F. CONSTANTINESCU

J.G. TAYLOR
Equivalence Between Non-Localizable and Local Fields

Les rencontres physiciens-mathématiciens de Strasbourg - RCP25, 1973, tome 17
,exp.n°2, p. 1-31

<http://www.numdam.org/item?id=RCP25_1973__17__A2_0>

© Université Louis Pasteur (Strasbourg), 1973, tous droits réservés.

L’acces aux archives de la série « Recherche Coopérative sur Programme n° 25 » implique 1’ac-
cord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utili-
sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=RCP25_1973__17__A2_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

EQUIVALENCE BETWEEN NON-LOCALIZABLE

AND LOCAL FIELDS

by
J.G. Taylor, F. Constantinescu,
Department of Mathematics, Department of Applied Mathematics,
King's College, London University of Frankfurt

April, 1972



(1)
(2)
(3)

(4)

Page
Page

Page
Page
Page
Page
Page
Page
Page

Page

ERRATA TO

"Equivalence between

Non-localisable and Local Fields"

7, line
8, lines
8, lines
9, lines
10, line
11, lines

14, lines
15, line

by

5 from below should be I =C @ S(RY) @ ...

1,2 and 4 from below to read ¢

1 and 10 from below

.G. Taylor and F. Constantinescu

5,11,12,13, and 17 from below

6 from below

3 and 5 from below

4.5 and 13 from bottom
2

25, line 12 from bottom

to read localisable instead of local.

15, 1lines

7 and 8 from below to

Z

instead of

instead of

z

o SR"™ 8 ...

f.



0. Abstrect

We discuss the nature of non-localisable fields constructed as
certain limits of sequences of local fields., For sequences for which
the corresponding Wightman functions converge we construct a PCT
operator; if the sequences converge strongly in & given Hilbert space
then & scattering theory cen be constructed for the non-localissble
limit field. Such fields are shown to have the same S-operator as any
locel field which has the defining sequence of local fields in its
Borchers class, and has the same in field. We give non~-trivial

examples of this equivalence between local and non-localisable fields.



1. Introduction

The problem of describing all relativistic quantum fields
corresponding to a given S-matrix has not been yet solved. An
important result in this direction was obtmined by Borchers [1] in
the frame of the (Wightmen) axiomatic quantum field theory. According
to this result of Borchers, fields are S-equivalent (i.e. correspénd
to the same S-matrix) if they are relatively local (or weakly
relatively locel). The relative locality (or the weak relative
locality) is a relation of equivalence among quantum fields, so that
8ll fields in a Borchers class (i.e. a class of relatively local or
weak relatively local fields) are S-equivelent., The converse is not
true: a Borchers class does not exhaust all fields with the same
S-matrix (see for instance [2] p.170) but we do not consider this
problem here.

The S-equivalence of relativistic quantum fields was also studied
in perturbetion theory; we refer the reader to [i] and references
quoted there for detailed results.

Roughly speaking the above results (in the axiomatic or in
perturbation theory) are known to physicists in the following

form: +two fields, one of them being & loeal function of the other

one, have the same S-matrix,

We will show in this paper that quantum fields can be equivalent
also in the "non-locel" case. In particular we will shew that a
local quantum field can be S-equivalent to a non-localizable field.

We think that this result can be of some interest because it shows



that non-localizable fields can have =z well-behaved S-matrix which
13 actually the S-matrix of & local quantum field. Some trivial

and non-trivial examples are also given.

2. The non-localizable fields

We will adopt in this paper the Wightman formulstion of a local
guentum field theory. We will construct non~lcealizable fields along
the genersl lines given recently by one of us Dﬂ. We remark that
there are also other interesting apprcaches to non-localizable (or
non-local) fields [5,{] or to a scattering theory for non-local
fields [f]. We hope to discuss the connexion of the limiting approach
|4] to other approaches, especially to Eij, in s separate publication.
In |{4| we look at non-localizable fields as limits of local ones in
a topology considered already by Borchers Eﬂ and Jaffe Bﬂ.

