<2 
A-A f will be written as a product of factors (l - (z/ẑ ))exp(z/z ), 

instead of (l-(z/ẑ )) previously, times a pure exponential. We do not 

want to give details. The conclusions are the same: if ^ is not integer 

there is only one amplitude of order ̂  . If D is integer D can be 

decomposed in a unique way into 

2 D = **t(yr?) <f ( * ; + ^ f t * / ] ^ ( * ) ( 4 5 ) 
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where 0 and \̂  are of order strictly less than /0 . There are never 
more than two solutions. / 

The fact that this holds for arbitrary finite order makes us believe 
that this might also be true in more general cases but we have no proof of 
this. 

C. The case of functions of order zero 

This is perhaps the most difficult case, probably because it is 
close to the polynomial case. Here inequality (36) connecting the growth 
of |p| and the growth of |a| for z -> oo must be used in a more careful 
way. We have no simpler proof to offer than the one proposed in Ref. 9). So 
we just state the result: if F and F' are two unitary amplitudes of order 
zero producing the same cross-section, D - D! or D + L' is a polynomial. 
Assume that D-Df is a polynomial. Then 

Once this result is accepted it is not very difficult to see that 
there cannot exist more than two solutions. 

Let D + iA be one solution, D + A d + i(A + A A) the second, 
D+AD !+ i(A + AA« ) the third. Then 

hence 

2 . 4 . ^ J . ^ A f e ' - n (45) 

A, for z-> + oo, increases, by assumption, faster than any power. Therefore, 
the last four terms in (45) decrease faster than any inverse power of z. 
On the other hand AA/£L - AaV-A^ 1 is a rational function. It has 
therefore to be identically zero: 
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Then it is not difficult to get ^ A ^ ^ A 1 and 4 ̂  =./!> • T h e 

second and the third solutions have to coincide. 

The case of order 0 makes therefore no exception. There cannot 

be more tnan two solutions. The major difference with ¿0 is that if 
p> 0 , integer, the difference between two solutions is not a polynomial 

(a fact which is also true for amplitudes analytic in a cut plane, as shown 
14) \ 

by Burkhardt ), while for ^ = 0 the difference musrt be a polynomial. 

6. CONCLUDING REMARKS 

We have presented the situation as it is today. Our findings suggest 

that there are never more thai two unitary amplitudes producing the same 

differential cross-sections. This will be true if entire functions are not 

exceptional animals. The reason of our success is, on the one hand, the 

fact that in that case only the large angular Momentum partial wave ampli­

tudes matter, on the other hand, that entire functions have been very well 

studied by mathematicians (especially old mathematicians) with these beau­

tiful decomposition theorems of Weierstrass, Hadamard, etc... 

There are many problems left among which I want to mention three: 

1) the extension to particles with spin. This is in part treated in the 

papers of Atkinson-Mahoux-Yndurain 1 and Cameras and Alvarez-Estrada ^ ̂  
17) 

and Berends and Ruijsenaars ; 

2) the stability with respect to experimental errors. At least in one case 

we can give a positive answer: if sin |A.< 0.79* one can prove that small 
perturbations of d<3T/dcos0 produce small perturbations of 0(cosO), 

the unique solution; 

3) if we Know the amplitude not only at one given energy but on a range 

of energies, does this fix the amplitude in a unique way? Does this 

eliminate the trivial ambiguity F ( s, cos 9 ) -» -F*( s, cos 0 ) ? 

It has been shown long ago that if JF| is known in the whole phy-

sical region F is determined uniquely 1 '"' . It must be realized, however, 

that this determination is rather unstable: F(s,cosO) is inside the analy-
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ticity domain in cos 9 but on the energy cut in s. What is easy to 
establish is that there are never more than two amplitudes because, as we 
said, the condition sin pi< 1 holds if we are close enough to threshold. 
Then modulo the trivial ambiguity there is only one amplitude inside a two-
dimensional region in s and t and this fixes the amplitude everywhere 
else by analytic continuation. It is more tedious to remove the trivial am­
biguity. Here one must use, in particular, fixed t dispersion relations for 
t>0 together with the positivity of the absorptive part. For completeness 
let us sketch a proof. 

We work with a s-u crossing symmetric amplitude A + B-* A + B, 
with masses M and |k (like KfT ° -* Kfl °•) • Then 

• 3 * = [ s - ( h ^ ] [ L h + ^ - « . l ( 4 6 ) 

is a convenient variable. 

Assume that we know 
i) |f| in the elastic region 

ii) (f| and & tot al i n ^ e ^ o r w a r d direction for arbitrarily large 
energies. 

From the previous remarks we know that we have only the trivial 
ambiguity when s is close enough to threshold, and since F is analytic 

2 2 
and can be continued to the second sheet for (M + |* ) < s < (m + 2 ̂c) , this 
will persist till the first inelastic threshold. 

So if F and G are solutions 

Let us look now at the forward amplitude. F and G are both analytic in 
the z plane with a cut starting at z = 0. Since &\O\>B± I S £ I V E N 

all energies, Im F = Im G- and F-G is real analytic for z<0 and also real 
for z>0. Therefore, it is an entire function. But from high energy bounds 

i i 2 
we have |F-G| <Vz(log z ) . Therefore, F-G = C, C real. On the other hand, 
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P + G is purely imaginary for 0< z < where ẑ  is the first inelastic 
threshold. Hence, F + G=*/-z 0(z) where 0(z) has a possible cut; starting 
at ẑ  . Now, we impose | Re F | =Re G | at all energies: 

which for a given z admits the solutions 

<$ F A . ) - o C = O 

C - 0 is excluded, because then there is no problem: F and G coincide. 
So we are left with Im0(z) = 0 which easily gives , 0 = const = D 

f F S S + - £ ^ 

y 2 - A ~ ' (48) 

at all energies. Outside this exceptional structure there is no room for 
the trivial ambiguity. Now: this structure itself seems to be unacceptable 
because there is no inelastic cut in F. It seems extremely difficult to 
make the inelastic cut everywhere zero in the forward direction. What we 
know is that above the inelastic threshold the total cross-section must be 
strictly larger than the elastic cross-section. For an amplitude F = £(2l+J\ )f J? 

I II 
the discontinuity (F -F /2i)(cos 0=1 ) of the amplitude across the inelastic 
cut is given by 

/ - 2 / A * 

In the case where for all 2, Imf^<|-£ it is easy to see that 

| A | > ^ ' £ ( ^ - f i * J L ± ) ( 5 o ) 

while in (48) ^ is zero. We see therefore that if D is small enough 
we get an obvious contradiction since 

Hence . 
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Even for large D, it seems anyway extremely difficult to make ^ 
identically zero at all energies- Indeed, let us place ourselves close 
enough to the first inelastic threshold. Then the inelastically produced 
particles will appear in the lowest angular momentum state allowed by selec­
tion rules, and the sum (49) will reduce to a single term which will differ 
from zero. 
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