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A Fundamental Property of Quantum-Mechanical Entropy 

Elliott H. Lien* f 
bistitut des Haute $ Etudes Scientlfiques, 91 Bures-sur-Yvette, France 

and 

Mary Beth Ruskai*f 
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 

(Received 26 December 1972) 

W e have proved the strong subadditivity of quantum-mechanical entropy and the W i g -
ner-Yanase-Dyson conjecture. 

There are some properties of entropy, such as 
concavity and subadditivity, that are known to 
hold (in classical and in quantum mechanics) i r ­
respective of any assumptions on the detailed dy­
namics of a system. These properties are conse-

where T r means trace, p is a density matrix in 
( l a ) , and p is a distribution function (usually on 
if 3*) in ( l b ) . In (1c) the pj are discrete energy 
level probabilities. 

One such property, strong subadditivity (SSA), 
was known to hold for classical systems and was 
only conjectured for quantum systems. The ob­
servation that classical entropy has SSA (this, in 
fact, is a theorem in information theory) and that 
SSA implies strong results about the thermody­
namic limit of entropy per unit volume is due to 
Robinson and Ruelle. 1 Later, Lanford and Robin­
son 2 conjectured that SSA holds for quantum sys­
tems as well, and Baumann and Jost3-'1 were able 
to prove this when p has a special form. Araki 
and L ieb 5 proved a weakened form of SSA, but one 
which held for general p and which was sufficient 
for many of the purposes to which SSA had been 
put in Ref. 1. The physical significance of SSA 
is explained below [item (f) of Table i j . 

Pr ior to these developments, Wigner and 
Yanase 6 proposed a different definition of entropy 
(or negative information) which was generalized 
by Dyson. 6 The conjecture that this generalized 
entropy was concave in p was also proved by 
Baumann and Jost 3 , 7 in special cases, but it was 
not realized that this concavity problem and the 
SSA problem were related; in fact they are ecmiv-
alent. 

Here, we wish to announce that both of these 
problems have been solved affirmatively. The 
proofs, which are too long for this note, wilLbe 
given in two papers. 8* 9 

A density matrix is a positive semidefinite 
operator with Trp = l . The Wigner-Yanase-Dyson 
p-entropy of p with respect to a self-adjoint op­
erator (observable) K is 

S , ( p , A ) « i T r [ p ' , A ] | p l - > , K ] , (2) 

where U . B] = AB-BA and 0 < p ^ 1 is fixed. We 

quences of the definition of entropy as 

S(p) - - Trp lnp (quantum), ( l a ) 

S(p) = - Jplnp (classical continuous), ( l b ) 

S(p) = - S p f l n p , (classical discrete), ( l c ) 

can think of (2) as defined for all p * 0 and ask 
whether S p (p . A ) is concave as a function of p. 
The term - { TvpK1 is obviously concave since it 
is linear, so the problem reduces to that of the 
concavity of Trpphpl'pK. This was proved 6 when 
p = {. We have proved the following: 

Theorem: For each fixed A (not necessarily 
self-adjoint), T r p ' A rp rA' is a concave function of 
p for p 3* 0 whenever p > 0, r > 0. and p + r « 1 . 
This theorem is obviously stronger than neces­
sary. 

Returning to the conventional entropy ( l a ) , we 
suppose that the Hilbert space of the system is a 
tensor product of three spaces, H-nl g t f 2 g / / 3 . 
Thus, the system has three sets of degrees of 
freedom; for example, these may be thought of 
as the degrees of freedom of a gas in three d i s ­
joint regions in space {R*). Given a density ma­
trix p 1 2 3 on H, we can define a density matrix p 1 2 

on Hl <&H2 by partial trace, i.e., p 1 2 = T r 3 p 1 2 3 . In 
like manner we can form p 2 3 , p 2 , etc., and for 
each of these we have an entropy given by ( l a ) . 
Denoting S { p 1 2 3 ) by s 1 2 3 , etc., subadditivity ^states 
that 

