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E R R A T A TO 

"Equivalence between 
Non-localisable and Local Fields" 

by 
J.G. Taylor and F. Constantinescu 

(1) Page 7, line 5 from below should be E = C9 S(Kk) 9 ... SCR1*11) d . . . 

(2) Page 8, lines 1,2 and 4 from below to read <{> instead of f. 
(3) Page 8, lines 1 and 10 from below 

Page 9, lines 5,11,12,13, and 17 from below 
Page 10, line 6 from below 
Page 11, lines 3 and 5 from below 
Page 14, lines 4;5 and 13 from bottom 
Page 15, line 2 
Page 25, line 12 from bottom 

to read localisable instead of local. 
(4) Page 15, lines 7 and 8 from below to Z instead of z 
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0. Abstract 

We discuss the nature of non-localisable fields constructed as 
certain limits of sequences of local fields. For sequences for which 
the corresponding Wightman functions converge we construct a PCT 
operator; if the sequences converge strongly in a given Hilbert space 
then a scattering theory can be constructed for the non-localisable 
limit field. Such fields are shown to have the same S-operator as any 
local field which has the defining sequence of local fields in its 
Borchers class% and has the same in field. We give non-trivial 
examples of this equivalence between local and non-localisable fields. 
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1. Introduction 

The problem of describing all relativistic quantum fields 
corresponding to a given S-matrix has not been yet solved. An 
important result in this direction was obtained by Borchers [l| in 
the frame of the (Wightman) axiomatic quantum field theory. According 
to this result of Borchers, fields are S-equivalent (i.e. correspond 
to the same S-matrix) if they are relatively local (or weakly 
relatively local). The relative locality (or the weak relative 
locality) is a relation of equivalence among quantum fields, so that 
all fields in a Borchers class (i.e. a class of relatively local or 
weak relatively local fields) are S-equivalent. The converse is not 
true: a Borchers class does not exhaust all fields with the same 
S-matrix (see for instance [2] p.170) but we do not consider this 
problem here. 

The S-equivalence of relativistic quantum fields was also studied 
in perturbation theory; we refer the reader to [3] and references 
quoted there for detailed results. 

Roughly speaking the above results (in the axiomatic or in 
perturbation theory) are known to physicists in the following 
form: two fields, one of them being a local function of the other 
one, have the same S-matrix. 

We will show in this paper that quantum fields can be equivalent 
also in the "non-local" case. In particular we will shew that a 
local quantum field can be S-equivalent to a non-localizable field. 
We think that this result can be of some interest because it shows 
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that non-localizable fields can have a well-behaved S-matrix which 
is actually the S-matrix of a local quantum field. Some trivial 
and non-trivial examples are also given. 

2. The non-localizable fields 

We will adopt in this paper the Wightman formulation of a local 
quantum field theory. We will construct non-localizable fields along 
the general lines given recently by one of us |h] . We remark that 
there are also other interesting approaches to non-localizable (or 
non-local) fields [5,6] or to a scattering theory for non-local 
fields [7]• We hope to discuss the connexion of the limiting approach 
\k\ to other approaches, especially to [TJ > in a separate publication. 
In \k\ we look at non-localizable fields as limits of local ones in 
a topology considered already by Borchers [3j and Jaffe • 

Let and S (a > 0) be spaces of test functions considered by 
Gelfand and Shilov([ief] Chapter IV), The test functions in are 
roughly speaking infinitely differentiable functions <f>(p) vanishing 

-alpl1^ 
like e , J r M for |p| °̂  where |p| is the Euclidean norm of 
p(p°>p) Q^d a a positive constant which may dopond on <|>. A natural 
topology can be put on these test functions as in QLO] Chapter IV. 
The elements of S are Fourier transforms of the functions in S^. The 

Ci spaces S and S are both nuclear and dense in S (the Schwartz S"oace a 
of infinitely differentiable functions vanishing at infinity, 
stronger than any polynomial). The set of functions which belong to 
S a (a > l) and have compact support is dense in the Schwartz space V 
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(infinitely differentiable functions with compact support). 
Let us now consider a Wightman-Jaf fe type theory (over test 

functions in S ̂  in coordinate space) for the scalar neutral field A(x). 
If for a given field A(x), a can be chosen larger than one A(x) can 
be localized in any finite region of space-time and local 
commutativity can be formulated as usual: (A($) S A(\|/f] * = 0 for 
supp <f> and supp \p space-like separated e SCi ) and $ in the 
dense domain of definition for A ) . 

For a < 1 the functions in S a are analytic, the field A(x) is 
no longer localizable in a finite region of space-time and local 
commutativity for these fields cannot be formulated, at least in the 
usual fashion. 

