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Abstract 

A concept related to that of entropy is studied. Let 
A and B be two density matrices, with eigenvalues a^, a 2, 
... and b 1 # b 2 , ..., arranged in decreasing order and re­
peated according to multiplicity. Then A is said to be 
"more mixed", or "more chaotic", than B, if a^ ^ b 1 # a^ + a 2 

*; b + b 0 , a. + ... + a < b. + ... + b , ... . It 
— l z 1 m — 1 m 
turns out that if A is jnore mixed than B, then the entropy 
of A is larger than the entropy of B. However, more generally, 
let v be an arbitrary concave function, .> 0, and vanishing 
at 0 . Then, if A is more mixed than B, tr v (A) tr v(B). 
It is shown that also the converse is true. Furthermore, 
a variety of other characterizations of the relation "A is 
more mixed than B" is obtained, and several applications to 
quantum statistical mechanics are given. 
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Introduction 

In the last years there has been some discussion about 
what should be considered as the right expression for the 
entropy of a density matrix. Whereas in equilibrium quantum 
statistical mechanics there is no doubt that the entropy of 
a density matrix, say A, is given by S(A) « -tr A In A, in 
the non-equilibrium case the situation seems to be somewhat 
unclear. (Cf., for instance, Prigogine [1]). Thus there might 
be some interest in theorems that do not depend on explicit 
expressions for the entropy but refer only to the fact that 
the entropy is a measure for the degree of "mixedness", or 
"purity", of a density matrix. 

Now, whatever is thought to be a good measure for the 
mixedness of a density matrix, two minimal requirements have 
to be fulfilled: firstly, if two density matrices are unitari-
ly equivalent, then they have to be considered as "equally 
mixed", and secondly, if a density matrix A is a convex linear 
combination of density matrices that are unitarily equivalent 
to a certain density matrix B, then A has to be considered 
as "more mixed", or "more chaotic", than B. 

These facts suggest the study of a so-to-say "basic" 
program, namely the investigation of the pre-order relation 
that is determined by the just mentioned two requirements. 
A posteriori, this program can be justified by the circum­
stance that many theorems of statistical mechanics can be 
formulated in terms of our pre-order relation, without re­
ference to any special expression for the entropy. 

The first steps in this direction have been made by 
Uhlmann [2]. He considered finite-dimensional density matrices 
and was able to prove the following important theorem: Let A 
and B be two density matrices, and let a ^ a^/ a n # and 
b 1 # b 2 , ... , b^ be their eigenvalues, arranged in decreasing 
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.order and repeated according to multiplicity. Then A is 
stronger mixed than B, if and only if a^ 1 ' al + a 2 1 
b + b , ... , a. + a 0 + .•. + a^ . < b_ + b 0 + ... + b^ .. 
1 z 1 2 n-1 — 1 2 n-1 
(Since A and B are density matrices, a, + .. . + a = 

J 1 n 
bj + . + b^ = 1.) In addition, Uhlmann proved some simple 
properties of the pre-order relation, and gave some examples 
of applications of the theory. 

In this note, we aim at generalizing Uhlmann1s main 
theorem to Hilbert spaces of arbitrary, finite or infinite, 
dimension- Furthermore, we shall establish some more proper­
ties of the pre-order relation and the equivalence relation 
generated by it. We shall also give some applications of 
the theory to problems of quantum statistical mechanics. 

i« Order and Equivalence Relations 

Definition 1. A "density matrix" in a Hilbert space of arbi­
trary, finite or infinite, dimension is a positive linear 
operator of trace 1. 

