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Re£. TH. 980 

THE POSITIVITY CONDITION IN MOMENTUM SPACE 

V. GLASER 
CERN - Geneva 

A B S T R A C T 

A formulation of the positivity condition within 
the framework of the general field theory is given in mo­
mentum space. It is shown how the usual requirements of 
locality and spectrum can be partially incorporated in 
order to represent the "absorptive parts" of the Green's 
functions by positive operators of the Hilbert-Schraidt 
type operating on a suitably defined Hilbert space of 
analytic functions introduced into mathematics by Bergman 
and Bochner. The application of this method to the x 
space positivity condition formulated by Wightman is not 
discussed in this paper. As an illustration, two simple 
examples are discussed in the last Section. 
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1 • INTRODUCTION . 

As it is well known, the study of a field theory either in the formu-
1) 2) 1 at ion of Wightman or that of Haag-Araki can be reduced to the study 

of the set of functions 

where A(x.) is the field operator attached to the space-time point x. , TT 
1 *) 1 

is any permutation of the indices, and Q is the vaccum state » All the 
physical properties imposed on the system can be translated into functional 
properties of the set of Wightman functions • Thus, invariance under 
space-time translations, spectral condition and local commutativity entail 
analyticity of the functions in a certain "primitive11 domain of the complexi­
fied variables x^ - • The search for a representation that would embody 
automatically these three properties constitutes the so-called "linear program'** 
The "positivity condition" which has to be added to these linear properties, 
expresses the fact that the set (1.1) is a positive functioned on the algebra 
of field operators, i.e., that these functions are matrix elements of operators 
in a Hilbert space with positive metric. This condition, which interconnects 
different Wightman functions, was first explicitly stated and investigated by 
Wightman himself. 

3) 
In their approach to field theory, Bogoliubov and his co-workers lay, 

however, stress on the S matrix as the fundamental physical quantity - the 
fields appear rather as a réponse of particles to external perturbations : 

(• - m 2) A(x) s j(x) = s* 1 - i — S (1.2) 
i 8A. (x) 

and the locality condition as a causal propagation of these perturbations : 

*) 

' Only the case of a single neutral scalar field will be discussed in this 
paper. 
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1 8 . . . 1 ? A(xJ s R ( X x ; x ) = 0 (1.3) 
i 8A. (xj i 8A. (x J 1 n-1 n 

unless x - x. € V , i = 1. 2, .... n - 1 
n 1 + 

where V + denotes the future light-cone. The study of the vacuum expectation 
values of "Wightman products" A(x^) ... A( x

n) can be replaced by that of re­
tarded functions : 

(n , R^(x)Q) = r*(x)f R*(x) = R(x 1 ? ...f x.^, x ± + 1 , x n ; x±) (1.4) 

which have now analiticity properties in momentum space in view of the support 
properties (1.3) in x space. The positivity condition is replaced by a 
stronger one which is a generalization of the unitary condition S *S = 1 and 

4) 
which includes also the L.S.Z. reduction formulae and the assumption of 
the completeness of the asymptotic states* From the set of functions (1.4) 
satisfying these conditions one also can reconstruct the field (1*2) having 

5) 
all the resuired properties » This approach, although less general, has the 
advantage of being more closely connected to the physically observalbe scatter­
ing amplitudes. 

The purpose of this article is to formulate the positivity condition in 
the second framework and to study its connection with analyticity properties 
of the off and on mass-shell scattering amplitudes in momentum space. The incen­
tive for this investigation were the papers by Martin ̂  in which he showed 
the interplay of analyticity and positivity leads to an enlargement of the do­
main of analyticity of the four-point scattering amplitude in the framework of 
general field theory. As the reader will notice, the positivity condition in 
momentum space takes a slightly different form than the corresponding one in 

7) 
x space and resembles very much to the theory of Bergman kernels for 

8) 
Hilbert spaces of functions analytic in a given domain in (5̂  . The method 
of Hilbert spaces of analytic functions developed here can be also applied to 
the set of Wightman functions in x space, but that case will not be.considered 
in this paper. 
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Next Section will very briefly remind the reader of some properties of 
the generalized retarded functions and state the positivity condition. Section 
3 will discuss the "continuation" of the positivity condition into the complex 
domain in several different forms. It contains the main substance of this paper• 
In the final Section we will try to illustrate the usefulness of the general 
concepts by rederiving a very well-known positivity property of the absorptive 
part of the scattering amplitude used repeatedly by Martin in ^ • 

2 « THE POSITIVITY CONDITION . 

The retarded functions (1.4) have the following formal expression 
in terms of the fields A 

r(x2, x n ; x^ = P 1 - m 2) ... (P n - m 2) E 9(x° - x°2) (2.1) 
TT 

Q(xn(n-1) - 5 C ) ( 0 .[...[A^), A(x2)] ... A(x m)] Q ) 

2 
where CL - rru is the Klein-Gordon operator referring to the variables 
xi =( xi * X2^ 9 6(t) is the usual step function and the square brackets in­
dicate commutators. It is still unknown whether starting from the Wightman 
axioms, these formal expressions for n > 3 have a se se as tempered distribu­
tions satisfying the same algebraic relations, support properties, etc, as 
they would do if the Wightman functions were genuine functions • 

In the L«S«Z, formalism they are assumed to do so. However, by replacing 
in (l.t) the "sharp" fields A(x) by smeared out fields Af(x) = (A * f)(x) , 
f 6 Si (CR̂ ) (infinitely differentiate functions having compact support) or 
even by local observables attached to finite space-time regions as proposed by 

12) 
Haag and Araki 7 , the just mentioned difficulty can be avoided. Moreover, 
the reduction formulae can be then deduced in a rigorous way from the Wightman 

*) 
This problem is a generalization of the problem of renormalization in per­
turbation theory, and was studied especially by Steinmann ̂  • The problem 
for n =5 2 is trivial, the case n = 3 was solved by Stora 1 1 ̂  • 
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12) *) or Haag-Araki axioms, as shown by Hepp ' ' . Also the analiticity proper­
ties remain unaltered by this "smearing out" since the support of (1.3) gets 
only shifted by a finite amount. We will, therefore, place ourselves in what 
follows indifferently in any of the shemes just described. 