Such a behavior of A(x) is generated evidently by a high energy 
i I 1/ 

£ P G . 
behavior of these fields like e 1 ̂ ' (with e -> 0 +) (a < 1). We can 
look at the (non-localizable) fields A(x) in this case (imposing a 
reasonable generalized local commutativity) as follows. 

Let = S (R xa) the S - space of test functions depending on 
kn independent variables (S^ = C s complex numbers). We construct 
the (locally convex) direct sum of S^, n = 05152,... (see for 
instance [l2J p.2lU) 

r = r s« (i) 
n=o 

The elements of ja are of the form <i> = (<J ,<!>,... ,<j> ) with 
• o l5 n 

a 

n̂ e n̂ ^ ̂ i a S on^"y a ^ l n l^ e number of components. The locally 
convex topology in J0, can be given by a set of non-denumerable 
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send norms Q.2] and can be characterized by convergence as follows: 
i^} is convergent to $ in J0, if and only if 

i) there exists en integer N so that <f>m = 0 for all n > N and 
ii) each component <j>̂; n = 0,1,2,... converges to ̂  for 

ot 

m -> °° l n the topology of S^ . 
Let now A, (x), k = 1 ,2 , . . . be a set of tempered scalar neutral 

relativistic quantum fields. This means that the ̂ ( x) a r e tempered 
Schwartz distributions satisfying the following (Wightman) requirements 
|2| 

a) Hilbert space of states 
b) covariance under the inhomogeneous Lorentz group 
c) positive energy 
d) local commutativity 

Evidently the A^(x)fs are also operator valued generalized functions 
over the spaces S A. For a given field A^(x) we consider all its vacuum 
expectation values Ŵ" with test functions from S a for a given a. For 
all k = 1 ,2, . . . we have (compare with £8] p.220 ) 

1) W e T' , k 1 ,2 , . . . 

2) Wk((a,A)<|)) = W((J>), <J> e S A (R "*) 

3) W (<>) =0 if <j> e M ° 
P 

k) w (*) = 0 if g e I 
K ' c 

5) W (<fr+ x <j,) ^ o 
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la 1) L is t,ie dual space of i,efi the space of all continuous 
linear functional?? on £ a can be identified with the direct 
product of the spaces - S a (R ") |jL2J but this fact will not be 
of special interest for us. We remark only that the space £ is 
complete [l2j (see also [8] p. 235). The condition 2) represents 
the covariance under the inhomogeneous Lorentz transforms (a5A). 
In 3) M a is defined as s 

P 

M ~ = { + ; + e I a f Dv(F<|>n) ^ • • • • » P n

) = 0 i f 

I-* 

Pn> pn~l * Pn'"* *P2 * + P n
 e ^ +

 a n d * P 2 * • • • P n = 0 > (2) 

vLere D = f jyj s Y + # # # + y ; Y i, # # #Y y, = 0,1,... 
v Y * n i n 
3 p .* .a p 

; V + is the closed forward light cone and F stands for Fourier transform. 
Condition 3) represents the positivity of the energy. 

In k) (which is the local commutativity) I is defined as a 
c 

linear subspace of £ = C 9 S( ) + ... 9 S( **n) 9 ... with the 
following base: <f>(x ,• •. ,x q) is an element of the base if f can be 
decomposed as the difference 
f^ xl xi-i xi ••• V *k+l ••• xn^ ~ f^ Xl ••• xi-l f Xi' •••'xk*> V n xrJ 

and f(x ... x. ... x, ... x ) = 0 if x. - xfl is timelike for j ? I : 
1 i k n j £ 
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j ,£= i , i + l 5, . , ; (i',..!̂ ) is any permutation of (i ... k). 
Finally, in 5) ~ which is the Hilbert space requirement, is 

defined as 

(j) = (<{>o>..«, (|)n(̂ n>» . • »x ) s. • . ) 

where the bar means complex conjugation. 
It is clear that £ becomes an algebra with involution if the 

following definition for the product is chosen 

* x * = (<!>0 $ q 9 $q ^ + * . . . ^ I ^(x ,...fxi) i|;k(xi+i,...,xn),...) 
i+k=n 

One can study the algebraic structure of M and I but we don't need to s c P 
know this explicitly for the purposes of this paper, and we send the 
interested reader to [8|. 

All the (tempered) fields A (x) were taken as local and the local 
commutativity given through k) for k = 1,2,,.. . Nov; we turn to the 
construction of the non local field A(x) from the given tempered local 
fields A^(x). Let the sequence W c jj* be convergent in £ a • It is 
not difficult to prove (see for instance [8j ) that the limit W of the 
sequence {Wv} satisfies the conditions l) - 5) with the possible exception 
of h) % Moreover, k) is satisfied if a > 1 but it cannot be satisfied 
for a < 1. 