Definition 2. Let A and B be two density matrices. If the 
Hilbert space is finite-dimensional, let a 1 # a 2# a^ 
and b^, b^, b n be their eigenvalues, arranged in de­
creasing order, and repeated according to multiplicity. If 
the Hilbert space is infinite-dimensional, let a^, f • •• 
and b 1 # b^, ... be their non-zero eigenvalues, arranged in 
decreasing order and repeated according to multiplicity. 
(We understand that, if, for instance, A has only finitely 
many, say £, non-zero eigenvalues, than = a^ + 2 = ••• 
= 0 . ) We call A "more mixed", or "more chaotic", or "less 
pure" than B, and write A V B, if < al + a 2 - bl + 

b ~ , a. + ... + a_ < b , + ... + b . ... . 
2 1 m — 1 m 
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Remark, Via the Minimax Principle [3,4], the rxobers a ^ 
a^,... may also be characterized as follows: 

a = sup inf (xjAx) , 
m H xeH m m 

1 1 * 1 1 - 1 

where the supremum is taken over all m-dimensional subspaces 
H . 
m 

It follows from this definition that the relation f V 
is a pre-order since A y A, and since A V B together with 
B y C implies A y e Thus one can introduce an equivalence 
relation: 

Definition 3, Two density matrices A and B are called "equi­
valent" (A % B) , if and only if A > B and B > A. 

As one sees immediately, A ^ B if and only if a^ = 
a~ = b~, a = b , ... • Hence two density matrices A I I m m 
and B are equivalent if and only if there exists an iso­
metric operator V from (Ker A ) -L onto (Ker B)-̂ - such that 

V A x = B V x 

for all x e (Ker A)-^-. Using the properties of the polar de­
composition [5], our equivalence relation can also be 
characterized as follows: A ^ B if and only if there exists 
an operator S such that A = |s|, B = |s"|, or if and only 
if there exists an operator T such that A = T~T, B = TT-'. 

In the finite-dimensional case, clearly A * B if and 
only if A and B are unitarily equivalent. In the infinite-
dimensional case, it is only true that, if A and B are uni­
tarily equivalent, then A ^ B, but obviously the converse 
is false. 
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Notation. Given a density matrix A, we denote by [A] the 
set {B: B % A}. 

Since A V B implies A' >• B' for every A 1 e [A], and 
for every B 1 e [B], we shall frequently use the notation 
[A] >- [B]. More generally, we shall write A >• B for two 
sets, A and B, of density matrices, if A e A and B e B 
always implies A X B. 

Notation* Let A be a density matrix with eigenvalues a^ >_ 
>̂  a 2 21 • • • .We denote by a(m) the sum of the first m eigen­
values, and put, in addition, a(0) = 0 . 

Remark. Via Ky Fan's theorem [6], the numbers a(m) can be 
characterized as follows: 

a(n) = sup tr,, A , 
H H n n 

where tr., A = tr P A, P being the projection onto H . 
H n n n v * J n 

Theorem 1. Let A be a density matrix. Then the function 
m a(m), which is defined on the set {0,1,2,.. . ,n}, if 
the Hilbert space is finite-dimensional, and is defined 
for all non-negative integers, if the Hilbert space is 
infinite-dimensional, has the following properties: 
(i) it is non-negative, 
(ii) increasing, 
(iii) concave, 
(iv) a(n) = 1 if dim H » n, or lim a(m) - 1 if dim H = », 

m+» 
resp., and 

(v) a(0) = 0. 
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Conversely, if a function, defined on { 0 , 1 , . . . , n } or 
{ 0 , 1 , 2 , — } , resp., has properties (i) - (v), then it deter­
mines uniquely an equivalence class of density matrices. 

Proof. Properties (i) and (ii) follow from the fact that A 
is positive. Property (iii) is true since the eigenvalues 
a 1 # a 2, ... have been arranged in decreasing order, (v) is 
a definition, and (iv) is valid since tr A = a(n) , or 
= lim a(m) , resp. 

m+« 

Let now a(m) be a function with properties (i) - (v) . 
Define a. = a(l), a '= a ( 2 ) - a(l), a = a(m) - a(m-l), 

i z m 
• • Let $ , be an orthonormal system. Then (using 
Schatten's notation [7]) 

A = £ a i *i ® *i 

is a density matrix. Furthermore, if B ^ A, then b(n) = a(n).n 

Theorem 2 . The equivalence classes of density matrices form 
a lattice. 