Although, as already mentioned, the set of retarded functions (1.4) 
[or the set of advanced functions obtained by substituting the step function 
9 (t) = 9(-t) for 9(t) in the expression (2.1) ] is rich enough to recons­
truct the field operators themselves by making use also of the uniterity re-

14) 
lations, it was recognized by Steinmann ' that in order to exploit comple­
tely the linear properties of the n point function a more general set of 
"retarded" products had to be introduced. In the Bogoliubov formalism they can 
be described as generated from the field A(x) by taking functioned derivatives 
with respect to the A. and A ^ fields in all possible combinations and 

in out 
permutations [compare (1.3) ] . They can also be defined as a linear combi-
nation of multiplied by suitable step functions [compare (l.l) ] • For 
our purposes the following qualitative remarks will do. 

Let us denote by ^( x) the generalized retarded product of n fields, 
and by r^( x) the corresponding vacuum expectation values. The functions 
(distributions) r^ depend only on the differences x^ - x. of their argu­
ments and have supports in certain cones C . Consequently, their Fourier 

~i / \ 

transforms r
nVP) defined by 

r*(x) = (2TT)- n J 6 4( P l + ... + p n) Tfj(p) e- i p x dp 

*) 13) 
As in Ruellefs proof of the existence of the S matrix, one has to 
suppose here that the energy has a finite gap above the vacuum state and 
that the asymptotic states are complete in the underlying Hilbert space. 
A detailed study of the different and somewhat involved properties of the 
generalized retarded functions, which in wome way reflect the rather compli-

15) 
cated kinematics of the n body problem, was done also by Ruelle ' , 16) 17 18) Araki ' , Araki and Burgoyne and Bros ' . For a recommended review 

19) 
article, see ' . 
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where 
4 4 px = p, x, + ... + p x , dp = d p„ d p r M 1 rn n ? r r1 *n 

are boundary values (in the sense of distributions) of functions r1(k) , 
i r — î*) /̂ i k = p + iq analytic in the tubes 7 = { k : I m k = q € C J (C is the dual ^ ^ n L n v n 

cone of the cone )• This analyticity is an expression of the locality of the 
theory. The spectral condition finds its expression in the coincidence of all 
the boundary values r

nvP) = n^p' ^ n -^xec* •/ ^ n a certain region p € 
of the real momentum space (R./ . \ depending on the masses of the particles 

4 ( n ~ x ) 3) 20) described by the theory. From the edge of the wedge theorem / f ' , it follows 
then that all the functions r^(p) are different boundary values of one and 
the same function r

n M analytic in the envelope of hoiomorphy of the domain 
U T U [RS] f where [RS] is a complex neighbourhood of the region of coinci-
^ s^ n 

dence R • The S matrix elements involving n particles are restrictions 
n ~i 2 2 of a well chosen function r (p) to the mass shell manifold p. = m 

n J *) (j = 1, 2, ..•, n) , m being the mass of the particles involved ' . The 
analyticity domain of the scattering amplitude is the intersection of the com-

2 2 . . plex mass shell manifold k̂  = m with the domain of hoiomorphy of the function 
r^(k) (one has proved so far only the case n = 4 that this intersection is 
non-empty). We mention also that for each (real) momentum p there is a func­
tion ^ ( P ) which coincides in a neighbourhood of that point with the Fourier 
transform of the truncated vacuum expectation value of the time-ordered product 
T^ • As a final remark, the generalized retarded functions satisfy some linear 
identities called the Steinmann relations. We shall mention them later when needed. 

After these preliminaries, we are ready to formulate the positivity 
condition. By denoting 

RX(f) = f R1(x4, x ) fX(x,, x ) d4x„ ... d4x , (2.2) 
n n 1 n nv V n 1 n 

where is a test function € cf №qn) » infinitely differentiate and 
of fast descrease at infinity), the positivity condition reads : 

*) 
/ The restriction of a distribution to a manifold makes in general no sense. 

12) 
It was proved by Hepp in the quoted article that it does in this case. 
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Il S R*(f) Q ||2 = S (0 , ]£*(£) R̂ (£) Q) * 0 (2.3) 
i.n i.n..,m 

for every choice of the f̂  • We suppose here that the sum extends only over 
a finite number of terms. This condition was first written and studied by 
Wightman ̂  in the case of products of fields. To avoid notational complica­
tions we shall study it in the special case of one term instead of the sum* 
What we will have to say will extend in a straightforward way to the general 
case (see end of Section 3) • 

In this simpler case, (2,3) becomes (we drop the indices) : 

J A(x1? x2n) f(x1f xn) f(*n+1, * 2 n) àx^ ... dx2n ̂  0 

for all f € </0 4 n) (2.4) 

with A(x1? x2n) = (Q , R*(x1f xn) R(^n+1> ^ 2 n) n) , 

By going to momentum space, we get 

hAk. +...+ k0 )A(k., k0 )f(-k., ...,-k )f(k 4, k0 )dk. ... ak0 (2.5) 
J 4 1 2xi v v f 2ny K V 9 n' v n+1 ' f 2n' 1 2n v 7 

where we have introduced the Fourier transforms as follows 

-ik x -,,ft-ik x 
f(x) - J e 1 1 . ? n £(k) dk1 ... dkn 

A(x) = (2TT)"2 n J 6k(k1 + ...+k2n) A(k1f k2n) e"
l k l X l . 

dk^.dk^ 

Let us now introduce the total energy and momentum co-ordinates a , a1 and 
the relative momenta pv , qv of the two "clusters11 R and R by the for­
mula 

a n v 
kv = pv , (v = 1, n) , a = - S kv , with S pv = 0 

n 1 1 
af n V 

k v = - + a , (v = 1, #a., n) , a»= I k , with E q =0 
n 1 1 

(2.6) 
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Then (2.5) takes the following form : 

J Aa(pfq) ep(a , p) cp(a , q) dp dq £ 0 (2.7) 

where Aa(p , q) = A(- - - - - - P n , - + q1, - + q̂ ) , 
n n n n 

cp(a f p) = f(- + p 1 f - + P n) 
n n 

and dp = dp1 ... d p
n-i » dq = dq1 ... dq 

Since the n vectors p^ and the n vectors q̂  satisfy the two relations 
(2.6) t we have (arbitrarily) chosen the first n-1 as linearly independent. 