Certainly from W we cen reconstruct the fields and for a > 1 we 
get a Wightman-Jaf fe field. If a < 1 A(x) will continue to be a field 
in the Wightman sense which we call a non-local field (for a discussion 
of the cese a ~ 1 see |j.3jS 
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The crucial point in this construction is that the loc&l 
commutativity of the fields A^(x), k » 1 .2 , .induces in the limit 
k w a general local commutativity which we understand as a fast 
decrease of the commutator for A(x) in space-like directions (for only a 
partial discussion of the extended commutator in space like directions 
see [ih] . The result of [ihj doesn't apply to a massive field in which 
case the decrease of the commutator in space like directions is much 
stronger; a more complete discussion is given in £15]• Certainly the 
(small) acausal effects we have described here depend on a < 1 and tend 
to vanish in the limit a 1 (for a > 1 the commutor vanishes exactly 
for space time directions). The non-local fields constructed as above 
have many important properties as for instance PCT-invariance. A 
scattering theory for such fields exist and was discussed in [U] . 

Before going into the discussion of the equivalence between a local 
and a non local field let us consider a little further the limit 
A^ A which we required as the basis of constructing non local fields. 
The non-local field A(x) was recovered by the reconstruction theorem, 
which gives us also the Hubert space H in which A(x) acts. The 
reconstruction theorem gives us unfortunately not too much information 
about H , which is constructed as the completion of a pre-Hilbert 
space in whose formation condition 5) enters essentially. It is 
therefore difficult to compare the Hubert spaces in which two non 
local (or a local and a non-local) fields constructed as above are 
acting. Because fields which have the same PCT operator are good 
candidates for S-equivalence and because we have not yet enough control 
on the reconstructed Hubert space, in looking for fields having the 
same PCT operator we will assume that all the fields A^, k = 1,2, . . . 
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and Л are acting in the same Filbert space (see examples in §6). 
On the other hand it will be helpful for deriving certain results 

to consider also the following strong form of the limit -> A: 
Let A^(x) к = 1,2,.., be (tempered) local fields acting in the 

same Hubert space H , having the same invariant domain of definition 
D and the same vacuum fi and let A(x) be a non-local fields constructed 
from (x). We assume that A(x) has D as invariant domain and ñ as 
vacuum and moreover 

s - lim \(x ) ... \(x ) Я = A( X l) ... A (x ) Я (3) 

where s - lim stands for the strong limit (i.e. the norm limit in H ). 
More precisely (3) means that for all ф ,...,Фп e S a(R t + n) we have 

s - lim А (Ф (x )) ... А, (ф (x )) Í2 
fc->co K 1 1 К П П 

= М ф ^ ) ) . . . А(ф п(х П ) ) Я (Ь) 

The convergence in (3) (or (U)) is stronger than the convergence 
of W, in the sense of I . Writing (3) in the form 

A (x ) ... /l (x )fi - A(x) ... A(x )Q 0 for 
к 1 к n 1 n 

к °% we can write (3) in terms of vacuum expectation values of the 
fields А^5 к = 1,2,... and A. 
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3. The PCT Operator 

Let A(x) be a (tempered) local scalar neutral field satisfying 

the Wightman axioms a) - d) of §2. Let D be the invariant dense 

domain in H on which A(x) is defined. Let U(a,A) be the unitary 

representation of the inhomogeneous group P* which corresponds to 

the field A( x): 

U(a,A) A(4>) U-1(afA) = ^(a.A)* ( 6 ) 

where c¡> e S(R k) and ̂  AJx) = <}> (A
 1 (x - a)). We assume that the 

vacuum Q e D for A(x) is a cyclic vector (the field A(x) is 

irreducible). The field A(x) determines the Borchers class of all 

fields relatively local (or weak relatively local) to A(x) , 

corresponding to the same unitary representation of U(a,A) of the 

inhomogeneous Lorentz group, the same invariant domain D (in the Hubert 

space H ) 5 the same vacuum and also the same PCT operator. 

Let now Aĵ (x), k = 1,2,... be a sequence of fields in the Borchers 

class of A(x) (there are always infinitely many fields equivalent 

to a given field!)• We assume that the sequence {Â (x)} is convergent 

in the sense of (3) to a non-local field B(x) defined in the same domain 

D as A(x) and having the same vacuum ft as a cyclic vector . 

We have 

Theorem 1 The non-local field B(x) has a PCT operator 8j and 

6 = 6 where 6 is the PCT operator for the local (tempered) field A(x). 

