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E R R A T A TO 

"Causality and 
Non-localisable Fields" 

by 

J.G. Taylor and F. Constantinescu 

(1) Page 2 lines 1 and 2 to read: 
decrease of the commutator outside the light cone* 

instead of: 
decrease of the commutator outside the light cone as well 
as the range of the existence. 

(2) Page 5 lines 1 and 2 to read: 
If the commutator applies to test functions which actually 
increase for large space-like ... 

instead of: 
If it is to test functions which actually increase for 
large space-like ... 



Abstract 

We give a model-in dependent and Lorentz invariant prescription 
for the manner in which a non-localisable quantum field extends outside 
the light cone, in particular specifying the order of this extension. 
We show how our definition applies to several examples, including the 
non-localisable free field and certain functions of the massive free 
field; non-localisable functions of the massless free field presents 
a difficulty which has not yet been resolved. 
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§1. Introduction 

There has been much recent discussion of non-polynomial 
functions of the free field, both with respect to mathematical 
problems arising in setting up such a functional calculus ̂  and 
also with respect to the application of such a calculus to non-

. . (2) polynomial chiral and gravitational theories• One of the most 
important questions involved in such problems is that of the properties 
that such non-polynomial functions possess, especially causality and 

. . (3) positive-definiteness of the metric in the state space. In this 
paper we attempt an analysis of causality, in particular investigating 
the manner in which it is broken by non-localisable functions of the 
free field. 

These non-localisable functions have physical interest since 
they can arise when particular field co-ordinates are chosen in either 
the chiral or gravitational interactions. A class of these functions 

(h) 

has been investigated elsewhere and shown to possess various useful 
properties, such as the existence of a PCT operator and of a scattering 
theory, as the vestiges of local commutativity. However, such non-
localisable fields cannot satisfy strict causality, and a description 
of the extension of the commutator bracket outside the light cone has 
been given for the zero mass case.^^ We wish here to give a general 
discussion of this extension of the commutator bracket of a non-
localisable field outside the light cone, both from a mathematical and 
a physical point of view. This necessitates the introduction of a new 
class of test functions which can suitably probe the behaviour of the 
commutator bracket both outside and inside the light cone. This allows 
us to indicate, in a Lorentz invariant fashion, both the rate of 
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decrease of the commutator outside the light cone as veil as the 
range of the extension. In other words, we specify the degree of 
non-causality in an invariant fashion, and expect the range defined 
in this way to have physical interest and so determine the energy at 
which violations of causality can appear. 

The detailed plan of the paper is as follows. In the next 
section we give a general discussion of the way the extension of the 
commutator "bracket can be described in a Lorentz invariant and 
mathematically precise fashion. We give a definition which classifies 
the degree of non-localisability of non-localisable fields. In 
section 3 we show how functions of the zero mass free field nearly 
satisfy conditions for this definition to apt>ly, and consider a 
special class of non-zero mass fields in the subsequent section for 
which our definition can be used. A more complete discussion of the 
non-zero mass case is given in section 5. The physical significance of 
the discussion is considered in the final section. 

§2. Non-localisable Fields 

In this section we wish to formulate the properties o^ non-
localisable fields in a manner independent of the fact that the most 
interesting applications are to functions of a free field. We will 
consider only one neutral scalar field $(x) 9 the extension to complex 
spin fields presenting no conceptual difficulty. We suppose that the 
field $(:•:) is an operator-valued generalised function over a suitable 

f 
test function space C oi' functions f(::)5 so that <î>(f) = J <J>(x) f(x) dx 
is an operator for which the usual Wightman axioms,^ except that of 
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local commutativity, apply. Thus there are a sequence of Wightman 
functions W (x , ... x ), defined by n l * n * 

from which the fields may be reconstructed. 
The usual tempered field theory results if C is the space 

3 of indefinitely differentiable functions decreasing at infinity 
faster than any polynomial; the localisable case occurs if C 
contains a dense subset of functions of compact support. The non-
localisable situation in which we are interested in here corresponds 
to C being comprised of analytic functions due to their rapid decrease 
in momentum space. This fall-off is required in order that the rapid 
high energy increase of the Fourier transforms of the Vightman 
functions can be satisfactorily taken account of by the Fourier transforms 
of the functions of C, which we denote by If V increases like 

n 
e*p [IPP] j f° r a < 1, a satisfactory choice for '• is any space , 

(7) . . . 
for 6 < a of Gelfand and Shilov , being the set of indefinitely 
differentiable functions, which together with all derivations, are 

1 /g 
bounded at infinity by exp Q-b |p| ] for some positive b (which 

(8) 
depends on the function considered). A more precise specification 
is given by the indicatrix function g(p2) which is an entire function 
satisfying 

The related function space, which we denote C J in momentum space or 
C in co-ordinate space, is composed of momentum space functions $(p) 
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which, together with all derivatives, are bounded by g *(Ap2) for 
some constant A. If (l) is not satisfied the space 0 is composed 

g 
of analytic functions, so again corresponds to the non-localisable 
case. 