The spectral condition tells us that the function A^ (tempered dis­
tribution more precisely) has its support in a € V (M) where V (M) = 

2 2 + + 
[c : a ^ G , a ^ Mj , and M is the lowest mass of the intermediary 
states that can be inserted between R and R in (2.4) . Since the Fourier 
transform of (Q , R R Q) expressed in the variables (2.6) has, as imme­
diately seen, its support in [a € V (M) = - V+(M)} , A (p , q) can also 
be regarded as the Fourier transform of the commutator 

Aa(p , q) , [E*, R] 0) for a € V + (2.8) . 

The function (Q, R (x) R(xf)^) is only partially a retarded function : it has 
support properties only separately in the variables x and x1 but none in 
x-xf . Therefore A

a(P > <l) ^ s t h e boundary value of a function analytic in 
p and q but not in a • More precisely if we consider Â (p , q) as a 
member of the family of functions 

A l j = y(Cl , R 1 Rj Q) 
G V ' n n ' 

where i and j run independently over all the generalized retarded n point 
products, it turns out, on the basis of the spectral condition and the edge 
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of the wedge theorem, that the functions A^J(p , q) are for fixed a (this 
term will have to be specified later) different boundary values of one and 
the same function [which, for simplicity we will again denote by Â (p , q) ] 
analytic in a domain {(p , q) 6 Q X Q̂ j . Here is the envelope of 
hoiomorphy of the n point function in which the region of coincidence 

= {p : S p ^ 2 < M^ for all 16 (1, 2, ...,n)} has been replaced by 
the "shifted region R°(a) = {p : 2 (p. + - ) 2 < M? , for all I € (1, 2,...,n)}. 

n i€I 1 n 1 

Note that Q x 0 is a topological product of twice the same region. The 
O G 

reader will immediatly notice that for n = 2 , (A
a(P * reduces to the 

well-known absorptive part of the four-point function studied first by Bogo-
3) 

liubov and co-workers in connection with the proof of dispersion relations 
21) 

and then by Lehmann 1 , who found also its envelope of hoiomorphy CI . The 
*) 

above statements are simple generalizations ' • 
On the other hand, the algebra of the generalized retarded functions 

tells us that the commutator (CI , [R^ , R^ ]Q) can be expressed as the dif­
ference of (in general different) pairs of fully retarded functions : 

(0 , t«* , Hi ]0) . r%n - 4 . (2.9) 

Translated into momentum space this tells us, in view of (2.8) , that the 
"absorptive part" A is the difference of two different boundary values of the 
full 2n point function r2n(k) • This ̂ a c t adds, in principle, new information 
for the function A ; it can in particular result in an enlargement of the 
domain Q X CI described above. Indeed, that is what happens in the case of 
the four-point function as shown by Martin ' . 

*) 
As a matter of fact, a rigorous proof of these statements requires some 
gymnastics with distribution theory and analytic completion. 



- 9 -

The above remarks about the analyticity properties of A being needed 
in the next Section, let us turn back to the inequality (2#7) • If we choose 
the test function there to be of the form cp(a , p) = x(a) -KP) > with 
X € S((R̂ ) and f € S(&4) , that condition takes the form : 

J da |x(a)| 2 J Aa(p , q) f(p) f(q) dp dq * 0 (2.10) 

22 ) 
By a well-known theorem of Schwartz ' , the positivity of (2.10) implies 
that A is a positive measure with respect to a . The term "a fixed" will c 
therefore have to be understood in the sense of a convolution with a positive 
test function |x(<j)j2 having its support centered sufficiently closely to 
the desired value. It can actually be shown that the regularization with res­
pect to only a timelike direction will suffice. Also the symbol Q̂ . will 
have to be understood as 

" Q " = fl Q , <Ub= supp l X| 2 

In what follows we will simply suppress the integration over a in (2.10) • 

3 t EXTENSION OF THE POSITIVITY CONDITION INTO THE COMPLEX DOMAIN. 

The aim of this Section is to "extend" the condition 

J A(p , q) f(p) f(q) dp dq ̂  0 
(3.1) 

for all f € fcf(ftN) , N = 4(n - 1) 

into the wbole domain of analyticity of the function A(p , q) (a being 
fixed once and for all we shall drop it in the notation). As it was discussed 
in the preceding paragraph , A is certainly analytic in a domain of the type 
Q X 0 . We shall need also the following two simple properties of the domain 
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0 : (a)f5 is invariant under complex conjugation ft = ft , and (b)Q contains 
real points of analyticity. Here Q* denote the set ft* = {p : p 6 0} where 
the bar indicates complex conjugation : if p = E e p + i I m p , then 
p = Re p - i Im p . 

The property (a) is certainly true for the primitive domain of the 
n point function and therefore also for its envelope of hoiomorphy Q • The 
property (b) follows from the fact that the region of coincidence is 
non-empty : by the edge of the wedge theorem all its points are (real) points 
of analyticity. 

We are now ready to formulate the 

THEOREM 1 . 