Proof: The PCT theorem for A^(x), k = 1,2,... gives 
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(ft, V x

n ^ = V " x

n > \ ( " x i ) Q ) ( 7 ) 

or 

(ft, \ ( * (x^) ... A
kUn(xn)ft) = (ft, \(<!>n( ~ x n) ... AjJ* (" xi))ft). 

(8) 

Taking in (8) k + « for <!> .. ,<!>n e Sa(R 4) CI S(R k) one gets 

(ft, ̂ ^ (x^) ... BUn(xn))ft) = (ft, -B(*n(- xn) ... B(^(- Xl))ft) (9) 

i.e. the PCT theorem is valied for B(x) (a fact which was already proved 
in [U]). 

Moreover (9) implies the existence of an antiunitary operator 0 

(the PCT operator for 3(x)) such that 

91 B.(4)(x)) e"1 = B(5(- x)), Bjft = ft, * e S a (10) 

(see for instance [2| p.1̂ 3 ). We will write (10) as 

e 3(x) e"1 = 3(- x) (ii) 

We have also 

6 A(x) e""1 = A(- x), 6 Ak(x)0*~1 = A R ( - x); k = 1,2,..., 0ft = ft (12) 

We can write now 
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x e~len = \( - xn) ̂  (- x ) . . . A^ (- x^n (13) 

and 

9, B(x ) . . . B(x )a = B(- x ) . . . B(- x )n (lU) 

i n 1 n 1 

Taking in (13) the strong limit for k -> oo we get 
9 B(x ) ... B(x )ft » B ( - x ) ... B(- x.)fl (15) n i n 1 

The vector $ = B(x ) ... B(x )ü runs over a dense set in H 
n 1 — 

(B(x) has fi as cyclic vector) so that from (lU) and (15) follows 6 = 9 

and the theorem 1 is proved. 
Remark Theorem 1 is also valied if the (irreducible) field 

A(x) is only weak local• The temperedness of A(x) can be weakened 
by requiring A(x) to be only strictly localizable in the sense of 
Jaffe [llj. 

The meaning of the theorem 1 is that we have associated .to a given 
Borchers class also some non-local fields constructed as (strong) limits 
of local ones belonging to the given Borchars class. The (local) fields 
in the Borchers class and the associated non-local fields are acting in 
the same Hubert space, corresponds to the same unitary representation 
of the Lorentz group, have the same vacuum and the same PCT operator. 
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U. Asymptotic states and the S-matrix 

We consider now (tempered) local fields A^, k = 1 ,2, . . . which 
produce in the weak limit (i.e. the W fs are convergent in the sense 
of £ a ) a non local field A(x). The first step in achieving a 
scattering theory for our non local field A(x) is proving the cluster 
property. Let 

* = £ (a) = J dx W T (x + a) *(x) 5 *(x) e S a 

an averaged translated truncated vacuum expectation value of A(x) 
(we use here the notation of Jost [l6| Chap. VI). . The cluster 
property is 

M 
lim d * « 0 ; M = 0, 1, . . . (16) 

uniformly in a where d = max̂  ̂  || â  - su || . Ruelle was able to 
derive (16) from locality [l6]. For the non-local field A(x) we can 
write 

| d M £ h | dM (i-£ k)| + |d M * k | (17) 

where 

$ k = 2 k(a)= J dx № (x + a) *(x)f * e S a C S (18) 

and fromRuelle's theorem we get 
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lim dM = 0 , k - 1, 2, ... 

In order to have (l6) for the non-local field A(x) it is enough to 
M k 

require that the limit d 0 is achieved uniformly in a 
for k » and M = 0, 1, 2, ... but fixed. This condition is satisfied 
for instance if (uniformely in a) 

lim a m (w^x + a) - (x + a)| = 0, n = 0, 1, 2, ... 

(19) 

where a = il (a.) 1 : a(a a, ,...,a a. (09a. 9a. ta. 
" l«j*3 1 ~ ° 1 n 1 1 1 1 

o£i£n 
( ) ( o 1 2 3\ — o* X2» # # ,» x

n'* xi^xi* xi * xi * xi ' 

The condition (19) was imposed in Qf| in order to assure the existence 
of the cluster property. Once having the cluster property the Haag-
Buelle scattering theory can be now derived following Steinmann [7] • 

We are able to give another proof of the asymptotic condition for 
quantum fields considered as operator valued distributions on z (the 
functions in z are Fourier transforms of functions in P ) based on the 
existence of the cluster property. This proof works exactly also for 
our spaces S a

5 a < 1. The condition (19) looks rather technical 
A discussion of the content of (19) will be given in §7 of this work. 