We suppose, then, that each nightman function W belongs to 
the dual of one of the above spaces C(R*^n ) in U(n-l) variables. 
As usual we denote this by 

W e . C'tR**11"1*). (2) 

It is not possible, in the non-localisable case, even to 
formulate local commutativity. Analysis of special cases^ has shown 
that there may still be a trace of local commutativity in that 
commutator brackets of the field operators at two points, whilst not 
zero for space-like separations, can decrease fast as the space­
like separation increases. In fact we will be led to consider an 
exponential fall-off. If we denote by <j>(x) the non-localisable field 
of interest, then we expect^ for large space-like values of (x - y), 
that 

I < 0 I 0(x), •(y)1_ I 0 > I j e " a l ( x - y ) 2 l (3) 

for some positive constant a and y , with y < 1- We note that (3) does 
(9) 

not contradict the result of Pohlmeyer and Borchers that such a 
fast fall off implies strict local commutativity, since this result 
was obtained on the basis of analyticity of Wightman functions in space-
time; such properties no longer persist in the non-localisable case. 

We will now discuss how we may formulate (3) in a general fashion. 
The idea behind our approach is to determine how far outside C we may 
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extend the commutator bracket (3). If it is to test functions which 
actually increase for large space-like values like the inverse of 
the r.h.s. of (3) then we can conclude that the decrease of the 
commutator is roughly given by the r.h.s. of (3). This extension has 
to be investigated in detail for each particular field being considered, 
but we will attempt in this section to give a general formulation of it 
which is model independent. To do that let us take the case when C is 
required to be an S a space, with a < 1. We consider the commutator 
brackets 

C . (x •.. x ) = W(x ...x.,x. •.. x ) - W(x ... x..x. ... x ) (U) n,J 1 n 1 J* J+l n 1 o+l j n 

If $ were local then causality would indicate that each C. vanishes 
J 

for £. = x. - x. space-like, but would be non-zero for time-like J J J+l 
spearations. Thus we have to choose test functions which are in S a 

for time-like values; we denote this space of test functions by s!?L 
A 

Since the set X = ; £ 2 £ 0} is a closed set we have to define Ŝ . 
by a suitable Limiting procedure. It may be possible to use the closed 
set X directi; , without using the following construction, but there are 
various point which need to be resolved before that can be done. We 
will not cons: ler that further here but use the better known inductive 
limit approach. 

ctB 
Let S (ft ) be the set of functions (f> of the four-vector x which 

are defined on the set = {x ; x2 > - y 2}, and satisfy there 

|*£ * ( < l )(x)| t C k B W q q a 
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k k k. ^ q.a 
where x~ = n x.1, Iql = q + q_ + q + q t Q^a = II q-1 % and B, 

- i=l 1 1 * 3 14 " i=l 
are given constants. In order to take account of the constant a 

on the r.h.s. of (3) we should take B to be independent of <j> in (5). 
However, that does not give a Lorentz covariant space, but initially 
we allow only the constants to vary with <j>. We now define 

s a = \J S a B (n ) (6) 
x
 M>o y 

B =l ,2,••• 
cxB 

Each space S (fi ) is a complete, countably normed perfect space with 
the norms 

I *| k D = sup i ^ W W I / C I B + p ) W 

for k = 0, 1, 2, ... , p = 1, l9 ... , being a standard S a B space 
but on the open set Q ̂ 1 0 \ Since SaBl (R ) C S a B2(n ) for p > v and 

y y v 
2̂ * Bl topological inclusion, then we may take the topology 

ot . . . . . . . on S as the inductive limit as u tends to zero and B to mfinitv of x 
ctB 

these topologies on the S s 0 that a sequence {ĉ } converges to 
zero in if all the functions <j>n belong to some space S a B (o^) for 
some u and B, and converge to zero in its topology. We note that if 
a > 1 the space SaB(ft ) is not complete, and the quantity || <{> || , 

y k ,p ,p 
is not a true norm but only a pre-norm. However we do not wish to 
apply our construction of S a B (n ) and S a to the localisable case. 

u x 
We construct the space of test functions appropriate to the 

commutator C . as 
T .(a) = S a ( R M n - 2 ) ) 0 S a (7) n,j - x 



- 7 -

where the functions <J>(£ ) in T .(a) are in S a(R^ n with 
respect to -.he variables £̂  (= - x^ + 1) for i = • 
j - 1, j + 1, ..., n - 1 and are in S in At this stage it is 

x j 
not evident how this space T .(a) is relevant to the exponential 

n, j 
decrease given by the r.h.s. of (3). This will become apparent from 
the following lemma. 