S ' ^ S ' + S 2 , (3) 

while SSA states that 

S'-^5" -<S-7 - S"\ (4) 

We first show that S 1 - S 1 2 is convex in p 1 2 . 
This implies SSA because, as was pointed out 
previously, 5 in the quantum or classical discrete 
case SSA is equivalent to 

F^iS1 - S l 2 ) + (S" - S 2 3 > * 0 , ( 5 ) 

but as F is convex in p 1 2 3 , it is less than its max­
imum value on extremal points, which latter are 
those p 1 2 3 that are pure states. For pure states, 
F = 0. 

We also prove some other related theorems, 

T A B L E I. Fundamental properties of entropy and their truth (T) or 
falsity (F) In three kinds of mechanics 

Classical Classical 
discrete continuous Quantum 

(a) S(p) is concave in p T T T 
(b) S 1 2 « S1 + S 2 T T T 
(c) S(p) ^ 0 T F T 
(d) Sn * S[ T F F 
(e) S 1 2 * i s ' - S 2 ! T F T 
(f) S 1 2 3 • S 2 * S 1 2 + S 2 5 T T T 
(g) S ^ - S 1 is concave in p 1 2 T T T 



among which is the following: 
Theorem: Let K be self-adjoint on a Hilbert 

space H and fixed. Then Tr|exp(AT + lnp)] is a con­
cave function of p for p >0. Closer inspection 
shows that this theorem is a generalization of 
the Golden-Thompson inequality 1 0 , 1 1 to three oper­
ators. 

To conclude, in Table I we append a list of the 
known fundamental entropy [Eq. (1)] inequalities 
and their physical significance. The following 
remarks clarify the physical significance of 
Table I. The letters ( a ) - ( g ) refer to entries in 
Table I . 

(a) states that if two different ensembles are 
united, the entropy of the resulting ensemble is 
greater than the average entropy of the compo­
nent ensembles. 6 

(b) is a statement of subadditivity and is the 
basic tool for proving that the entropy per unit 
volume has a thermodynamic limit (which may, 
however, depend on the particular sequence of 
domains). 

(c) expresses a well-known defect of classical 
continuous statistical mechanics with respect to 
the third law of thermodynamics. 

(d) expresses an intuitive defect of quantum and 
classical continubus statistical mechanics. An 
example occurs when p 1 2 is a pure state, so that 
5 ~ = 0. Thus, the entropy of the universe can r e ­
main zero while the entropy of Earth increases 
without limit. 

(e) is a consequence of SSA in the alternative 
form of inequality (5) (cf. Ref. 5) and is included 
as partial conpensation for (d). 

(f) is the statement of SSA. As a technical tool 
it allows one to prove that the entropy per unit 
volume for quantum continuous systems is inde­
pendent of shape, at least for rectangular paral ­
lelepipeds of fixed orientation (cf. Ref. 5). If one 
is willing to assume that the entropy of every 
bounded region is finite (which cannot be proved,, 
as (d) is false quantum mechanically], then the 
limit exists for arbitrary regions in the sense 
of Van Hove. However, (f) has a more heuristic 
interpretation. Although the connection between 
entropy and information is hedged with controver­
sy, we may suppose, along with the Copenhagen 
school, that when we measure a system its den­
sity matrix is reduced to that of a pure state and 
the entropy is reduced to zero. Thus, entropy 

measures the information gain in an experiment. 
S 2 3 - S2 can be thought of as the information gained 
upon measuring a total system (23) when a sub-

. system (2) is known. In quantum mechanics it 
may be negative because of (d) . S12** - S 1 2 ^ S23 

- S 2 states that this incremental information is 
smaller when the initial information 1(12) as 
against (2)] is larger. This, at least, is the 
interpretation given in information theory. 

(g) states that the incremental information, 
like the entropy itself, increases when two en­
sembles are united. 
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