In the rest of §U we will show that the asymptotic condition for 
a non-local field follows also from the assumption that the limit 
A^ A is achieved in the strong sense described in §2 in the same 
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Hilbert space denoted by H • Exactly this result will be used 
in §5 in order to prove an equivalence theorem (between local and 
some non-localizable fields). 

Let be (tempered) local fields satisfying the requirements 
described in [16] Chap, U. In particular apart from the usual 
(Wightman) requirements we admit that the spectrum of the energy-
momentum operator corresponding to A^(x); k = 1,2,.coincides 
with the corresponding spectrum for the free field of mass p. The 
representation U^ajA) which is the restriction of U(a,A) to the 
Hilbert space H corresponding to the one particle hyperboloid 
is assumed to be irreducible with spin zero (it corresponds to 
the mass p). Let the projection on H ; we assume 

(ft, Ak(x) Px Ak(y)ft) = iA+ (p2; x - y) (21) 

Let h(X) be the well known cut-off function (in momentum space) 
in the Haag-Ruelle theory. 

We consider the fields 

Bk(p) = \(p) h(p2), k = 1,2, . . . (22) 

so that we have 

Bk(*)ft e Hx for <{> e S(R ) 

and 

(ft, Bfc(x) Bk(y)ft) = i A + (p2; x - y) (23) 

for all k = 1,2, . . . 
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From (3) we get 

s - lim B. (x ) ... B. (x )fi = B(x ) ... B(x )« (2h) 
k-*» k 1 k n 1 n 

and 

(fi, B(x) B(y)n) = i A+ (y2, x - y) . (25) 

Let (J) c S(j3 ); we construct the operators [k\ 

Bk<f>(t) = B
k

( t ^ ) dr (26) 

where r = r(x 1,x 2
ix 3). 

From [l6J Chap. VI, lemma 6 we know that B (t) are defined on the 
common domain D, ̂ .^vt)^ , $ e D are vectors in D which are C in t 
and continuous in 6 . 

The proof of lemma 6 Chap VI [l6] can be applied in order to prove 
the same properties for the operator 

B (t) = B(t, r) *(r) dr (27) 

with <j> e s a(R 3 ) S(R 3 ) . 

Let now f,m = 0, l,##.,n, b e n + 1 smooth solutions of the 
m 

Klein-Gordon equation 

fm(x) = - ^ T F j e(P°) 5 ( P 2 V ) t " i p X <i> + e i p x g* (5)] x 
(2ir) 

x d4p 
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with (p) e ( ± ) C P( 2. ); m = 0,1,2,...,n . We will have 
certainly 

8 f 
f (0,x) e Sa( l 3 ) , — £ (0,x) £ Sa( R 3) (28) 

9x° 

From (26), (27) and (28) follows that the operators 

' f , 
B. - (t) = i f t B, dr, B j t ) s i f l Bdr kf m o k 5 f o m o . m ; o x =t x =t 

are defined on D and can be applied successively on the vacuum. 
We construct now 

\(t) = E k f (t) B k f (t) ... B k f (t)fl , k = 1,2,... (29) 
o 1 n 

and 

*(t) = B (t) B (t) ... B f (t)n (30) 
o 1 n 

From the Haag-Ruelle theory follows (as a consequence of locality) that 
the strong limits of $̂ (t) for t + 00 exist 

out 
s - lim 6 (t) = 6, , k = 1,2, ... (31) 

in out 
$ k are the asymptotic states for the fields A^x), k = 1,2, ... 

We have 
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Theorem 2 The vectors 

4(t) = B f (t) B f (t) ... B f (t)fi 
o 1 n 

have strong limits for t -* + 00 : 

in 
s - lim B f (t) B f (t) ... B f (t)fl = ̂ (f^fj,..,^) (32) 
, - o l n 

. . . . i 

These limits are independent, with respect to L +, of the special 
coordinate system in which the various entities have been defined. 
Proof: We write 

II * ( t 2 ) - M t ^ l l $ \k(t2) - * k ( t 2 ) || + I U k ( t 2 ) - 0 , ^ ) 1 1 + 

+ || ̂ t ^ - ̂ (t^H (33) 

We have for each k (see (31)) 

II ' M V " W H ^ ° f o r l * j . h 2 l * » 

It remains to prove that 

lim I <J>(t) - *k(t) I = 0 (31*) 
k-x» 

and this limit takes place uniformly in t . 