Lemma 1. 

Any function <|> e has an analytic continuation to the whole of^ 
^ , k k . . . . . w i| H x 1+a 
R + lR - £ » and increases at infinity at most like exp h\B | x| ) 
where || x || = sup |x.|, for some constant B. 

Hi*** 1 

Proof 

GtB 
To prove this we note that $ e S f° r some B and y . 

Thus by (5) 

I * (^(o)| < C £ B W ^ (8) 

Thus the series 

*(x) = I * U ) ( o ) / q , 

where 

a I = n q. I , x q = n x.1, ()>U;(o) = ( n 3 1/3x i
1)* 

i=l 1 i=l 1 i=i 1 x=o 
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has infinite radius of convergence and is bounded at infinity, by 
(8), by 

C I B W q*° \x\V . t C exP [UB H x l l 1 7 1 " ^ (9) 
q. 

where 

|x|q= H |x.| 1 

i=l 

Since \b coincides with the analytic function <j> in Q then the lemma 
y 

is proved. We see that if we can extend C . from Sa(R*^n ^) to 
T .(g) then we obtain the decrease like the r.h.s. of (3) with 

(1-8) 
y = 1 - 8 and a = U(B) . Thus we define the degree of extension 
of the commutator bracket outside the light cone as follows. 

Definition 1 

If for each n and each j we may extend 0 . from Sa(Rl+^n ^) 
to T . (s)» where 8 may be chosen independently of n and j , then 

n 3 J 
the largest such values of y = 1 - 8 will be called the order of 
extension of the commutator bracket outside the light cone. 

We note that this definition is obviously Lorentz invariant, 
the space S^ evidently being so. 

We extend this definition to the finer specification given by 

and indicatrix function g(p2). Let 
oo 

g(p2) = I c 2 r p 2 r 

r=o 
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Then the space CB§( R1*) is defined as 

CBs(R") = : I2T 4»(q)(x)| $ C. c"qJ (10) 
K q 

We modify this space to Cg(Q ) as before, and define 
y 

Ol - U C B S (Q) 
y>o M 

B<°° 
Similarly we define the space T .(g) = Ĉ R** ̂ n~ 2 ̂ ) ® C g , and extend 

n, j x 

the definition 1 to 

Definition 2 

If for each n and j we may extend C . from C g(R^ n 1 ̂ ) to 
T -(g), where g may be chosen independently of n and j, then the 
smallest g which may be chosen defines the nature of decrease of the 
extension of the commutator outside the light cone. 

To see this nature of decrease in detail, we extend Lemma 1 to 

Lemma 2 

g . . . 
Any function $ e C has an analytic continuation to the whole 

of £** and increases at infinity at most like II G(BJx.j), when 
i=l 1 

-n (Bx)n 

G(x) = J c -—:— has an infinite radius of convergence, and B Z n n; n̂ o 
depends on <J>. 
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The proof of this Lemma follows that of Lemma 1 almost identically, 
where we assume that g does not satisfy (l), so we are dealing with 
the non-localisable situation. It need not be the case that any <j>(x) 
e has an analytic continuation to all in general, since <(> need 
at most be quasi-analytic in for some y. That is why we need tc 
impose the condition on the infinite radius of convergence of the series 
G(x). However, definition 2 may be used even if it is only quasi-
analytic but the extension process can only be performed infinitesimally 
outside the light cone. It does not seem possible to specify the rate 
of decrease of the commutator in this more general situation. As 

examples we note that if = n a we return to the S a spaces, whilst if 
-1 . . . . 

c
n
 = n log n it has an infinite radius of convergence. However if 

ĉ  = n (log n) 1 the function G(x) has zero radius of convergence, 
so that analytic continuation of any <j> e need not be possible to 
arbitrary space-like points. 

We can enlarge the above approach to include the ran̂ e of decrease 
of the commutator bracket outside the light cone if we consider the 
various Wightman functions in terms of their invariant variables; the 
discussion is so similar to the above, except for replacement of four-
vector variables by invariants, that we need not give that discussion 
here. 