Let Sa eng s* (¢ > 0) be spaces of test functions considered by
Gelfand and Shilov([ld] Chepter IV ). The test functions in Sa are
roughly speeking infinitely differentieble functions 4¢(p) vanishing

1/
like e—alp! * for |p| + « where |p| is the Fuclidean norm of
p(po,ﬁ) end a a positive constant which may d.p:nd on é. A natural
topelogy can be put on these test functions as in [}d] Chépter Iv.
The elements of S° are Fourieytransforms of the functions in Sa' The
spaces SOL and s% are both nuclear and dense in S (the Schwartz space
of infinitely differentiable functions vanishing st infinity,
stronger than any polynomial). The set of functions which belong to

s* (¢ > 1) and have compact support is dense in the Schwartz space D



(infinitely differentiable functions with compact support).

Let us now consider a Wightman-Jaffe [ii] type theory (over test
functions in 8% in coordinate space) for the scalar neutral field A(x).
If for a given field A(x), a can be chosen larger than one A(x) can
be localized in any finite region of space-time and local
commutetivity can be formulated as usual: [A(¢), A(wi]”é = 0 for
supp ¢ end supp §y space-like separated (¢,y € s ) and & in the
dense domain of definition for A).

For o < 1 the functions in S% are analytic, the field A(x) is
no longer localizable in a finite region of gpace~-time and local
commutativity for these fields cannot be formulated, at least in the
usual fashion,

Such a behavior of A(x) is generated evidently by a high energy
behavior of these fields like eelp!l/a (with € > 0 +) (& < 1), We can
look at the (non-localizeble) fields A(x) in this case (imposing =
reasonable generalized local commutativity) as follows,

bn . .
) the 8% - space of test functions depending on

Iet 8% = s%(R

n —

kn independent variables (Sz = € = complex nwibers). We construct
the {locally convex) direct sum of §;, n=20,1,2,... (see for

instance [;é] p.21lk)
79 = 9 s (1)

The elements of Za arc of the form ¢ = (4 ,4

o 1,...,¢n,...) with

¢ € Si and 4 has only a finite number of components, The locally

convex topology in Za can be given by a set of non-denumerable



seminorms L;é} and can be characterized by convergence as follows:

my . N .
{¢"} is convergent to ¢ in } if and only if

m

i) there exists en integer I so that ¢, = O for all n > N and
ii) each component ¢f; n=0,1,2,... converges to ¢n for

m - o in the topolegy of Sg .

Let now Ak(x), k = 1,2,... be a set of tempered scalar neutral
relativistic quantum fields. This means thst the Ak(x) are tempered
Schwartz distributions satisfying the following (Wightman) requirements
2]

a) Hilbert space of states

b) covariance under the inhomogenecus Lorentz group

c) positive energy

d) local commutativity

Evidently the Ak(x)'s are also operator valued generalized functions
over the spaces s*. For a given field Ak(x) we consider all its vacuum
expectation values Wk with test functions from ¥ for a given a. For

all k = 1,2,.,. we have (compare with [Q] P.220 )

1) woe )° , k =1,2,...

k

2) W ((2,0)6) =W(e), ¢cs® ()
v — S o [0}

3) wk(qx)—o if ¢e M



-
¥

o - s PO s o :
fr1y b 18 tae dual space o Z s l.e. the space of all continuous
.

Linear funectionals on z ) can be identified with the direct

o

"%y [32] but this fact will not be

nroduct of the spaces S; =g” (&
of special interest for us. We remark only that the space Za is
complete [12] (see also [8] p. 235), The condition 2) represents

e covariance uader the inhomogeneous Lorentz transforms (a,A).

in 3) M: is defined as

~ QL

el
S
1
=
-
we
R
m
o~

, D’(Fsbn) (B seeesp,) = 0 if

T, P..; + pn,.“,,p2 S +pn € V4~ and pl +p2 F ans pn = 0 }

-,
4]
S

., ¥ 171
wiere D' o= . iyl

It
<
—

+ aee T Yn; Yi"'°Yn = 0,1,...

3

V+ is the closed forward light cone and F stends for Fourier transform,
Condition 3) represents the positivity of the energy.

In 4) (which is the local commutativity) Ic is defined as a
linear subspace of ) = C @ S( I+) + ... 8 8( lm) ® ... with the
following base: ¢(x1,... ,xn) is an element of the base if f can be

decomposed gs the difference

f(x1 oo Koy Ko oees Xy Xpog e xn) - f’(x1 oo Koy Kioosee Kos Xy oeen Xn)

is timelike for j # &

and f(xl .08 xi LI R ] x‘K LA xn) = O lf Xj - XR‘



w

Jo =i, 1 +1,... ;3 (i7...k”) is any permutation of (i ... k).
. . .. 11 . + .
Finally, in 5) - which is the Hilbert space requirement, 4 1s

defined as

s it —— i A e

(¢O,..., @n(xn,q.o,xl}ho..)