If the function A(p , q) is analytic in a schlicht domain 
ft X ft c <C _ x <D.T sucht thqit Q contains a real open set R 6 (R__ N N N 
and if on R X R c iR̂  x iR A(p , q) satisfies the positivity con­
dition (3.1) for every test function f € $(R), then it satisfies also 
the three following conditions : 

A) - J A(p , q) i(p) g(q) <^p <&q ^ 0 
0)XO) 

for all g € L?(cu) and all 00 en ft , U) being any open set in 
(CN with compact closure such that closure a) c: ft f and d X , 

. . . ~ 
Our notation is somewhat inconsistent since the same letters p and q 
stand for real variables as in (3.1) , where A(p f q) represents the 
boundary value of an analytic function, and for complex variables varying 
in ft X ft , where they serve as arguments of the (unique !) analytic ex­
tension of the boundary value in question. This analytic extension is again 
denoted by A(p , q) . It is hoped that this notational simplification will 
not lead to confusion ; from the context it should be clear whether the 
variables in question are to be considered as real or complex. 



- 11 -

resp. d X , denoting the Lebesgue measure in C„ [i.e., 
^ M — N — Z — " *A d X p = (2i)"" dp A dp , resp. d X̂  = (2i) dq A dq ] ' • 

B) - There exists a sequence of functions -^V(P) € <jfb (0) , 
v = 1, 2, 3, ofe(Q) denoting the set of functions analytic 
in Q , such that 

CO 
A(p , q) = S £ (p) f (q) 

v=1 
y ̂  \ 

the series being uniformly convergent in Q X 0 ' • 

C) - The quadratic form 

^ ( a , a) = 2 JL i 9* a f A( P , ? ) 
p a fP <*! p! p p 

defined on all finite sequences of complex numbers {a } is 
positive definite for all p € Q • 

All these three conditions are equivalent* 

The formula C) needs some explanations. In it the notation of 
22} + Schwartz ' for multi-indices was used : a = {o^, <*n3 c ^ denotes 

a sequence of N non-negative integers ; 

' Note that A(p , q) being analytic in 0 X Q , A(p , q) is analytic in 
p € 0 and anti-analytic in q € Q • 

'A series of functions is said to be uniformly convergent in an open set 
U if it converges uniformly in every compact subset of U . 
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a ! = cr1! . . . aN! , 0 1 = 3 ^ . . . 0N! 

ap1 3P N P a P l ap N 

For later use, we note also 

II a 1 N |aj = or1 + ... + ofN , P = P l ... P N 

In C) , the summation extends formally over all Z^ X Z^ but only a finite 
number of the a is supposed to be ^ 0 : a = 0 for all \a\ > n for 
some n . The factorials a ! $ ! were introduced for later convenience. We 
want to show that the condition c) involves only values of the function 
A(p $ q) on the "diagonal plane" q = p , which is a linear subspace of 
$r>»T = rc*T X C.T of real dimension 2N • Let us denote it by « ID-_T can 2N N N 2N 2N 
be parametrized either by the real and imaginary on the vector p = x + iy , 
x = (p + p)/2 , y = (p - p)/2i , or formally by p and p 9 Given an ar-
bitrary C function f on an open set c fl) f its value m a point p 
can be denoted by f(x , y) or formally by f(p , p) ; its derivatives 
S d_ f are by definition to be computed by using the formulae : 

P P 
_ i _ = l ( _ i _ . i _ ^ ) ,_L_ 
dp., 2 hx± 5yi h?± 2 dxi 5y. 

The function f will be said to be real analytic in u) if for every p Q € CO 
it can be represented by its Taylor series 

(P - P n ) a (P - p J P p 
f(p , p) = E 2 2 — d! f(p , p ) (3.2) 

or,3 a ! P ! P P 

absolutely converging in a sufficiently small polydisc 

P = {p : |(p - p o).| < R. , i = 1, N } 
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If we replace p by q in the series (3o2), the series will continue to 
converge absolutely for (p , qj t P X P defining there an analytic func­
tion f(p , q) - the unique analytic continuation of f(p , p) * In this 
case the formal notation acquires a real meaning and proves our assertion* 

Before proceeding to the proof we wish to make still a few remarks* 
It is evident that the representation B) displays positivity in the most 
explicit way* From it, A) and B) follow immediatly* For example, in order to get 
C), we have only to apply the differential operator p(dp) t 0 the series 
C) and put q = p , where P is given by 

P (a ) = E i s a 

P a cr! P 

The function A(p , q) resembles very much to a Bergman kernel asso­
ciated with a suitably defined Hilbert space of functions analytic in a domain 
7) 8) 

0 J' } • The Bergman theory proceeds, roughly speaking, in the direction 
A) =» B) C) , while our proof of Theorem 1 will follow the direction 
(3.1) => C) => A) =» B) a 

Proof of C) . 

In order to show c) , let us insert for f in formula (3*1) the 
expression 

f(p) - 2 ?SL (-)W ^ 6„(p - P') , p' € R (3.3) 
!aUn a ! p 

or, to be more precise, let us take a sequence of functions £ € &6(R) con­
verging to the distribution (3.3) in the topology of §6 (R) . Since A(p , q) 

00 
is G in R X R , the result will be the same* Here 5.. is the N dimen-

7 N 

sional Dirac function* As p1 is any fixed point in R we obtain 

*) 
' Most of the author's knowledge about the Bergman-Bochner theory derives 

23) 
from a book by Meschkowski J , especially from Chapters IV and XII * 
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S — — ^ 9̂  A(p , q) / - Qp(a , a) * 0 (3.4) 
cr,0 a ! 3 ! p 4 p 4 F 

for all p 6 R 
In this inequality all the â  = 0 for |aj > n , some n , but we are allo­
wed to drop this condition provided the resulting series converges absolutely. 
That is what we will do presently* Let p 6 R , and let D be a polydisc 
D = {z € C : j z±\ < R± , i = 1, ..., N } such that {p} + D c Q and let 
z € D . Then by introducing 

b 
a„ = , ? — (a - Y) ! >̂r all of g zj , b 6 8 
* !Y|̂ n Y ! 

into the series (3.4) we get the inequality Q (b , b) ̂  0 if we note 
p*t* z 

that the Taylor series of the function A ( p + z , p + z ) as well as all its 
derivatives converge. Since any point p 6 Q can be connected to a given 
point p^ € R by a finite chain of polydiscs, a finite number of repetitions 
of the above substitution will yield us the inequality Qp(a , a) ̂  0 , 
which proves C) • 
Partial proof of B) . 