We have 



20 

*(t) - ^ ( t ) = V V ' o * 9 o o B ( x o ^ o ) d ?o * 
x°=t 
o 

r f >• 
x f (x°,r ) 3 B(x°,7 ) dr fi - f (x°sr) 3 B, (x°,r ) . . . x n n* n on n* n n o o* oo k o* o 

0 4. 0_̂  
X =t x =t 
n o 

x f (x°,r ) 8 B(x°,r ) dr n n n* n on n' n n 
X =t 
n 

{(f (x°,? ) 3 B(x°,? )) ... (f (x°,? ) 3 B(x°5? ))« , ^ j o o ' o o o o'o n n n o n n n 
X =t X =t 
o n 

- (f (x° r ) a B (x°,r )) ... (f (x°,? ) 8 B- (x°,r )«} dr ...dr 
o o ' o o o k o o n n ' n o n k n n o n 

where 3^ ; i = 0,1,...,n involves differentiation with respect to x̂ . 
This expression is a finite sum of terms of the form 

^ _ o o o n n n 1 1 1.1. 
X =t X =t 
o n 

* B ( x i . >h. > ••• H B<\° >fi -
ax̂  j+i j+i ax. n n 

- Bk(xj )...Bk(x^,;. ) ̂  sk(xj ;? ) . . . x 

0+1 

X 7 T V x i '?i ) } d ?n ( 3 6 ) 

3x. n n 1 
n 
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where (iQ,...,i ) is a permutation of (0,1,. ,.,n) and 0 <j $ n and 
S£ V ' A = 0,1,...,n is equal to f£(x°, r£) or to -~ V V ^ ) • 

We go over to momentum space in (39) and get that || <}>(t) - <j> (t) || 
is smaller than a sum of terms of the form 

d V ... [ d̂ p | | A(p )h (p? ) ... A(p )h (p2 ) p° A(p. ) x 
; ; o O J J J+l J+l 

x h(p2._ ) ... p° A( P i ) h2(p. ) n ~ 
j+l n n n 

- Ak(pi ) h(p* ) ... Ak(pi ) h (V\ ) p? Ak(pi ) x 
0 ° J J J+l j+l 

2 O % 2 -x h (p. ) ... p A, (p ) h (p. ) n x(p„>-"*Pj I I 3̂7) J+l n n n 

where y(p , ...,p ) is a function in 3 (R 3^ n + 1^) ( s e e 28). o' n a — 
In deriving (37) we have inserted in (36) a 6-function 6(x° - t) 

I = 0,1, ...,n with the corresponding integration on x° . 
We remark that (37) is independent of time. 
Taking (3) into account we get that (3*0 is achieved for k -> » 

uniformly in t. 
The second part of the theorem 2 follows also from this uniformity 

+ -1 in t. Indeed let A e L +, f̂  A(x) = f£(A x), £= 0,15...,n, 
BA(x) = B(A-1 x), B̂  (x) = B (a"1 x) and 

4 ( X ) = 1 J "f£,A 
x°=t 

RA _ (x) = i f f k V B A d? 
x =t 
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*A(t) = (t) ... bJ (t) fi (38) 
'o n 

* * o * n 

We have to prove that for t -* + » , || ̂ (t) ~ *(t) || •+ 0. 

We write 

II *A(t) - *(t) || $ || *A(t) - 4,ktA(t) || - || * k > A(t) - *k(t) IJ + 

+ || $k(t) - <j,(t) || (U0) 

The first and the third term on the righthand side of (kO) can be 

made smaller than e/3 (for e > 0 given) independently of t. Now 

we have only to take |t| large enough in order that ||^ ̂(t) -

^ i r ^ H I < T for the local fields <j> , k = 1 ,2, . . . . This k 3 k 

completes the proof of theorem 2. 

Let H . ( H ) be the norm closure (in H ) of the linear 
in ~~ out ~ 

combinations of elements 4>ln (<{>OU*) including the vacuum. 

We have 
ex 

Theorem 3 Define the linear operator A (f) on the vectors 

4>ex (fo,flf...,fn) as 

A e X (f) 4 e X (fo,...,fn) = *
e x (f,fQ,...,fn) (¡41) 

where <}>eX stands for (J>ln respectively ^° u^ and f is a smooth solution 

* ex of the Klein-Gordon equation satisfying (27). Then the operators A w(f) 
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correspond to the free scalar field of mass y which we denote by 

.ex 
(x) 

AeX(f) = if f(x) r Aex(x) &r (1.2) 

and 

U(a,A) AeX(x) U _ 1 (a,A) = A e x (Ax + a) (1*3) 

Q1 A
i n (x) 61 = A°

u t (- x) (kh) 

Proof We have to prove that (ò G X (f , ...,f ) s ò^
X(g ,...,£ )) is the 

c v o ' n Y 1 m 
corresponding scalar product for a free field. We write 

I! * e x - * k X II * II * e x - « ( t ) | | + li * ( t ) - * k ( t ) || + 

II * k ( t ) - C II 

By taking into account (3*0 (uniformly in t) we get 

s - lim ^ X = <J>ex {k5) 
k-*» * 

It follows that 

(« e x (f0.....fn). * e x(s 0 , . . . ,g f f i)) = { h 6 ) 

= lin (^X (f0,...,fn). C ( 8 o Sm)) 

k-Ho 
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By the Haag-̂ uelle theory (<J>̂ X(f ), <!>fX(g ,..•»8 )) is (for 
all k = 1,2,.. • ) equal to the corresponding scalar product for the 
case of a free field and this proves the first part of the theorem 3. 
The relation (U3) follows from the second part of theorem 2 and (kk) 
follows from 0 1 A(x) 0 = A(- x) (see (10)). 