>
i

where the bar means complex conjugation.

It is clear that Z& becomzs en algebra with involution if the

following definition for the product 1s chosen

X Yy = U S W h e E bl geesgXs) Y : so s
6 x ¥ (¢o Yo 95 V) él Yo D= ¢l<}(1’ ’Xl) Vk(x1+1’ ’Xn)’ )
One can study the algebraic structure of ?Ez and IC but we don't need to
D
know this expiicitly ior the purposes of this paper, and we send the

interected reader to [g].

All the (:cempered) fields 2 (x) were talen as local and the local
commutativity given through L) for = = 1,2,... . Now we turn to the
construction of the non local field A(x) from the given tempered local

-

fields Ay(x). Tt the seguzace W e Za be convergent in Za . It is

~

¥

not difficult to prove (see for insisnce [8[) that the limit W of the

sequence {W_} satisfies “he corditicus 1) - 5) with the possible exception
I

X

of W), Moreover, 4) ig satisfiod if o > 1 but it cannot be satisfied
for a < 1,

Certeinly from W va cen reccastruct the fields and for a > 1 we
get a Wightman-Jaffe field. If o < 1 A(x) will continue to be a field
in the Wishtman sense vhich we cnll = non-local field (for a discussion

of the c2se o = 1 se= Li



\O

The crucial point in this construction is that the loctl
commutativity of the fields gk(x), k =1,2,,s, induces in the limit
k > » a general local commutativity vhich we understand as a fast
decrease of the commutator for A(x) in space-like directions (for only a
partial discussion of the extended commutator in space like directions
see [;4]. The result of [l{] doesn't apply to a massive field in which
case the decrease of the commutator in space like directions is much
stronger; a more complete discussion is given in [li]. Certainly the
(small) acausal effects we have described here depend on a < 1 and tend
to vanish in the limit ¢ = 1 (for a > 1 the commutor venishes exactly
for space time directions). The non-local ficlds constructed as above
heve many important properties as for instance PCT-invariance. A
scattering theory for such fields exist and was discussed in [{].

Before going into the discussion of the equivalence between a2 local
and a non local field let us consider a little further the limit
Ak + A which we required as the basis of constructing non local fields.
The non-local field A(x) was recovered by the reconstruction theoren,
which gives us also the Hilbert space ¥ in which A(x) acts. The
reconstruction theorem gives us unfortunately not tco much information
gbout E , which is constructed as the completion of a pre-Hilbert
space in whose formation condition 5) enters essentially. It is
therefore difficult to compare the Hilbert spaces in which two non
local (or a local and a non-local) fields constructed as above are
acting. Because fields which have the same PCT operator are good
candidates for S-equivalence and because we have not yet enough control
on the reconstructed Hilbert space, in looking for fields having the

same PCT operator we will assume that all the fields Ak’ k=1,2, ...
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and A are acting in the same Hilbert space (see examples in §6).

On the other hand it will be helpful for deriving certain results
to consider also the following strong form of the limit Ak - A:

Let Ak(x) k =1,2,... be (tempered) local fields acting in the
same Hilbert space H , having the same invariant domain of definition
D and the same vacuum @ and let A(x) be a non-local fields constructed

from ﬁk(x). We assume that A(x) has D as invariant domsin and 9 as

vacuum and noreover

s - lim Ak(xl) Ak(xn) Q = Alx)) ... A (xn) Q (3)
Koo ’

where s - lim stands for the strong limit (i.e. the norm limit inH ).

More precisely (3) means thet for all G aeeest € Su(ggun) we have

s - 1lim Ak($l(x1)> - Ak (6 (x)) Q

K->o0 n n

= r/l ; PR A M Ll

l(¢1(xl)) (¢n(xn)) Q ()
The convergence in (3) (or (4)) is stronger than the convergence

of W. in the sense of Zd . Writine (3) in the form

k

ﬁb(xl) .o Ak(xn)Q - A(xl) v A(xn)Q - 0 for

148

k > o, we can write (3) in terms of vacuum expectation values of the

fields it‘.k, k = l,2,-c- and A.