§3« Functions of the Massless Free Field 

Let us turn now to specific examples to indicate how the above 
formulation of non-causality actually applies. We consider in this 
section an infinite series in normal-ordered powers of the free massless 
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scalar field 

• (x) = 1 h : ( x ) : 

where : : denotes the normal ordering and the d̂  are real 
coefficients. Then in the notation of section k of reference (5)* 

r R/rv , n 1 

* r..=o i=l l k,k+l 
1 J i#t,k+l 

rk k+1 ( rk k +l" l ) , ( 1 2 ) 

d^ d^ (-1) k » k + 1 6 k ' k + 1 (?*) 
x 2tri e(x ) I 

where 
T
R / rk,k +l n ["j A+ (x. - x.)] 1^ (13) 

l*i*j$n L 1 • J 
(i,j)*(k,k+l) 

We see from (12) in this case that if 

d2 = Xn r(l + no) (lM 
n 

then C would appear to be in T . (g) provided 8 < 2 - a; the 
n ji£ n ,K 

non-localisable situation corresponds to a > 1 so the 6 can be chosen 
less than one to satisfy this. However, there is a difficulty in this 
approach which we will clarify for the particular case of the two-
point, n = 2. For then, using (ih), 
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d2 
C 2 ( V X 2 } = I ^ k +

U l ' " I * * - A- ( X1 " X2 ) n J n>o 1 * 
r» , not -t 

' o 

We may form <C ,<(>> , for $ analytic, by using that 2 

-1 
A+(x) » lim [(x + ie)2 - r2] 

with x = (Xq, r.) so that 

f°° -t f f o * 'x2 

<C2,*> = lim dt e dx d3r e *(x) (16) 
e->o ' o 'C 

e 

where is a contour in the complex Xq - plane composed of two 
parts, as shown in fig. 1. 

X q - plane 

u 

< - ± — 

fig. 1. 

Thus <c A> = lim dt e dx d3r 7 —r- • <f>(x). 
e-K> ; o J n̂ o (xr) 

e 
For |̂ | 7* 0 the poles of (x2) n are at Xq = ± |r| , and the contour 
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may be shrunk to that of fig. 2. 

x - plane o 

— § — © 

fig. 2 

Thus we have 

2 J° n (nl)2 i |r|n xo=|r| 3 x° xo=|r| J 

(IT) 

Provided that for all r e R3 

% — 

|r|k ^ $ C. n n e(B) n (18) 
8xn x=±|r| k 

o o ' 

then 

f°° -t n tnot 

l < c 2> (i ) > l * constant x dt e j[ B n(2-g) < C ° if a + 8 < 2. 
' o n n 

This is the same condition which arose above, but now we see the defect 
arising from both of these approaches. This is that the space integral 
in (17) is divergent for n > 2, owing to the factor |r| n. Thus the 
condition (18) or the stronger condition <j> e does not lead to a 
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definite value for <C ,d>> . Thus our discussion of functions of the 
2 

free massless field is deficient at this point. Whilst this is 
unsatisfactory we will see that a similar situation does not arise in 
the massive case, so we turn to that now. 

§U. The Missive .Case 

In this section we will consider two very simple examples of 
non-localisable fields which have been discussed already in the 
localisable case. The first of these is the generalised free field $(x) 

for which the commutator bracket is 

[A(x)t A(y)J = (k2 P(K 2) A(x - y ,K 2) (19) 
* J 2 

m 
o 

where A(x, K 2) is the invariant propagator for mass <• The function 
p(<2) is allowed to increase for large K with order of growth at 
most one for localisability. We can see this by considering the r.h.s. 
of (19) when applied to a test function <J>, by means of Fourier transforms, 
for it takes the value 

f°° f <[A(x), A(of| ,<{>>= dx2 P (K 2) d̂ x A(X,K 2) <f>(x) 
J 2 J m o 

= f ck2
 P ( K 2) A (K2) (20) J 2 * m 

o 
where the functions A . of K2 is defined by 
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r 

A,(< 2 ) = d̂ x 4>(x) A(X,K 2) 

= | d*p $(p) 6(p2 - K 2) e(po) (21) 

where <(> is the Fourier transform of <j> . We now prove 

Lemma 3 
l / a 

If (j> £ S a B then |A,(K 2)! £ e~^B<^ . (constant) 

Proof 

If « £ B ° B - ) e S a B=> |*<p) | . e " ^ 1 1 ^ 1 >° , 

where || p || is any norm on R1* consistent with the usual Euclidean 
1 / 1 /a l/a topology. Let us take || pj = |p| + |pj . Then 

A (<2) « [ 1 L C^(/p 2 + < 2 , p) - ft- U + K 2 ) , (22) 
9 J 2 I P I 

so 

| A ( K 2 ) U f £ L e - ( B | | p | | ) 1 / a . ( B ^ 7 7 7 ) 1 / a 

* J 2 |p| 

$ (constant) x e 

as required. 
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Thus the integral on the r.h.s. of (20) is finite at infinity for all 
<J> e S * and z > 0, provided that 

1/2 0 

|p| * eK< } as K2 -> co (23 

To take account of possible singularities in p we have to discuss the 

differentiability properties of A (K2). 