Concluding this section we remark that we have been able to prove 
the asymptotic condition (under asymptotic condition we mean theorems 
1 and2) for (hopefully!) a large class of non localizable fields. We 
have two types of results: In the first part of the section the 
asymptotic condition was shown to be valid for non localizable fields 
defined as weak limits of local fields, the limit being achieved in a 
uniform sense (see (19)). In this case the cluster property is 
trivially satisfied and the cluster induces the asymptotic condition. 
In the second part of this section we have taken the strong variant 
(3) for defining non-localizable fields. This condition enables us 
to prove uniformity in t for k 00 and in this way the theorems 2 and 
3 can be given a direct proof. 

In order to discuss the S-matrix (in the next section) we assume 
that the field A(x) satisfies asymptotic completeness. The S matrix 
operator can be now defined by 

.out/ x ~l A in/ v 0 A (x) = S A (x) S 
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5. Equivalence between a non-localizable and a local field 

In order to discuss the equivalence of fields along the line 
of Borchers, we have to discuss fields having the same PCT operator. 
Because of some Hilbert space difficulties in the case of a non-
localizable field constructed as a weak limit of local ones we have 
not discussed the existence of a PCT operator in this case. But we 
have proved that if the limit A^ B is achieved strongly in the same 
Hilbert space the PCT operator for B exists (see theorem l) and 
equals the PCT operator of a local field A which generates the 
Borchers class containing A^; k = 1,2,... . We have 

Theorem h If A(x) is a local (tempered) field and B(X) a 
non-local field constructed as in theorem 1 then the asymptotic fields 
Aexrt(x) and B 6 X t(x) exists. Moreover if Aln(x) = Bln(x) then the 

two fields A(x) and B(x) have the same S-matrix. 
Proof The proof follows immediately from the fact that A(x) 

and B(x) have the same PCT operator and this operator takes in 
fields to out fields. 

Theorem 1* shows that a non-localizable field can be S-equivalent 
to a local one. In the next section we discuss some examples in 
which theorem h applies, 

6. Examples 

Let us consider A(x) as being the scalar neutral massive free 
field. We construct Wick series of this field (in four dimensions) 
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oo 
B(x) = I a : A (x)n : (1.7) 

n=l n 

A result of Jaffe [ll| (see also flfj and [l8] ) shows that B (x) is 
CO 
r H 

strictly localizable if the series ; a z has an order of growth u ~ n n-1 

smaller than *2. For an order of growth equal to 2 and type zero we 
still get a localizable theory in the sense of fl3J . If the order of 

CO 
growth of £ a z11 is larger than two B(x) will be non-localizable. 

n=l n 

We remark that the same thing also happens for the massless case though 
for this case in the region of non-locality the high energy behaviour 
of S(x) is very different from the high energy behaviour in the massive 
case, because of a "contraction" of the phase space volume by passing 
from m = 0 to m u- 0. A discussion of the extension of the commutator of 
B(x) outside the light-cone ("acausal effects") are discussed 
partially in [lC| for the massless case; a full discussion of this 
question for m r 0 is the subject of [15] . 

Now coming back to S-ecuivalence, it is well-known that the 
00 

series (U7) is in the Borchers class of A(x) if \ a z has order 
n=l 

of growth smaller than two. It follows that in this case 3(x) is trivial. Theorem k applies to 2(x) in the case in which 
00 / a z has an order of growth larger than two (we leave 1 n n=l 
the reader to convince himself that this is the case) and therefore 
A(x) will be trivial also in the non-localizable case. 

Another (non-trivial) example is given by taking A(x) to be 
a tempered non-trivial field (we assume that a such field exists!) 
and considering ' 

B(x) « A(x) + g(D ) K (x) (W) 
X X 
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where g(z) is an entire function (with real coefficients), 
U = ̂ — - - — and K = 0 - m2 . If p(z) has order o^ growth x -2 2 x x ox ox o 
smaller than 1 /2 , B(x) is (strictly) localizable. If the order of 
growth of B(x) is larger than one half B.(x) will "be non~localizable. 
In the localizable case it is easy to prove that B(x) is in the same 
Borchers class as A(x) and is S-equivalent but to B(x). In the 
non-localizable case the theorem k applies and shows that B(x) is still 
S-equivalent to A(x). Indeed it is easy to prove that the 
convergence of partial sums in (U8) to B(x) takes place in the strong 
sense (3) and that (21) is also satisfied if a similar condition holds 
for A(x). 