Proof. Let A and B be two density matrices. We have [A] > [B] 
if and only if a(m) £ b(m). Now the set of all functions 
with properties (i) - (v) forms a lattice; in fact, 

(a-b) (m) = min (a (m) ,b (m)) , 

(a*b) (m) = concave hull of max (a(m),b(m)) .• 

This lattice has a "purest" element, namely the class 
of all one-dimensional projections (a(m) = 1 if m ^ 1 ) . If 
the Hilbert space is finite-dimensional, then it also con-
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tains a "most mixed" element, namely 1/n. (a(m) • m/n). If 
the Hilbert space is infinite-dimensional, then it does 
not contain a most mixed element. 

It is fairly easy to see that if n >̂  5, in particular 
in the infinite-dimensional case, the lattice is neither 
atomic, nor modular, nor complemented. 

2. Generalization of Uhlmann's Theorem 

We are now going to generalize Uhlmann's main theorem. 
Throughout this section, the Hilbert space is always suppose< 
to be infinite-dimensional. 

Theorem 3. Let A > C and B > C. Then, for any convex combi­
nation D « XA + yB, D >• C. 

Proof. Let <j>1# <j>2, $ be the eigenvectors of D, belong­
ing to d 1 #. d 2, d • By Ky Fan's theorem, 

d l * ••• + d m = £ (*J D •l* s 

£ \(a + ... + am) + y(b x + ... + b m) 

< (X + u) (c. + ... + c ) - c. + ... + c . • 
— l m l m 

Lemma 1. Let A be a set of density matrices such that, for 
some fixed B, and for any density matrix A e A, A V B, then 
also A > B for every density matrix A in the weak closure 
of A. (Note that in general the weak closure of A will not 
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only contain density matrices9 but also positive operators 
with trace smaller than 1). 

Proof, By virtue of Ky Fan's theorem, the mappings A -> a(m) 
are weakly lower semi-continuous. (Cf« also [8]). • 

Combining Theorem 3 and Lemma 1, we obtain the following 
theorem. 

Theorem 4. Keep the same notations as in Lemma 1. Denote 
by X the set 

{C : C ^ A, A e A) 

(I.e. X « KJ [A]). Then A y 3 for every density matrix in 
Ae A 

•——^-w 
Conv K 

Let us apply this result to physics* Let A be a density 
matrix, evolving with time, A A(t). Then, for finite 
times, A ^ A(t) , whereas in the limit t *«, the limiting 
density matrices, whenever they exist, are more mixed than 
A and, in general, cannot be expected to be equivalent to 
A. Similarly, Cesaro limits 

T 
w - lim ~ J A(t) dt 

T-M» o 
are more mixed than A. 

As a consequence of Theorem 4, we find that A > B for 
every density matrix in 

— w 

Conv [B] 
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We shall now prove the converse of this statement. This is 
then the asserted generalization of Uhlmann's theorem. Let 
us first introduce a new notation. 

Notation. Let B be a density matrix. We shall denote by 
K M(B) the set of all positive operators A (not necessarily 
being density matrices) such that 

sup tr„ A b (n) , 
H m m 

and by K(B) the intersection 
00 

K(B) = r\ K (B) . 
m=l 

Any element e /((B) is compact since 0 is the only accumula­
tion point of its spectrum [3,4,7]. If a density matrix A 
is contained in K (B) , then A B. 

Lemma 2. K(B) is convex and weakly compact. 

Proof. Convexity follows from the fact that the mappings 

A -> sup tr„ A 
H m m 

are convex. 

Since A e K(B) implies A e (B), the norm of A is 
bounded by b(l). Therefore, K(B) is relatively weakly com­
pact. Furthermore, by virtue of Ky Fan's theorem, the sets 
K (B) are weakly closed. (Cf. Lemma 1). • m 
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Lemma 3. If A e K(B) has eigenvalues a 1 = , a 2 = fc>2, ..., 
a m = b n ' am+l = am+2 = * " = °' t h e n i t : i s i n t h e w e a k 

closure of {UBUJ{: U unitary}. 