We will prove C) => B) for Q = a polydisc P , Let P = {po3 + D , 
p € R , D a polydisc with its centre at the origin such that p err Q 0 

° 7) 8) 23) Let us introduce, following Bergman and Bochner } y j 9 J , the Hilbert space 
= C&(P) fl Lg(p) of functions analytic and square integrable in P 

with the scalar product 

(f , g) = f f(p) g(p) d X (3.5) 
p 

P 
and norm l|fi| = (f , f) 
The fundamental property of this space of functions is the fact that the value 
of the function f at a point p 6 P is a continuous functional of f con­
sidered as an element of : 

|f(p)| £ M !!f|| with M p = C d(p)" N/ 2 (3.6) 
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where d(p) is the distance of the point p to the boundary of P , C a 
numerical constant. From this, it follows immediately that the strong conver­
gence f n f in implies the pointwise convergence ^n(p) ^(P) 
uniformly in every compact subset of P • Equation (3.6) is an easy conse-

23) 
quence of the Cauchy integral representation for analytic functions (Ref. \ 
Chapter IV) , It is also immediate to verify that the powers 

where 
l £ - J " |^! 2d X(Z) 

D 

are normalization constants, form a complete orthonormal set in e 

Let us associate to the function A(p , q) the bounded linear ope­
rator A € £ ( %p) by the formula 

(Af )(p) =jA(p, q) f(q) d X 2 . (3-7) 
P 

A is evidently bounded since A(p , q) is an analytic and hence bounded 
function in the closure of P X P . It is also Hermitian and positive. This 
can be seen by introducing into the formula 

(f , Af ) = J f(p) A(p , q) f(q) d X p d X q 

PXP 

for f the polynomial f = S a (p - p ) N~ and for A(p , q) its 
\a\^n a a 

Taylor series centered at p . One gets (f , Af) = Q (a , a) , where Q is 
° Po the quadratic form (3.4) , which was shown to be positive. Since polynomials 

are dense in it follows that (f , Af) ̂  0 for all £ € $>p . This is 
the inequality A) for u) = P and f 6 <$(P) 0 L 2(P) . Finally, A has a 
finite trace. Indeed, by computing the trace with the help of the orthonormal 
system {cp̂} using again the Taylor expansion for A(p , q) , one obtains 

tr A = J A(p , p) d X < CD 
P 
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All these properties imply that A is of the Hilbert-Schmidt type and 
has therefore a purely point spectrum. The set of all the eigenfunctions of A 

J A(p , q) gv(q) d = \ y gv(p) , V = 1, 2, 3, (3.8) 
P 

is a complete set of orthonormal functions in . (f , Af) ̂  0 entails 
X ^ 0 • Since for fixed q A(p , q) = f (p) is an element of %L , we 

q v 

may expand f into a Fourier series with respect to the orthonormal set »q _ 
f V : fq = ^ av gv • w i t h av = (gv ' £~) = К because of (3.8) . 
Now, according to (3.6), strong convergence entails uniform pointwise conver­
gence, and therefore the series 

00 00 
A(p , q) = E Xv gv(p) i v(q) = S fv(p) £ (q) 

1 1 

w i t h f

v = Х У 2 ^ (3-9) 

converges uniformly in p € P for each fixed q € P . It remains only to be 
shown that the series (3.9) converges uniformly in P X P . It is useful 
for later purposes to proceed as follows. By putting q = p in (3.9) we get 

CO 
A(p , p) = £ |fv(p)l2 (3.10) 

1 

and, since this is a series of positive continuous functions in P converging 
to a continuous function in P , Dini's theorem tells us that the series con­
verges uniformly in P • The Cauchy inequality yields : 

|A(p , i ) | 2 ^ С E |*,(P) \ Ш 2 - S |f (p)|2 E | £ (q)|2 = A(p , ?) A(q , q) 
v v М- ц 

(3.11) 
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This shows that the series (3»9) automatically converges absolutely and, 
as a little reflection shows, also uniformly in P x P since the two series 
on the right-hand side of the inequality do so • 

The uniform convergence of (3*9) evidently implies the inequality 
A) for any cu en P and any f € Lg(u>) o Thus, Theorem 1 is proved in the 
special case Q = P * 

The proof of Theorem 1 will be complete if we prove the fol lowing 
23) 

theorem, which has an independent interest (compare Ref, , Chapter XIl) . 

THEOREM 2. 

If A(p | p) is real analytic in Q and if some polydisc P̂  
(centered at p^ c Q) the representation (3.10) is valid with 
the f analytic in P , then all the functions f can be continued 
analytically into all of Q and the representation (3.10) remains 
valid in Q in the sense of uniform convergence. The function 
A(p , q) defined by the series 

A(p , q) = E fv(p) £v(q) (3.12) 
V 

converging uniformly and absolutely in fix Q continues analytically 
the function A(p , p) = A(p , <l)!q_p i n t o ^ x n * • 

Proof, 
As already explained, A(p , p) real analytic in Q means that 

for any p^ € Q there is a (non-empty) polydisc P̂  centered at p^ in 
which the Taylor series of A(p , p) 

A(p , p) - E A* (p - p.f (p - F . ) 3 (3.13) 
off 3 

converges absolutely. Since by the Heine-Borel lemma any point p € .fi can 
be connected to p € P by a finite chain of polydiscs P such that ro o r 
p £ p (r = 1, •••,m) and p £ P , it is sufficient to show that r r-1 m 
(3.10) can be "continued" from P Q to P • Let R = (R , • R^) be the 
radius of P = {p : jpi - p ±\ < R± , i = 1, ...,N} • Let 
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f > ) =2 f (P - p / (3-14) 
a 

the Taylor series of ; they converge all a polydisc P* c P̂  fl P̂  
centered at p # We have on the one hand, the Cauchy inequalities 