In the next section we will discuss in detail the cluster 
property in the weak approach ̂ (x) -> B.(x) as described in §2. 

7. The cluster property in the "weak" approach local non- 
localizable 

In §U we have formally remarked that the cluster property 
is valid for B(x) if (19) is vli-l uniformly in a. We would like to 
discuss this question here replacing the technical condition (19) by 
a condition which is more connected to the existence of a scattering 
theory for the approximating fields (which follows from the fact that 
the approximating fields are local). 

Let us consider that all the (local) fields A, (x) have the 
spectrum of free field and that (21) is satisfied (we remark that 
these conditions are weaker than those imposed on in there 
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it was for instance assumed U(a,A) is the same representation of the 
Lorentz ̂ roup for all A^(x)). 

Let a. = a. - a ; i = l,2,...,n (see the notation after (19)). 1 1 o 
Then the second auxiliary theorem in § 5 Chapt. VI [l6 | tells us that 

' v£ (x + a) *(x) dx, 6 e S ( E ^ ( n + l ) ) C S a ( ^ ( n + l ) ) 

3n — 
is in S(R ) with respect to a. Let 'C(p) be the Fourier transform 

T t1 

of W (x); the translation invariance of W_fc(x) gives in momentum space 

K O 1 n I n 

f T 3n — The fact that W; (x + a) <b(x) dx is in S( R ) in a. = a. - a , k r — i i o' 
i = l,2,...,n means that after integrating ̂ ,T(p) with a test function 

K. 
from S(R n

Q) in p° we get a C°° function in p which is in 6^(11 \ 
P P n̂ n̂ But 0̂ ( R _) CI 8 ( R _ ) . Now the cluster property for B(x) 
P P rVjT>* 3n constructed as a weak limit of A^(x) is valid of W (p) z 0 ̂ ( £, _) 8 

n a P ® Ŝ ( ). Therefore we are faced with the following problem: a -o * p 
let (f (pfp)} be a sequence of generalized functions in S'fR11 ) ® 

3n *+n P ® 9 ( R ) which converges in the sense of S'( R x ) . We have to 
P 

*) In fact a result of Borchers [19] allows us to find some stronger 
properties in p but we are not interested in this problem here. 
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require that "Che limit f P ^ 1 of this sequence also lies in 
n 3 n 

S'(R ) 8 0 .,( R ). It follows that a simple condition we can 
P # P 

impose for the existence of a scattering theory for A(x) is the 
following 

Condition S: The field A(x) must be approximated by ^( x) -*T in such a way that the truncated Wight man functions W (p) converge in K 
the sense of S'(K ) © G R ). The condition S can be interpreted a ~~ ̂ o aM "~ ~ 
as a regularity condition. Indeed the C°°-regularity of ̂ ~(p) in p 
(which is responsible for the existence of the cluster property) must 
be retained in the limit (with the same effect) and this is, roughly 
speaking, the content of condition S. 

8• Conelusions 

We have shown how it is possible to formulate a notion of 
equivalence between non-localizable fields, or in the special case of 
this paper between a non-localizable and a local one. Indeed we may 
define this equivalence by a natural extension of the idea of a Borcher's 
class as follows. 
Definite on. 

Two fields are PCT-equivalent if and only if they have the same 
PCT operator. 

Such a relation between two fields is evidently an equivalence, 
and so divides the class of all fields into equivalence sub-classes. 
Each sub-class will be composed of Borchers classes of local fields 
possibly together with sore ncn-lccalizable fields. Fields in the same 
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PCT-class will have the same S-operator if they have the same in 
fields, so will be S-equivalent. We showed in detail how a non-
localizable field constructed as a strong limit of local fields can 
be shown to be PCT-equivalent to a given local field in terms of 
conditions on the local fields of the approximating sequence. However 
we haven't shown that there exist any non-localizable fields which are 
not PCT-equivalent to some local field. Our discussion in the paper has 
shown that non-localizable fields can be as physically reasonable as 
local ones in describing a given S-matrix. Apart from computational 
advantages there seems to be nothing gained in using a local field 
equivalent to a non-localizable one. The idea of imposing localizability 
on fields in non-polynomial Lagrangian theories would seem to be 
unnecessary from this point of view. 
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