Proof. Let 
00 

B » I b. } 9 
i-1 1 

and 
m 

A = J b, ® <K • 1=1 1 1 1 

It suffices to show that the operator 
m 

B' = J b « ® 
i=l 1 1 1 

w 
belongs to {UBU-} • 

m oo 

Now the operator B . = £ b. ® ifr. + I b. ^. ® iK 
. m + i i=l 1 1 1 m+2 1 1 1 

w 
belongs to {UBU5:} since it is the weak limit of the operators 

m 
B m + 1 , * = il1

 b i *i ® *i + b * * m + i • * m + l + 

+ mil b ± *i ® *i + bm+l *i ® *» + J x
 b i *i ® *i ' 

m 00 

Similarly, the operators B . = I b. ^. ® tp. + , ̂  b. ® * 4 
m i " J i=l 1 1 1 m+j+1 1 * x 

w 
belong to {UBU::} , and consequently w - lim B . - B 1 . • 

j -*co J 
Notation. Let us denote by E(B) the set of all operators A 
as described in the preceding lemma. 
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Lemma 4. The external points of K(B) are contained in E(B). 

Proof. Let A e K(B) s £(B). Once more, we write A in the 
form 

00 
A = I a. <|>. ® cf>. . 

i=l 1 1 1 

Let m be the first integer such that 0 < a < b . If a ,, • 
m m m+l 

am+2 ~ * * * = °' t ^ l e n A is a convex combination of the 
operators 

m-1 

i=l 1 1 1 

and 
m I b. <J>, ® <j). , 
i=l 

both belonging to E(B). 
If a > 0 , then m+l 

A = 1 (A+ + A") , 

where 

t m-l 
A - a ± (a m * c ) « n « * m + 

00 

+ ( am+l + e )*m+l ® *m+l +
 ± J + 2

 a i *i ® *i 
If e > 0 is sufficiently small, then both A + and A~ are in 
K(B) since we have 

b m " a m i am+l > am+2 

o r b m * a m - am+l = • • = a
m + k > W + l ' 
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in the latter case, 

& m+1 m+k-1 m m+1 m+k-1 

since otherwise b < a . • 
m+k m+k 

We are now in the position to prove the generalization 
of Uhlmannfs theorem. 

Theorem 5, A y B if and only if A is in the weak closure 
of the convex hull of {UBU-}. 

Proof* The only thing to show is the "only if"-part. 

The set of extremal points of K(B) being contained in 
(3;, we have, by the Krein-Milman theorem, 

w 
K(B) = Conv E(B) 

By virtue of Lemma 3, 
w 

E(B) c {UBU-} 
w 

therefore K (B) = Conv {UBU5C} . • 

Remark. If the Hilbert space is finite-dimensional, then the 
set of density matrices 

{A: A V B} 

is already compact. The same reasoning as in Lemma 4 shows 
that its extremal points are exactly the density matrices 
that are equivalent (and hence unitarily equivalent) to B. 
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This gives another proof of the original version of Uhlmann's 
theorem, not using Birkhoff's theorem on doubly stochastic 
matrices. 

3 Characterizations of the Relation 

In this section, we shall obtain several other character­
izations of the relation 1 1 . Our considerations will no 
longer be restricted to infinite-dimensional Hilbert spaces, 
but are also true for finite-dimensional spaces* 

Theorem 6 . A B if and only if for every non-negative, 
continuous, convex function u> : [ 0 , 1 ] + R, such that 03(0) = 0 , 

tr a) (A) < tr a) (B) 

Proof. Note that o> is automatically increasing. Due to a 
lemma of Polya [ 1 0 ] , the relations aj < bj, a ! + A 2 1 bi + 

+ b 0 , . .. , a, + ... + a < b. + .. . + b and a. > a^ > ... > 
z 1 m — 1 m 1 — z — — 