JÂ pj < 10if*+0 for some M (3.15) 

since (3.13) for i = 1 converges in P̂  , and on the other the represen­
tation 

a 2 B - j , f

W I s • <3-16> 

which we get by inserting the series (3«14) into (3«10) by inverting summa­
tion signsA This we are allowed to do since Theorem 2 is valid in P by 
the remarks following formula (3.9) . Putting a = 0 , (3.15) and (3.16) 
yield the inequality 

A1 = E |f | 2 < ^ R 2 * (3-17) aa 1 va1 7 v u• '' 

and a fortiori lf^| < M^/R^ . This shows that the Taylor series (3.14) 
keeps on converging absolutely in all of P . We have to show that the se­
ries (3t10) behaves likewise. For that purpose let us apply to the series 

2 f Z* = £ {£ Ra(z/Rf/2}(Z/Rf/2 , Z = p - p„ va va ^ * J J \ / / > K ^ - J 
a a 

the Schwartz inequality. We get 

a R 8 R 

Combining this with the inequality (3.17) , we obtain 

E |f (p)!2 ^ M( E |-| ) = M II (1 - Ll HI) < . 
v a R i=1 R. 

I 
for all p € P1 
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This proves the (3.10) part of the theorem. But the remaining part 
follows imraediatly from what has been said in the proof of formula (3.9) . 

The Theorem 2 shows that the "sensitive" points of the analytic 
function Â (p , q) lie in the immediate neighbourhood of the "diagonal 
plane" = {{p , q) : p = q) , If by using any other information we succed 
to enlarge the domain of analyticity of A in a neighbourhood, however "thin" 
of the diagonal plane, this enlargement becomes automatically a topological 
product. The following Theorem 3 will strengthen this conclusion since in it 
not even continuity of the function A(p , p) will be required. This theorem 
is inspired by the Bernstein theorem of classical analyses on the convergence 
of the Taylor series of a function having all its derivatives positive *' • 
But in spite of its apparent generality, the author believes that Theorem 2 
could be more useful for practical applications. 

THEOREM 3. 

Let A(p , p) € §5 (̂ ) satisfy - in the sense of distributions - the 
positivity condition C) : 

S A( ? , p) s Q (a , a) > 0 (3-18) 
cv,3 a\ 3! p P p 

everywhere in Q for all finite sequences a • Then A(p , p) is the 
a 

restriction to the "diagonal plane" p = q of a function A(p , q) 
* 

analytic in Q x Q . 
Proof. 

It is enough to show that A(p , p) is real analytic in 0 , for 
then the methods of proof of Theorems 1 and 2 will evidently lead to the 
statement of Theorem 3. 

*) 
' The author would like to thank D • Bessis for drawing his attention to 
the Bernstein theorem during the elaboration of this work. His thanks 
are also due to Dr. H. Epstein, who suggested the distribution part of 
Theorem 3. 
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By noting that 

3p, dp. 
X 1 

are two-dimensional Laplace operators, we get,, as a consequence of (3O18) , 
the inequalities : 

n n EL. 
A ^ A^ ••• V " ° f ° r a 1 1 ( 3 V V € ZN 

(A? = 1) (3.19) 

and also 
H n - A n A ^ 0 for n = 0, 1, 2 F ... (3.20) 

where A = A^ + A^ + • • • + A^. is the Laplace operator with respect to all 
the variables. 

Equation (3.20) implies A € C°(Q) • To see this, we shall use a 
22) 24) 

classical argument / f . We first notice that the being positive 
distributions are measures* The second remark is that the elementary solution 
G (r) of the equation A nF - 6 O T T is in C

2 n~ 2 N~ 1 (/R0J provided n > N 2 2 ) > 2 4 ) # 2 2 2 V Here r = |p | + ... + |pJ o Therefore G *(<lTn ) is also in 
C n"" (ffi ) for any fi'e <3) (Q) • By choosing 2^(p) = 1 in a sphere 
Sec Q , we find that the measure F = A - G#( ̂ M«n) satisfies the equation 
&nFn = ° i*1 So But any solution of the last equation is C°°(s) and there­
fore A € C 2 n 2^ ''(s) • n being arbitrary and S en Q also arbitrary we 
conclude that A € C°°(Q) , 

Knowing this, we want to show that the Taylor series of A at any 
given point P Q € Q converges absolutely in every polydisc contained in Q • 
Without loss of generality we shall take P q to be the origin and it will 
be sufficient to show that the coefficients of the formal power series 

s( P ) = s 2 J L _ a " s! A(0 , 0) S E A FT P
A ? 

a,3 a! 3! P P a,Q ^ 
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satisfy the Cauchy inequalities 

|Aap| < 10*** (3.21) 

where R = (R f «»•, R^) is the radius of any polydiscs contained in Q . 
i c P . ' Let us put p. = r. e ^ (r. ̂  0 f cp . real) and let us study J J 3 3 the mean value of the function A over the angles : 

-N 2 T T 2 t T "̂ 1 icp« 
^&(*V r ) = (2TT) f <*?-, J A^ rl e to-,r we ) . 

0 ' 0 
We shall consider only the case N = 1 in detail* With the help of the 
Green's formula, we get : 

dofer)/dr = (2TTr) - 1 A(r eicp)r dr = r"1 J ' dr' r'(2ir)"1 . 
w0 dr 0 

r? r 
. J A A(rf e1C?)dcp = r J dr.' r' c^(r') 

0 0 

or by integrating : 
rf . rf

 fl 

c$(r) = J6(0) + J dr' J' dr" — (r») • (3.22) 
0 °0 r». 

Here we have introduced the notation 
2TT . 

cMp (r) = (2TT) J AaA(r e1C?) dcp , a = 0, 1 , 2, t*^ =ci&? 