11

3. The PCT Operator

Let A(x) be a (tempered) local scalar neutral field satisfving
the Wightman axioms a) - d) of §2. Let D be the invariant dense
domain in H on which A(x) is defined. Let U(a,A) be the unitary
representation of the inhomogeneous group P: which corresponds to
the field A(x):

Ula,A)  Ae) U ' (a,n) = CYINY (6)

a,h)

where ¢ ¢ S(B ') and d(a.p)(¥) = ¢(17 (x = a)). Ve assume that the

a,A)
vacuum Q@ € D for A(x) is a cyeclic vector (the field A(x) is
irreducible). The field A(x) determines the Borchers class of all
fields relatively local (or weak relatively local) to A(x) ,
cerresponding to the same unitary representation of U(a,A) of the
inhomogeneous Lorentz group, the same invariant domain D (in the Hilbert
space H ), the same vacuum and also the same PCT operator,

Let now Ak(x), k =1,2,... be a sequence of fields in the Rorchers
class of A(x) (there are always infinitely many fields equivalent
to a given field!). We assume that the sequence {Ak(x)} is éonvergent
in the sense of (3) to a non-local field B(x) defined in the same domain
D as A(x) and having the same vacuum 2 as a cyclic vector
We have

Theorem 1 The non-local field B(x) has a PCT operator 8, and
8, = 6 where 8 is the PCT operator for the local (tempered) field A(x).

1
Proof: The PCT theorem for Ak(x), k =1,2,,.. gives



or

. . Lo~
Taking in (8) k - o for ¢1,...,¢n € Sa(§ Yy T s(R L') one

(@, Ble (x)) «o. Bl (x ))R) = (2, Ble (= x ) ... Bly, (-

11 n n

i.e. the PQT theorem is valied for B(x) (a fact which was

in Dﬂ).
Moreover (9) implies the existence of an antiunitary

(the PCT operator for 2(x)) such that

8, Bls(x)) 8~ = B(¢(- x)), 8,2 =0, 8¢S
1

(see for instance [2] p.143 ). We will write (10) as

3(- x)

@
ud
=
@
]

We have also

@
=
¥
@
[
o=
I
s
4
@
~
@
i
[}

We can write now

Ak(— X); k= 1,2,...

gets

12

already proved

operator 61

,6Q

(10)

(11)

o (12)
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0 A (x ) voo A X, ) =6 Alx) 6 o A (x _Je e ... 6 6 Ak(xl) X

< gen =A(-x) A (=x_ ). h (-x)0 (13)

and
8, B(xn) ces B(Xl)Q =B(-x) ...8(-x)a (1h)

1

Taking in (13) the strong limit for k -+ = we get

8 B(xn) ces B(xl)ﬂ = B(- xn) vov B(= x))0 (15)

The vector ¢ = B(xn) ves B(xl)ﬂ runs over a dense set in H

1
D

(B(x) has Q as cyeclic vector) so that from (14) and (15) follows 61
and the theorem 1 is proved,

Remark Theorem 1 is also valied if the (irreducible) field
A(x) is only weak local, The temperedness of A{x) can be weakened
by requiring A(x) to be only strictly localizeble in the sense of
Jaffe [ll_] .

The meaning of the theorem 1 is that we have associated.to a given
Borchers class also some non-local fields constructed as (strong) limits
of local ones belonging to the given Borchers class. The (local) fields
in the Borchers class and the associated non-local fields are acting in
the same Hilbert space, corresponds t0 the same unitary representation

of the Lorentz group, have the same vacuum and the same PCT operator.
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L, Asymptotic states and the S-matrix

We consider now (tempered) local fields Ak’ k =1,2,... which
produce in the weak limit (i.e. the Wk‘s are convergent in the sense
of za’) a non local field A(x). The first step in achieving a
scattering theory for our non local field A(x) is proving the cluster

property. Let

22 (a)= J d_)gWT (x +8a) ®(x) , 8(x) e 8%

an averaged translated truncated vacuum expectation value of A(x)
(we use here the notation of Jost [;é] Chap. VI). .The cluster

property is

lim dMg =0 3 M=0,1, ... (16)

dree

uniformly in a where 4 = max Ruelle was able to

1,3 “ Ei"f:.j ”'

derive (16) from locality [lé]. For the non-local field A(x) we can

write
1o | s | a" @ - g+ d" e (a7)
where
gkz_@_k(g)= f a_;_c_wkT (x +a)o(x), ¢e8'Cs (18)

and from Ruelle's theorem we get
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lim d ¢ =0, kK=1,2, ...
&0

A4

In order to hav. (16) for the non-local field A(x) it is enough to
require that the limit &t (s - g}) + O is achieved uniformly in a
for Kk + » and M =0, 1, 2, ... but fixed, This condition is satisfied

for instance if (uniformely in a)

lin 8" [W(x+e) - W (x+a) =0, n=0,1,2, ...