> a imply that 
— m 

a) (a^ <_ a) (bx) 

uj(a^) +u>(a2) £ a) (bĵ ) + 0)^2) 

uia^ + ... + 1 ^(b^ + ... + a) (bm) , 

thus tr u) (A) £ tr 03(B). 
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On the other hand, let us assume that A y B is not 
true, Let m be the first integer such that a, + ... + a > 

1 m 
b •+* . . . + b . Define the function c*> as follows: 
1 m 

' x - b, if x > b w m — m 
*(x) = 

0 if x < b w . 
^ — m 

Then uj (b. ) = b. - b . . .., a) (bw) = b r o - b w = 0 = w (b,. . ) = l l m m m m m+i 
« ^ ^ + 2 ^ = . . • • Since, by assumption, + ... + am-l — 
< b,f + . . . 4- b . , we have a > b , hence — 1 m-1 m m 

ui (a.) =« a. - b > O 1 1 m 

a) (a ) = a m - b > 0 m m m 

and tr a) (B) = b, + . . . + b - m b < a. + ... + a^- m b m < 
1 m m 1 m m — 

< tr d)(A). • 

For the next theorem, we need a preparatory lemma. 

Lemma 5. Let v be a concave function, and let a 1 # a 2, a n 

and b 1 # b 2 , b n be two lists of numbers such that 
a 1 < ^ b 1 , a 1 + a 2 £ b 1 + b 2 , / a^ + ... + a n - 1 £ b^ + ... + 
+ b . and a, + ... + a = b. + + b . Let, furthermore, n — 1 1 n l n 
a, > a~ > .. . > a , and b. > b- > ... > b . Then 1 - 2 - — n 1 — 2 — — n 

v(aj + ... + v(a ) > v(b.) + ... + v (b ) l n — l n 
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Proof. There are several ways to prove this lemma. Let us 
give a proof utilizing Uhlmann's theorem. 

Consider the Hilbert space C n. Let A and B be two dia­
gonal matrices with entries a,, a n, . .., a or b, , b~,«.*, 

l l n l z 
B , resp. In addition, consider the mapping tr v(.). This 
mapping being concave, and invariant under unitary trans­
formations , 

tr v(A) > tr v (B) , 

or v(a.) + ... + v (a ) > v(b.) + ... + v (b ) . • l n — l n 

Theorem 7. A Y B if and only if for every non-negative, 
continuous, concave function v : [0,1] •+ R, such that v (0) = 0 , 

tr v(A) ^ tr v (B) 

Proof. For the "only if"-part, we have to distinguish between 
three cases. 
(i) Only finitely many a.'s and b ^ s are ? 0. Then (since 
v(0) a O) Lemma 5 applies directly. 
(ii) All a i

ls are ? 0, only finitely many b ^ s are ? 0. 

Let k be the last integer such that b k ? 0. Choose, 
for a given e > 0, an integer I > k such that £ a . £ e and 
1 a k- Define & l = b 1 # B k = b k , 6 k + 1 = ... = 3^ = 0, 
and a1 - a 1 # a k = a k, a k + 1 = a k + 1 , = a ^ 

CO 
and a = I a.. Then Lemma 5 yields 

I 1 

v(b-) + ... + v(b v) = I v(6 ) < I v(o.) = 
1 K i=l 1 1=1 1 
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and, by the continuity of v, 
00 

v(b.) + ... + v(b.) <_ I v(a.) 
1 K i=l 1 

i i i i ) All a^s and b ^ s are ? 0. 

Take an integer k, and define i = I(k) as the last 
integer such that 

i-1 k I k 
I a. < I b. , however £ a. >. £ b, . 

i=l 1 i=l 1 i=l 1 i=l 1 

f)afine e A = b 1 # ..., 3 k = b k , 8 k + 1 = ... = 8 £ = 0, and 
al = a l ' a*-l = a£-l' 

k l-l 
1=1 i=l 

Then v(b x) + ... + v(b k) £ v(a x) + ... + v(a £_ 1) + vla^), 
and, in the limit k •*• », 