Equation (3«22) can be also written in the form 
r 

c/^(r) =&a(0) + I G(r , r')^ + 1(r') dr' 

with 
G(r , r') = rf in r/r' ^ 0 

By n fold iteration we obtain : 
n r r 

Mo (r) = E Jk (0) f G (r , r')dr« + f G (r , r») Jfa (r')dr1 (3.23) 
° a = 0

 a 0 a 0 n n 

where G is the a times iterated kernel. One finds easily : a 
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J % (r , r')dr' = (r/A)201/^!)2 

0 a 

and 
Jo (0) = A* A(0) = 4* o a d" A(0 , 0) a P p 

Now, since is positive and by (3.19) all the <^(r) are also positive, 
we obtain by dropping the last term in (3.23), the inequality 

Jb (r) * E A r5* 
0 |«|sn <« 

for all 0 £ r £ R and all n , which, in turn, implies the Cauchy inequa­
lity 

A £ iVR2^ , M = & (R) 

It is almost evident that this last formula is also valid in the 
case N > 1 if we replace in it the index a by the corresponding 
multi-index a = (c^, • •», a^) and R by R = (R f ».., R^) ; to see this, 
one has only to apply formula (3#23) to each of the variables r̂ , r^ 
separately. 

In order to get the full Cauchy inequality (3.21), we notice that 
the positivity condition (3.18) implies A n = An and |A ^ A A O N , 

otp pot 1 cvp act pp 
Thus the convergence of the formal power series at each p € Q 

is established* It remains only to be shown that these series converge to the 
function R(p , p) o But this is an immediate consequence of the classical 

*) 

Taylor formula with the rest term. Therefore, Theorem 3 is proved ' • 

*) 

After the completion of this work, Professor P, Lelong has Kindly infor­
med me at the last Strasbourg meeting that in 1948, by using somewhat 
different methods, he had proved the following theorem : if a C function 
satisfies the conditions (3.20) in a domain, then the function is real 

25) 
analytic there • 
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The rest of this Section will be taken up with the generalization 
to the case when functions with a different number of fields are involved 
in the positivity condition. Our remarks will be only sketchy, since, 
except for one point, essentially only notational questions will be at 
stake. 

Let us denote the Fourier transform of (Q , R R Q) by 
9 n m 

A (a ; p , q ) = , R* R Q) (3.24) nmv rn ' nrrr v ' n m ' v ' 

(n= 1, 2, 9 0* ? m= 1, 2, ...) 

Here again p^ € l) a r e t 3 l e ^•nterna-1" momentum variables of the 
"cluster" R* and q € IR„/ „\ those of the cluster R « a is the n m 4(m-1) m 
total energy and momentum created by any of the clusters from the vacuum 
state. We will keep it again fixed and hence drop it from our notation. 

The discussion at the end of Section 2 shows that A is a 
run 

boundary value of a function analytic at least in the domain 
Q^(a) x ̂ m(c) , where CI, (a) is the "a -shifted" domain of analyticity 
of the i point function . Each of these domains contains real points and 
is invariant under complex conjugation. The original positivity condition 
reads 

Y f A (p f q ) f (p ) f (q ) dp dq * 0 (3.25) u J nTi n ' ̂ m n v rn' m v nm n ~m x 7 

1£n£N 
1̂ m̂ N 

for all f 6 sORw „N) , n = 1, N [note that s(ft ) = <C = the n v 4(n-1) o 1 
set of complex numbers ] . 

In order to formulate the generalization of the condition A) , of 
Theorem 1, let us introduce the (pre-) Hilbert space , whose elements 
are N-tuples of analytic functions : 

f = {^(P-,) , f 2 ( p 2 ) , V P n ) } w i th f n 6 Jb(vn) n L2(<on) , 

cu or n n n 
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and with the scalar product defined by : 
N 

(f , g) = E f f (p ) g (p ) d X (3.26) 4 9 y / J n ч гп 7 эп ч n' pn n=1 Ш n 
where d X is the Lebesgue measure in I./ „\ • is simply a pn * 4(,n-1 j Ш 
finite direct sum of Bergman-Hilbert spaces and therefore itself a Hilbert 
space о inherits the, for us. essential property of a Bergman-Hilbert 
space : the value f (p ) at the point (n . p ) of an f 6 % is a i- n 4 n7 n7 ш 
continuous linear fonctional of f : 

|f (P )| * M (p ){ Г |f (p )j 2 d X } 1/ 2 £ M (p ) ||f || (3.27a) 1 n 4 n 1 n41n7(- « 1 n 4 n7 1 nv n v n 7 11 4 7 

Ш n 
with M (p ) = С d(p ) ̂ n С a numerical constant [ compare n n n 4 n7 ' n 
formula (3*6) ] , 

To the N X N matrix of functions (A ) , we associate now the 
linear operator A on db^ defined by 

N 
(Af) (р ) = E Г A (p , q , f (q ) d X 4 7n n л л nm4 n ' 9 m m qm m=1 a) m 

which is obviously bounded since со cr: Q <> 
n n 

What one wants to prove is that (3.25) implies the generalized 
condition 

A 1) (f , Af) 2> 0 for all f £ % 
CJD 

As it was seen in the proof of Theorems 1 and 2 , it is actually sufficient 
to prove this inequality for = = any polydisc err centered at 
some real point of analyticity P̂  £ R

n (n = 1f ...f N) . But that can 
be easily done by inserting for the test functions in (3*25) linear combi­
nations of 6 functions as in formula (3*3) and then choosing, as in proof 
of Theorem 1, powers as a complete orthonormal system of functions in » 
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Since ^ 
tr A = E f A (p , p ) d X (3.27b) „ J nr. n n n n=1 a; 

n 
is also obviously finite, the diagonalization of A yields a complete ortho-
normal system of functions £cp } : A cp̂  = cp̂  , ^ 0, v = 1,2,3,... • 

1 
By introducing the functions £ = X* cpNJ = (f^(p^ ),•••, f^(P N)) t h e f u n ~ 
damental inequality (3.27a) again leads to the uniformly converging repre-
sentation : 

CO 
A (p , q ) = S f (p ) f (q ) , nm n ' ̂ m A nv n 7 mv m 7 

v=1 
(n , m = 1 , N) (3.28) 