Lemma k 

If 4> e SCtfB(Rl+) then A (K2) e S ^((O,*)), Gelfand-Shilov 
"~ <p Ot ,13 

S --space, but defined on the open interval (0,»). 
Ct ,JD 

Proof 

This follows directly from (22), using the differentiability 
properties of <f> : 

2 , p> 2^+K 2 a/^+p2 

*(-^)2-HC2 ,p)] I < oo 

so that A (K2) e (̂ ((O,̂ )), the set of indefinitely differentiable 
functions on the open interval (0,«>). Including the results of Lemma 
3 proves the Lemma, 

We have proved that if p e S ~(Q,«>) then the commutator brackets 
OLD 
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(as well as all the Wightman functions, as can easily be seen) are all 
otB" 

in the appropriate S spaces of the relevant four-vector variables. 
When we turn to the extension problem, with a < 1, we see that the 

previous discussion using Fourier transforms can no longer be given, 
since the test functions of S or S & may increase too rapidly outside 

X X * 

the light cone for their Fourier transforms even to be defined. Thus we 
need to rephrase the preceeding discussion purely in terms of co­
ordinate space. We do that in the following lemma. 
Lemma 5 

If <f> z S B g (fl ) for some B and p then A (K 2) Z S . (o,») = 
P * B g 

[• : |xk * ( q )(x) * c B k (c f \ x z (0,oo)J 

Proof 

Let us consider A (K2) of (21), and form 

K 2 N A ^ ( < 2 ) = | d̂ x K 2 N A(X,K 2) cfr(x) = j d"x (0 2 ) N A(X,K 2) <fr(x) 

= | d̂ x A(X,K2) (• 2 ) n <j>(x) (2k) 

Using the standard representation for A ( X , < 2 ) : 

A ( x ' < 2 ) = ^ 7 i 7 < 0 ( x o ) J q ( < ^ ) ] e(x2)} 
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we obtain 

^ |xj 
к 2 П Л (к2) = f dx c(x ) f r 2drf- ф (x ,r)] -J (к^ 2~г 2) 

Y J -co ' О 

where 

ф(х .r) = ( dfl(r) ( Q 2 ) n ф. 
n ° ) Ir| = r % 

dftO?) being the measure of the sperical surface |rj « r. In terms 
of the variables A = /x2 - r2 and r we have 

о ^ 
i 

к211 Д (к2) = XdA I r2dr(r2+X2) (Э/Эг) fr"1 ф( + )Ц,г) -
ф Jo >o - n 

r"1 ; ( _ ) (X,rf| J U\) (25) Tn « 0 

-± л / 
where ф д (X,r) = фп(±/Х2+г2,r). From (10) we have 

г_1|ф+(А.г) - Ф"(А,Г)| <: (X2 + r2 + 1 ) " N B2n(c ) 2 П (26) n n 2n 

for a suitable positive integer N, 
so 

|к 2 п А А(к 2)| * (constant) B2n(c f 2 n (27) 
ф 1 2П 

The derivative к 2 П (к2) can be handled exactly as above, with 
Ф 
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K 2 N A^(q)(<2) = dA A q + 1 r2dr(x2 + r2 P (9/9r) r"1 [•*<*,r) -

The bound (26) with N £ q + 2 will thus prove 

|<2n (<2)\ , c B 2 n ( c n ) " 2 n 

' <j> q. 2n 

Thus A,(K 2) e S . ((O,oo)) 
* B _ 1g 

We may thus extend [A(x), A(0)J_ as a generalised function-valued 
operator to the space S g if p e S' (since f\ S , = S'). We may 

g B B^g s 

specify the increase of p(<2) in this case straightforwardly from (27), 

since then 

|A (K2) * sup C (B2n(c, )" 2 R7< 2 N) - C G(<2/B) (28) 
* n*o ° 2 n 0 

so the increase of p for larger K2 must be slower than G(*c2 ) \ In 
- -1 K 1 / 2 A 

the case of c = n we obtain the familiar value G(K2) = e n 

We have thus proved 

Theorem 1 

The generalised free field (19) has an extension whose order of 
decrease outside the light cone is specified by the smallest possible 
g for which p e S', The bound on p for large K2 is essentially g 
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- 0 - 1 -
G(< ) , where G(<2) is given by (28). 