00 00 

1 v(b ) < I v(a ) . 
i=l 1 i=l x 

Conversely, suppose that A > B is not true. Let again m be 
the first integer such that â^ + .. . + a^ > b̂ ^ + . . . + b^. 
Define v by 

fx if x < b — m 
v(x) = 

I b otherwise 
^ m 

00 

Then tr v(B) = I b t + m b m , 
m+ 1 
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00 

tr v(A) = I a A + m b m < tr v(B) , 
m+1 

OO 00 

since I a. < I b. • • 
m+1 1 m+1 1 

This theorem give3 us some insight into the physical 
interpretation of the relation , ,

f
v W. At a first stage, one 

might be tempted to say that a density matrix A is less pure 
than another density matrix B, if the entropy of A is greate 
than the entropy of B. However, one can proceed in a more 
general way: let v be a concave function as described in 
the theorem. Then the relation 

A > B ^ t r v(A) > tr v(B) 
(v) 

is always a pre-order. Now oxar theorem tells us that A > B 
is equivalent to the statement that A B for all concave 

(v) 
functions V . 

Hence the theorems that can be derived for the relation 
i>" can be* regarded as those theorems that are not only true 
for the entropy 

S(A) « tr-Aln A 

but remain valid if In A is replaced by any concave func­
tion. For instance, the statement made in the remark follow­
ing Theorem 4 can be interpreted as a "H-typeH theorem: for 
a density matrix evolving with time, 

tr v(A(t>) 

remains constant for finite times, whereas in the limit 
t + *», 
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tr v(w - lim A(t)) ^ tr v(A(t)) 

(and the inequality may even be a strict one). 

Theorem 8. A y B if and only if, for every positive operator T, 

sup tr A'T < sup tr B'T 
A 1e[A] B'£[B] 

The proof of this theorem utilizes the theory of convex and 
concave traces [8]; let us thus reformulate the theorem: 

"heorem 8 1. Let a be the sequence (a^ a 2, . • . ) , B be the 
sequence (b 1 # b 2 , . . . ) . A B if and only if, for every 
positive operator T, 

T (T) < t (T) • 
a — 8 

Proof. Since 

x a(T) = a x lx + a 2 t 2 + ... , 

T g(T) - b x t x + b 2 t 2 + ... , 

the decompositions 

x a(T) = a i ( t x - t 2) + (ax + a 2)(t 2 - t 3) + ... 

x g(T) = b 1(t 1 " t 2) + (b]> + b 2) (t2 - t 3) + ... 

+ lim tL m 
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immediately yield T ^ ( T ) £ T & ( T ) . 

Conversely, let P be an n-dimensional projection* Then 
m 

al + • • • + a m = Ta ( V ^ T6 ( Pm ) = b l + ' ' ' + b m ' a 

Theorem 9. A )• B if and only if for every positive operator T, 

inf tr A'T >_ inf tr B'T . 
A'e[A] B'e[B] 

In terms of concave traces, the theorem reads as follows: 

Theorem 9' . A >• B if and only if, for every positive operator T, 

a (T) > a AT) . a — p 

Proof. The proof is almost the same as for Theorem 8 f, One 
has the decomposition 

ojT) = ai (^i ~ £2) + (ax + a 2) (t2 - t 3) + ... + lim 

etc , hence 

a (T) > oAT) a — p 

since the sequence t^, t^, ... is increasing. 
Conversely, for an n-dimensional projection tP , 

° a ( 1 " V = 1 " al " " a m ' 

V 1 " Pm> " 1 " bl " " b m * a 
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:i™ >:nie Results 

In this section, we shall derive a few results that: 
^oilov. iirimediately from the theorems proved in the preceding 
ii• ect;.ens * 

Let us denote by (AT) A the expression 

(tr AT 2 - (tr AT) 2) 1 / / 2 . 

Then; 

T,e^reiT! 1 0 , If A )- B, for every self-adjoint operator T 
•no4 necessarily being positive), 

inf (AT) ! ̂  inf (AT) , 
A'e[A] A B'e[B] b 

Proof. This follows from the fact that 

( A T ) = inf (tr A (T - A) 2) 1 / 2 , 
A 

being real. • 

Our next result relies on a lemma. 