K>

(19)

m 1 2 3
where a" = 1 (gd) ™1, _3(&0 8 3e.0,8 ), ai(O,ai,ai,ai
15js3 "
osigtn
1 2 3
X (xO’ Xl,...,xn). xi(xg’ xi’ xig xi)

The condition (19) was imposed in [{] in order to assure the existence
of the cluster property. Once having the cluster property the Haag-
Ruelle scattering theory can be now derived following Steinmann [il.
We are able to give another proof of the asymptotic condition for
quantum fields considered as operator valued distributions on z (the
functions in z are Fourier transforms of functions in D ) based on the
existence of the cluster property. This proof works exactly also for
our spaces Sa, ¢ < 1. The condition (19) looks rather technical .
A discussion of the content of (19) will be given in §7 of this work.
In the rest of §4 we will show that the asymptotic condition for
a non-local field follows also from the assumption that the limit

Ak + A is achieved in the strong sense described in §2 in the same
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Hilbert space denoted by H . Exactly this result will be used
in §5 in order to prove an equivalence theorem (between local and
some non-localizable fields).

Let Ak be (tempered) local fields satisfying the requirements
described in [}6] Chap, 4. In particular spart from the usual
(Wightmaen) requirements we admit that the spectrum of the energy-
momentum operator gk corresponding to Ak(x); k =1,2,... coincides
with the corresponding speétrum for the free field of mass p., The
representation Ul(a,A) vwhich is the restriction of U(a,A) to the
Hilbert space gi corresponding to the one particle hyperboloid

is assumed to be irreducible with spin zero (it corresponds to

the mass n). Let P, the projection on §1 ; We assume
(2, A(x) B A(YIQ) =ia_ (W5 x-y) (21)

Iet h(X) be the well known cut—off function (in momentum space)
in the Haag-Ruelle theory.

We consider the fields

ﬁk(p) z Xk(p) n(p?), k =1,2, ... (22)

so that we have

i
Bk(¢)ﬂ € El for ¢ € S(R )
and

(2, B (x) B (y)2) =i, (u?; x-y) (23)

for all k = 1,2, ...
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From (3) we get

s - ii: Bk(xl) ces Bk(xn)Q = B(xl)‘... B(xn)Q (2k)
and
(2, B(x) B(y)a) =14, (2, x-y) . (25)

3 - .
Let ¢ € S(R27); we construct the operators |U]

Bk¢(t) = J Bk(t,E) s(r) ar (26)

where r = r(x!,x2,x3).

From [ié] Chap. VI, lemma € we know that Bk¢

common domain D, Bk¢(t)£5 » & € D are vectors in D which are ¢’ in t

(t) are defined on the

and continuous in ¢ .

The proof of lemma 6 Chap VI [16] can be applied in order to prove

the same properties for the operator

B¢(t) = J B(t, r) ¢(r) dr (27)

. a,_ 3
with ¢ € S (R°) S(R ).
Let now fm, m=0, 1,,..,0, ben + 1 smooth solutions of the

Klein-Gordon equation

£00 = Lo [ 00%) s(2m2) [T R (5) + PR T )]
(er)
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with g (p) e s, (2)C P(RY); m=0,1,2,...,n . We will have

certalnly

From (26), (27) and (28) follows that the operators

B (t) =i f T +3O B dr, R, (t) =i f ?“50 B dr

o) fm
x =t

o)
x =t

are defined on D and can be applied successively on the vacuum.

We construct now

o (t) =E . (¢t) B

K ke (t)e , k =1,2,... (29)

and

1]

o(t) B, (t) B, (t) ... By (t)n (30)

fe) 1 n

From the Haag-Ruelle theory follows (as a consequence of locality) that

the s*rong limits of @k(t) for t + [ » exist

in
out
s - 1lim ¢ (t) = ¢

t—>_m k "k 3 k = 1’2, LI ] (31)
+

in
oul

*x

are the asymptotic states for the fields Ak(x), k =1,2, ...