Let us now turn to another simple example of a non-localisable 
field, for the case 

B(x) = g(Q 2 ) A(x) (29) 

where A(x) is a tempered field (though A could be localisable) and 
g is a suitable function. To consider this case we note that the 
Wightman functions for B are trivially related to those for A 

w<B) (Xi,...,xn) = v g ( Q ' ) w^A) (Xi,...,xn) 

let us consider specifically the two point function 

We may write W^ by means of a Lehmann representation 

V< A ) (x) = f dK2 p ( A ) (K2) A ( + ) (X,K 2) (30) 

m 
o 

(B) 
so that W 2 also has such a representation, though now with weight 
function P ^ ( K 2 ) = g2(<2) p ^ (K2). Thus if g is an entire function 
with exponential growth of order (*/ ) and p ^ is a measure then 

2a 
P ^ ( K 2 ) e S " . By the discussion for the generalised free field the a 
commutator 

C^A)(x) = f cfc2 P ( A ) ( K 2 ) A(X,K 2) 
2 J 2 m 

o 
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ct 
can be extended to some space Ŝ . For the general commutator 

C{

r

B\ (x,...,x)= n g(Q 2 ) c[A\ (x_,...,x) (3D 
n,j 1 n n,j 1 n 

(A) 
the tempered distribution C^/ vanishes outside the light cone in the 
variable E . = x. ,... ,x. . The generalised function g( 0 2 ) (?.) J J 0+1 £- nj j J 

will have an extension outside the light cone which can be determined 
immediately, since 

n 2 n 2 
< n g ( D ) C .,•> « < C . f n g(0.)*> (32) 
i=l 1 n j n j i=l 

The details of the extension are given by 

Lemma 6 

If g is an entire function order of growth l/ then II g(Q^)d> e S(R^ n ^) 
2a . , i -

for any <f> e S (R ), any g < a, whilst if $ e T .(g) then 
n ^ ̂ n g (D 2)<}» e S*.^ 1 1" 0) for any B < a. Here <JX. (R^""1*) = 

i = 1 l H nj - ' nj 
U S(R^ n" 2)) 8 S(fi ) where S(fi ) is in the variable 5. . The first 
u>o " p y J 

part of this lemma follows immediately by Fourier transformation, 
whilst both it and the second part can be derived by direct computation 
by using the defining properties of the spaces S and 5 . Since the 
support of C .is the interior of the light cone in r. then the right nj J 
hand side of (32) is defined for <i> e T .(g) for any g < a. We have thus 

nj 
proved 
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Theorem 2 

The massive field (29) has an extension of order of decrease a. 
It is evidently possible to obtain further results on this 

extension, such as its range or its order, in the case of S spaces, 
but we will not do that here, because the results are not of essential 
interest. This is especially so for both of these examples in that the 
first, the generalised free field, has the trivial unit S-matrix whilst 
the example (29) has the same S-matrix elements as the field A(x), as can 
easily be seen in momentum space. We leave these cases, then, and turn 
to functions of the free massive field. These also have trivial S-matrix, 
but have a great deal more complexity. 

§5» Functions of the Free Massive Field 

As before we consider functions of the form 

d 
B(x) = I : A(x)n : (33) _ n. n£o 

where A(x) is a free scalar field of mass m. We will only investigate 
the two point function here for simplicity, especially because this 
situation is already quite complicated. We have, as for the massless 
field, and taking (lU), that 

<C *> = ( dt e"* lim f dx f d3x e
t a A ( x ' m 2 ) $(x) (3*0 

Jo e->o J C £ ° > 
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where A(x) is a free scalar field of mass m, We will only investigate 
the two point function here for simplicity, especially because this 
situation is already quite complicated. We have, as for the massless 
field, and taking (lU), that 

<C2,*> = dt e - t lim I dxQ d3x e* M x ' m ) <J>(x) (3»0 
e 

We have that A(x,m2) » m(- x2) 2 K (m(- x 2) 2), so that for |r| i 0 
the contour is to be taken as in fig. 3. We can express the most 

x -plane o 

* ^ * 
X ; 1 X 

> ^ ^ Z 

fig. 3. 

singular part of A as 

A(x,m2) = - ~ - S l o g ( I n / 5 " ) + log (- x 2) 0(x2) 
x 

Thus 
, a 
t _ m 

.t"*<«^> . * ( t 2 / 7 , " 2 / 1 ^ - *2> °<*2> ( 3 5 ) 

The integration contour may be modified so as to include two small 
circles, one round jrj , the other round - | rj , together with the remainder, 
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so giving the contours of fig. k. The contribution from the circles 

may be evaluated as for the massless case in section 3 by expansion 

of the first factor in ( 3 5 ) . Except for rather special values of m this 

will give 

- Id + id 

I :—, , \ 

fig. h 

no contribution at all, neglecting the third factor on the r.h.s. of 

(25) very near x = 0. So the main contribution to (3h) is completely 

different in the massive case from the massless situation; only the 

contribution from the contours outside ± |rj in fig. k are to be 

considered. 