Lemma 6» Let a) be convex, 0, such that u (0) = 0 . Let . be 
concave, >_ 0, such that v (0) = 0. Let 0 £ x £ y. Then 

y 0) ( X ) £ X 0) (y) 

y v(x) ^ x v(y) 
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X x 
Proof, x = -.y + (1 - —).0, hence by concavity, or convexity, 

w (x) ~ u (y) 

v(x) > I v(y) . • 

Theorem 11. Let u and v be defined as before. Then 

A > * ( A ) , 
tr a)(A) 

tr v(A) 
provided that tr u> (A) < », or tr v(A) < «. 

Proof. We shall carry out the proof for u> only. What we have 
to show is that 

[o)(a]L) + u)(a2) + ... + w(a m)] ( J wCa^)"" 1 ^ 

> [a + ... + a ] ( I a ) , 
l m i = s l i 

i.e. that 

a, oj (a.) + ... + a_ u>(a.) + a,., wtaj + ... 1 1 m l m+l l 

+ a. wta) + ... + a w(a ) +. a . • w(a ) + ... > 
l m m m m+l m — 

> a. a> (a.) + ...+ a, to (a ) + a, w(a + ... — l l l m l m+l 

+ a w (a,) + ... + a^ u>(a ) + a w u> (a .) + ... , 
m i m m m m+l 

which is a consequence of Lemma 6. • 
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If, in particular, we consider density matrices of the form 

- e ' B H  

A 6 = tr e - 6 H ' 

then A_ y A o f if B < g1 since the function 
P P — 

u>(x) = x 6 ' / B 

is convex. 

The next theorem refers to the micro-canonical ensemble. 

Theorem 12. Let H be a self-adjoint, positive, not necessarily 
bounded operator with purely discrete spectrum, all eigen­
values having finite multiplicity only. Let E > 0 be a fixed 
constant. Then, among all density matrices with the property 
that (x|Ax) > 0 implies (x|Hx) £ E, there is a maximally 
mixed one, namely 

9(E - H)/tr 0 (E - H) . 

Proof. Let 
00 

H - I , 
i=l 1 1 1 

E1 E 2 <• ... • Let m be the last integer such that E^ E. 
Furthermore, let be the subspace spanned by <fr1# <(>2, ... 
<j> , and define H 0 « H-j-. m' 2 1 

If y e H 2, ||A 1 / 2y|| 2 = (y|Ay) = 0 since (y|Hy) > E. 
Thus A has non-vanishing matrix elements only between vectors 
e H . 
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Now, H, is finite-dimensional, therefore there exists a 

maximally mixed element, namely — r being the projec­

tion onto (Cf. [2], or the end of Section 1 ) . It is 

readily verified that 

I P - Q(E - H) 
m *1 tr e(E - H) 

In the language of physics, this theorem could be formulated 

as follows: among all the density matrices that are sensitive 

only up to a certain energy E, the density matrix that is 

strongest mixed is the micro-canonical density matrix intro­

duced by Lebowitz and Lieb [9]. 

Our last theorem is a mild generalization of a theorem 

formulated by Uhlmann. 

Theorem 13. Let T?^, P 2, ... be a sequence of pairwise ortho­

gonal projections, such that = 1. Then 

I P ± A P ± y A . 

Proof. Since tr ^P i A P i = [ tr P i A P, = ¡ tr A P, = 

tr I A P i = tr A(£ P i) - tr A, A is a density matrix. 

Now, let >_ a 2 2. • • • be the eigenvalues of I A P i # 

and let $ , <J>2, ... be the corresponding eigenvectors. They 

can be chosen in such a way that either P ¿ <f>k = 0 or « <J>k. 

Then 

m 
al + + am m J, (*klí P i A P i V ' 

k=l 
m 

• J, (*k | A V i al + ••• + am * D 

KL*~" 1 
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