We have
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Theorem 2 The vectors

have strong limits for t - : o

in
s~ lim B, (t) B, (t) ... B out

O 1 n

(t)o = ¢

-
i

These limits are independent, with respect to L:, of the special
coordinste system in which the various entities have been defined,

Proof: We write

ete,) = ete )b s dlote)) = o ) 11+ Ns (5,

) - 60+
S ICRIERNC| (33)
We have for each k (see (31))
Fogle,) = 6 (e =0 for [t |, |t,] >

It remains to prove that

Lm | ¢(t) -6 (t)] =0 (3k4)

Ko

and this limit takes place uniformly in t .

We have



X

)
on k

where 3 3 1
i
This expression is a finite sum

0,1,...,n involves differentiation

o - o - o
go(xo,ro)... gn(xn,rn) {B(xi

n,rn)Q} dr _...dr

with respect to xg.

of terms of the form



where (io,...,in) is a permutation of (0,1,...,n) and O <j g n and

-

=y, - . o = 3 o =
g (xg, rz), 2 = 0,1,...,n 15 equal to fn(xz, rz) or to —== fQ(xz, ri).
axg
We go over to momentum space in (39) and get that || #(t) - ¢k(t) |
is smaller than a sum of terms of the form
4 4 i 2 i 2 o 7
jdpo j o || Alp; b (32 ) wew Kip, Jn (52 ) 5% Kp, )
o o J J J+1 I+
x h(p? ) we. ps Alp. ) m2(p. ) a -
i i i i
J+1 n n n
m( (2 N 2 o Y
- Ak Py ) b Pj ) Ak(pl ) b (pi.) 25 Ak(pi. ) x
o o d d J+1 J+1
2 o 7 2 - -
x h (Pi. ) pi Ak (pi ) h (Pi ) 0 X(po"'°’pn) }l (37)
j+ n n n
- - . . . 3 1
where X(po,...,pn) is a function in 5 (R (n+ )) (see 28).

In deriving (37) we have inserted in (36) a §-function 6(x: - t)
2 =0,1,...,n with the corresponding integration on xz .

We remark that (37) is independent of time,

Taking (3) into account we get that (34) is achieved for k + o
uniformly in t.

The second part of the theorem 2 follows also from this uniformity
1

. A(x) = fz(A— x), £=0,1,...,n0,
>

Mx) = 807t %), B (x) =B (17 x) and

in t. Indeed let A ¢ L:, f
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2, (t) =B, () ... By (t)a (38)
o n
_ A ot
®k’A(t) = Ek’f (t) ... % ¢ (t) @ (39)
0 n
We have to prove that for t > ¥ , ” ¢A(t) - o(t) 'I - 0,

We write

[ ope) = 6] s |lo,(0) =4, ()] =+

e (e) = ele) | (40)

The first and the third term on the righthand side of (LO) can be
made smaller than 8/3 (for € > 0 given) independently of t. Now
we have only to take It] large enough in order that |l¢k A(t) -

t ]

6, (8) Il < 5 for the local fields 4, k = 1,2,... . This

completes the proof of theorem 2.

H . H
Let 2 in (4 out

combinations of elements ¢ " (¢

) be the norm closure (in H ) of the linear

Out) including the vacuumn,

We have

Theorem 3 Define the linear operator Aex(f) on the vactors

ex
(fo,fl,...,fn) as

ex

AT () ¢

ex _ .eX
(fo,...,fn) = ¢ (f,fo,...,fn) (L1)

ut

where ¢ex stands for ¢1n respectively ¢O and f is a smooth solution

of the Klein-Gordon equation satisfying (27). Then the operators A% (1)
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correspond to the free scalar field of mass p which we denote by

ex
A(X)
22X (g) = if £(x) 57 2% (x) e (42)
x -
and
Ula,0) 2%%5(x) U0 (a,n) = A%F (Ax + a) (43)
6. A (x) 8 = 2% (- y) (1)

Proof We have to prove that (6"~ (f ,...,fn), 65X

o gl,...,gm)) is the

corresponding scalar product for a free field., We write

T I B N AIORE MO
|8, (8) = 6% |

By taking into account (34) (uniformly in t) we get

s - 1im ¢§X = % (45)
k-roo

It follows that

ex exX _
((:) (fogthtgfn), ¢ (go,---,gm)) - (h6)
_ . ex ex
=  1lim (¢k (fo""’fn)’ by (go,...,gm))
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By the Haag~Ruelle theory (¢§X(f0,...,fn), ¢§x(go,...,gn)) is (for
all k = 1,2,... ) equal to the corresponding scalar product for the
case of a free field and this proves the first part of the theorem 3,
The relation (43) follows from the second part of theorem 2 and (Lk)
follows from él A(x) 6 = A(- x) (see (10)).