To obtain the extension of (3*0 we expand the exponential in 

(3*0 and use an integral representation^^ for powers of A(x,m 2): 

< C 2 , * > = 2 dt e t d^x 4>(x) I £r- C L K 2 A ( X , K 2 ) ( K 2 ) 

(nm)* 

(36) 

(m) 

where n ( K 2 ) is the phase space for n particles of mass m and 

total squared centre of mass energy < 2. We use the result of lemma 5, 

so that if 4> e S , with 3 < 1 , then A . ( K 2 ) e S „ ( R ) f for some B. 
X <p .Dp + 

Using the bound^"^ 
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n-3 3n-s 
2 2 

|tt(m) (<2)| $ (constant) . * (37) 
n r(2n) 

to within a function of slow increase in n and K , which we can neglect 

without error, 

r00 , .not r°° 
\<C ,<$>>] $ (constant) x dt e £ £7- ck2 x (38) 

2 ^ n • 
6 niO ' ' / \2 

(nm)z 

n-3 3n-s 1j 
2 2 _ ( B k)

 B 

x K (K-nm) e t/[r(2n)] 

We may evaluate the K2-integral on the r.h.s. of (38) by the change of 

variable < = nm x to give 

n-i 3n-s ! j 

f x2n-2 f°° 2 / v 2 -(bn mx) ^ / o r .N 
(nm) dx x (x - 1) e (39) 

' 1 

Denoting by g(x) x ̂ 2 the integrand of (39) we may put a bound on (39) 

by finding the positive of the maximum of g, which is at the solution of 

2X 2X-1 g J 

The solution of this for large n is very close to x = 1. (in the 
1 / 

range 1 s x s » ) 5 and has value x = l+ e,e^(3n- s)6/2(bnm) ° f which 

is as small as we please for n large enough. Then (39) is bounded for all 

n by 

n+2 3n-s 11 1 / 00 

( ï 2 n~ 2 /n , \ ̂  2 -(bm) 6[n(l^)] 6 f , / 3/ 2 

(nm) (1 + e) e e ^ J J dx/x 
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with crucial contribution proportional to 

3n-s / 3n-s v , Vg 
n 2 n [<3n-s)B/2] 2 n 2 6 e- ( b m n ) 

f (l-i)+2n W O 0 
2 8 or n p e 

Thus we have the bound on (38) given by 

r00 , . na —(1 ~ TV /, x 7 P » „ i ' JjL -t v t 2 g -(bran) |<C2,(J)>| <c dt e Z — n e 
j ° n * ° ' (ltf» 

and this is finite if g < 1, since then the summation in (UO) gives 
a function increasing at infinity slower than exp(t). Thus we need to 
choose any g < 1 for the extension of <C2 from S a to to be 
possible. We have thus proved 

Theorem 3 

The two point commutator bracket of the function (33) of the massive 
free field has an extension of order g for any g < 1, where a is 
defined by (lU) and a > 1. 

We note that the massless case does not give the same limitation 
if the above method is used here, but only the condition a < 1; this 
approach only works in that case for a localisable theory. We see that 
the above method could be extended to the indic&trix spaces, and also to 
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higher point functions, though we will not do the latter of those 
here since no further insight into the situation is expected to "be 
gained. However, we can sharpen the results of theorem 3 so as to 

(12) 
relate to the discussion of Rieckers • If we assume, with Rieckers, 
that for large n, 

d2 

* en (hi) 
n! 

then we have to replace the expression (36) by 

< v * > - 1 5 f % <<2> ° < m > <«2> * 2 

(nmr 

so 

1 , £~1 3 n~ s ! , 
\sn xNi * v 3X1 A 2 K (K-nm) -lb*) 

n } t \2 r<2n) (nm)z 

Using the previous method we obtain 

i i r an (bmn) * 2X± g ;
 n ^ x l<C 2 ,<H $ I e v ™ ' n (U2) 

n 

(12) 
This is convergent for any 6 < a < 1 (agreeing with Rieckers 
results for the Wightman Functions) so proving 