Concluding this section we remark that we have been able to nrove
the asymptotic condition (under asymptotic condition we mean theorems
1 and?2) for (hopefully!) a large class of non localizable fields. We
have two  types of results: In the first part of the section the
asymptotic condition was shown to be valid for non localizable fields
defined as weak limits of local fields, the limit being achieved in a
wniform sense (see (19)). 1In this case the cluster property is
trivially satisfied and the cluster induces the asymptotic condition.
In the second part of this section we have taken the strong variant
(3) for defining non-localizable fields. This condition enables us
to prove uniformity in t for k = = and in this way the theorems 2 and
3 can be given a direct proof,

In order to discuss the S-matrix (in the next section) we assume
that the field A(x) satisfies asymptotic completeness. The S matrix
operator can be now defined by

A% (x) = 570 AT
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5. Equivalence between a non-localizable and a local field

In order to discuss the equivalence of fields along the line
of Borchers, we have to discuss fields having the same PCT operator,
Because of sbme Hilbert space difficulties in the case of a non-
localizable field constructed as a weak limit of local ones we have
not discussed the existence of a PCT operator in this case. But we
have proved that if the limit An + B is achieved strongly in the same
Hilbert space the PCT operator for B exists (see theorem 1) and
equals the PCT operator of a local field A which generates the
Borchers class contalning A k=1,2,... . Ve have

Theorem 4 If A(x) is a local (tempered) field and B(x) =

non-local field constructed as in theorem 1 then the asymptotic fields

ext( in( in(

A ext(

x) and B x) exists. Moreover if A (x) = R (x) then the
two fields A(x) and B(x) have the same S-matrix.

Proof  The proof follows immediately from the fact that A(x)
and B(x) have the same PCT operator and this operator takes in
fields to out fields.

Theorem U4 shows that a non-localizable field can be S-equivalent
to a local one., In the next section we discuss some examples in

which theorem L applies,

6. Examples

Let us consider A(x) as being the scalar neutral massive free

field., We construct Wick series of this field (in four dimensions)
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=

B(x) = A () (47)

§§~18
o

1

A result of Jaffe [11| (see also [17| and [18]) shows that B (x) is

strictly localizable if the sevies | a z” has an order of growth
n=1

smaller then 2. TFor an order of growth equal to 2 and type zero we

still g7 a localizable theory in the sense of rljj. If the order of

w
growth of ) 2, 2" is larger than two B(x) will be non-localizable,
We remark Egit the same thing al20 hadpeus for the massless case though
for this case in the region of non-locality the high energy behaviour
of 3(x) is very different from the high energy behaviour in the massive

case, because of a "contractica' of the phase space volume by passing

fromm =0 %

O

n # 0, A discussicn of the extension of the commutator of
B(x) outside the light-cone ('"scausal effects") are discussed
partially in [l{] for {he mossless case; a full discussion of this
juestion for i # O is the subjrct of [li}.
Now coming back to S-ecuivalence, it is well-known that the
w
series (U47) is in the Borchers class of A(x) if ) a, z"" has order
of growth smaller than tvo. It follows thgglin this case
B(x) is trivial. Theoren 4 avplies to 2(x) in the case in which
o
Z an zn has an order of gro.th larger than two (we leave
zﬂi reader to convince himself that this is the case) and therefore
A(x) will be trivial also in thc non-localizable case.
Another (non-trivial) example is eiven by taking  A(x) to be

a tempered non-trivial fleld (we assume that a such field exists!)

and considering -
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where g{z) is an entire function (with real coefficients),

E3 = 33— - éi— and ¥ = O -2, If #(z) has order of growth
b =2 2 x x a S
ox X

smaller than 1/,, B(x) is (strictly) localizable. If the order of
growth of B(x) i1s larger than one half B(x) will be non-localizable.
In the localiz;ble case it 1s easy to prove that B(x) is in the same
Borchers class as A(x) and is S-eguivalent but to B(x). In the
non-localizable case the theorem 4 applies and shows that B{x) is still
S-equivalent to A(x). Indeed it is easy to prove that the
convergence of partial sums in (48) to B(x) takes place in the strong
sense (3) and that (21) is also satisfied if a similar condition holds
for A(x).