Theorem k 

The two point commutator bracket of the function (33) with coefficients 
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d satisfying (hi) has a decrease outside the light cone of order a, 
l/2a 

and is damped like exp(-|x2| ) as x2 -v -

§6. Discussion 

We have obtained a prescription for describing how the commutator 

bracket of a non-localisable field extends outside the light cone, and 
shown that it is applicable to various models. There are two 
difficulties associated with this. The first is that we have not been 
able to show that our prescription does actually work for the case of 
functions of a massless free field. This is rather surprising since we 
expect that case to be simpler than the massive one. This problem is 

(n ) 
associated with that of defining S (x2) for n > 2, and of course related 
to the fact that in the massless case all the higher particle 
thresholds coalesce onto the single particle one. We do not at present 
see any way of satisfactorily treating this question, though feel it 
rather pressing especially because of all the work involved in 

(2) 
applications of non-polynomial lagrangians which use the massless case 

The second difficulty is that we have not been able to present 
a realistic model of a truly non-localisable field, that is, one for 
which the S-matrix is not the same as that arising from some localisable 
one. Only if that can be done can we expect that there is any possible 

(13) 
physical trace of non-causality. Indeed we have discussed recently 
the manner in which the notion of Borcher's equivalence classes of 

(1*0 
fields can be extended to include non-localisable ones. What is 
needed is a proof that any non-localisable field is equivalent in this 
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extended sense to some localisable field. This can, indeed, be done 
if indefinite metric localisable fields are allowed, but it is not 
known if such a theorem is true for positive metric fields. 

Even if it is not possible to say whether or not non-localisable 
fields actually appear as such in nature can we say anything about the 
expected sizes of the range and order of the extension, if it exists? 
A natural range would be that determined by the radius of an 
interaction. There is far greater difficulty about a natural value 
for the order of the extension, it being a dimensionless quantity. 
However, the dimensionless quantities of interest are the coupling 
constants of the various interactions. But present evidence indicates 
that the order of the non-localisability depends heavily on the nature 
of the interaction; it may well be that among all equivalent interactions 
the least order of decrease is determined by the dimensionless strength. 

We must realise, of course, that non-causality need not destroy 
many of the usual results which follow from causality, such as analyticity 
and even polynomial boundedness of S-matrix elements may still be valid. 
There may be observable effects of non-polynomiality in the behaviour of 
form factors, as discussed in the localisable case by Jaffe^"^. We hope 
to discuss this and related questions in more detail elsewhere. 



30 

ACKNOWLEDGEMENTS 

One of us, F.C. would like to thank the Science Research Council 
of Great Britain for a grant and King's College, London, for its 
hospitality to enable this work to be achieved. 



31 

References 

(1) A. Jaffe, Ann. Phys. (N.Y.) 32, 127 (1965). 

(2) See, for example, A. Salam "Computation of the Renormalisation 
Constants", Proc. Coral Gables Conf. (1971) ed. Dal Cin, 
Iverson and Perlmutter, Gordon and Breach, 1971 and J.G. Taylor 
"Non Polynomial Lagrangians, Particles, and Black Holes", 
Lectures at Toronto Summer School, June, 1971, to appear in 
"Lectures on Particles and Fields", ed. H.H. Aly and references 
quoted in these papers. 

(3) S. Fels, Phys. Rev. D1, 2370 (1970). 

(4) J.G. Taylor, Annals of Physics, 68, 484 (1971). 

(5) R. Blomer and F. Constantinescu, "A local approach to Non-
localisable Fields" 

(6) R.F. Streater and A.S. Wightman, "PCT and All That", W.A. 
Benjamin, New York (196k). 

(7) I. Gelfand and G. Shilov "Generalised Functions", vols 1 and 2, 
Academic Press, N.Y. (1964). 

(8) A. Jaffe, Phys. Rev. 158, IU5U (1967)-



32 

(9) H.J. Borchers and K. Pohlmeyer, Comm. Math. Phys. 8, 269 (1968). 

(10) See ref. (7), vol 2, Chapter IV, §3.2. 

(11) M.K. Volkov, Annals of Physics (N.Y.), 49, 202 (1968), equ. (2.4). 

(12) A. Rieckers, Int. Journ. Theor. Phys. 4, 55 (1971). 

(13) P. Constantinescu and J.G. Taylor, "Equivalence between Non-
localisable and local Fields", King's College preprint, April, 
1972. 

(14) H.J. Borchers, N. Cim. 15, 784 (1960). 

(15) A.M. Jaffe, Phys. Rev. lett. 17 66l (1966). 