In the next section we will discuss in detail the cluster

property in the weak approach Ak(x) + B(x) as described in §2.

7. The cluster property in the "weak' aopnroach local -+ non-

localizable

In §4 we have formally remarked that the cluster property
is wvalid for B(x) if (19) is wv-1li? uniformly in a. We would like to
discuss this question here replacing the technical condition (19) by
a condition which is more connected to the existence of a scattering
theory for the approximating fields {(which follows from the fact that
the approximating fields are local).

Let us consider that all the (local) fields A (x) have the
spectrum of free field and that (21) is satisfied (we remark that

these conditions are weaker than those imposed on Ak(x) in §4; there
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it was for instance assumed U(a,A) 1s the same representation of the
Lorentz rmroup for all Ak(x)).

Let &i =8, - a; i=1,2,...,n (see the notation after (19)).

Then the second auxiliary theorem in §5 Chapt. VI [16:[ tells us that

1
-—

f WE (x + a) ¢(X) dx, 6 e S(R Q(n+l))c;sa(2.4(n+l))

A 3 . - v .
is in S(2 ") with respect to a. Let w}j(p) be the Fourier transform

(N

T . . . T . .
of Wk(x); the translation invariance of TJk(x) gives in momentum space

vT - &b
wk(poapls"'spn) =6 (P + .. F Pn) X

1

a4 .
X wk (pl,noa,pn) (L"9/
T . 3n, . -
The fact that J W (x + a) ¢(x) dx is in S(R ") in a; =a; - a,

i=1,2,...,n means that after integrating %;T(p) with a test function

o . .- . .. *
from S(Eno) in po ve get a C function in p which is in eM(Bfn) ).

P p

3 3

But GM(E r_1) < eaM(B_ r_l). Now the cluster property for Hx)
P . P . . i 3n

constructed as a weak limit of Ak(x) is valid of W (p) ¢ eaM(E ) e

k P

2.

8 S(;( - Therefore we are faced with the following problem:
b

(0]
P

3 . . 4n -
8 eaM(B_ ") which converges in the sense of S(;(_-Ti ;). We have to

let {fv(p,ﬁ)} be a sequence of generalized functions in S&(B_n ) 8

*) In fact a result of Borchers [19J allows us to find some stronger

properties in p but we are not interested in this problem here.
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( e}

T
require that the limit £ P70 or tnis sequence also lies 1in

n 3n ) ) . ..
s“(R ) & 8 . (R7™7)., It follows that a simple condition we can
a ~ 0o aM — - B

D D

impose for the cxistence of a scattering theory for A(x) is the
following

(x)

Condition S: The field A(x) must be approximated by -
in such a way that the truncated Wightman functions W;T(p) converge in

3 .. .
the sense of S;(Eﬂno) 8 GQM(B, ?). The condition S can be interpreted

p p (=] ‘fT! -
as a regularity condition. Indeed the C -regularity of W “(p) in p

(which is respcasible for the ewistence of the cluster property) must
be retained in the limit (with the same effect) and this is, roushly

spesking, the content of ccndition S.

We have shown how it is possible to formulate a notion of
equivalence between non-localizable fields, or in the special case of
this paper between a non—locslizable and a local one. Indeed we may
define this equivalence by a natural extension of the idea of a Borcher's
class ac follovs.

Definition.

Tvo fields zre PCT-equivalent if and only if they have the same
PCT operator,

Suclhi a reletion between two fields is evidently an equivalence,
and so divides the class of all Tields 1nto egquivalence sub-classes.
Each sub-clace will be co~mosed of Rorchers classes of local fields

possibly togetlher with sore non-loealizable fields., Fields in the same
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PCT-class will have the same S-operator if they have the same in

fields, so will be S-equivalent. We showed in detail how a non-
localizable field constructed as & strong limit of local fields can

be shown to be PCT-equivalent to a given local field in terms of
conditions on the local fields of the approximating sequence, However
we haven't shown that there exist any non-localizable filelds which are
not PCT-equivalent to some local field. Our discussion in the paper has
shown that non-localizable fields can be as physically reasonable as
local ones in describing a given S-matrix. Apart from computational
adventages there seems to be nothing gained in using a local field
equivalent to a non-localizable one, The idea of imposing localizability
on fields in non-polynomial Lagrangian theories would seem to be

unnecessary from this point of view.
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