Here the functions f (p ) are analytic in P (n = 1, N) • 
nv n n 1 ' ' 

By considering the diagonal term n = m it follows from Theorem 2 
that the functions f can be analytically continued to the whole of 

nv 
0^ (n = 1, N) , and the Schwartz inequality 

lA (P , q ) ! 2 s { E | f (p ) £ (q)|} 2^2|f (p)| 2. E|f (q)|2= 
1 nm n m • ^ 1 nv n mv m 1 1 nv n 1 ' mv 1 

V V V 

= A (p , P ) A (q , q ) (3.29) 
nm n 1 n mm m 1 m 

tells us, again through Theorem 2, that the series automatically converges uniformly in the whole of Q X Q . J n m 

Therefore we have proved the following theorem : 

THEOREM 4. 
Let a set of N X N continuous functions A (p , q ) be defined 

in R X R , where R is a (real) neighbourhood of a point p = p1 in n m ' n v r rn *n 
„\ ; let this set of functions satisfy condition (3.25) for all 4(n-1) 

£ € 9S (R ) (n = 1, N) ; let all the functions A be analytic n K r/ v ' 9 ' ' nm J 

in a complex neighbourhood of the points p^ = p^ , q̂  = p^ ; let further 
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the "diagonal" functions A (p , p ) be real-analytic in domains 
nn n fi £ 4\ containing the real point p = pf (n = 1. »»., N) » Then n 4(n-1j 3 rn n ' # the functions A (p , q ) can be analytically continued into fi X fi ran n ' nr J J n m 

(n , m = 1 , .»», N) » Furthermore the matrix of functions A = (A ) can 
\ 9 9 9 / \ 
be "diagonalized" there, that is, there exists a sequence of functions f € Jb(Q ) (v = 1, 2, 3, •••) , (n = 1, •»., N) such that the repre-nv n 
sentation (3.28) is valid in fi X fi in the sense of the uniform conver-v ' n m 
gence of the series. 

Generalizations and outlook* 

The main tool for getting Theorems 1 to 4 was the introduction 
of a suitably defined Hilbert space of analytic functions on which the 
"absorptive amplitude" turned out to be a positive operator of the Hilbert-
Schmidt type# The use of these Hilbert space techniques was essentially 
local : the domains u> in the definition of [see (3«26) ] were rela­te 
tively compact subdomains of the domains of hoiomorphy fi • The measures 
X were also rather arbitrarily taken to be Lebesgue measures. 

We can now ask the question whether the initial positivity condition 
(3«25) can be formulated in a form that would - at least partially - respect 
analyticity (that is locality and the spectral condition) in a more explicit 
way» The answer is obviously to be sought in a suitable choice of the Hilbert 
space $ (n) of analytic "test functions". Here |i denotes the set of 
measures which are to replace the Lebesgue measure in formula (3.26) • The 
most natural choice seems to be a) = fi = the set of envelopes of hoiomorphy 
fi , and n ' 

d^n = e n d\n , (n = 1 , 2, 3, ...) (3.30) 

26 ) 
(compare Hormander , Ch. IV) , with cp some real, let us say continuous, 
function in fi such that n 

f A (p , p ) dy, < 00 (3#31) ± nn x rn ' *ny 'n v y 

fi n 
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Thanks to the (appropriately generalized) formula (3o27b) , the last 
condition namely automatically ensures that the positive operator A^ asso­
ciated to the N X N matrix (A ) has a finite trace for any finite N 9 

mn 
and hence that A^ is the diagonalizable Hilbert-Schmidt type. For a given 
field such a choice of measures is always possible : one only has to choose 
the functions cp̂  of sufficiently rapid increase near the boundary of 
(including points at infinity) (compare HSrmander, loc* cit*) • One can then 
obviously choose the cp̂  also in such a way that the operator A^ is of 
finite trace ; hence the representation (3*28) is valid for all n , m, 
since the fundamental property (3.27a) of a Bergman-Hilbert space is - with 
a slight modification - preserved also in this case* Thus we get the 
THEOREM 4 f. 

Let the set of "absorptive amplitudes11 satisfy the positivity condi­
tion (3#25) * Then there exists a double sequence of functions f € o(b(Cl ] 

nv v nJ 

(v = 1, 2, 3, eo« ; n = 1, 2, 3, ooo) such that the representation (3o28) 
is valid in X for all n and m in the sense of uniform convergence* 

What we would still like to achieve is to find systems of measures 
\i such that every positive operator A with finite trace acting on 
$&Q(M*) gives rise to a system of A^'s with boundary values satisfying the 
initial physical conditions(3*25) * For that purpose it is necessary and 
sufficient that the A ?s sc defined do not increase faster than an inverse 

nm 
power of the distance to the boundary when approaching their physical boundary 
values (compare, e*g*9 Streater and Wightman ̂  , Theorem 2, or Epstein 
- appropriate modifications of the asymptotic behaviour at infinity are to be 
made in the case of the Haag-Araki theory) 0 Now the worse possible behaviour 
of an analytic function f € Jb(Q) 0 L^(Q , \k) near a boundary point of Q 
is determined - as seen by repeating the derivation of the formulas (3*6) 

23) 
and (3.27) in this slightly more general case - (compare ' , Ch* IV) - by 

CD 
CD • n 

the local behaviour of the inverse "weight function" e Y • Thus e should 
essentially behave in as the upper bound of moduli JF^J of the set % 
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of all the n point functions satisfying the conditions of the linear pro­
gram with some fixed growth properties in their primitive domain of analyti­
city. In other words cp̂  should be chosen as the (maybe somewhat smeared out) 
plurisubharmonic function 

n 

Unfortunately, neither the envelopes of hoiomorphy Q nor.the 
functions M are explicitly known in all of Q , • The situation can be n n' 
remedied - at least partially - by replacing in the above considerations 
the hoiomorphy envelopes by the corresponding primitive domains Q° 
(containing a finite complex neighbourhood of the real points of coincidence)* 
As to the M

n
f s t although known only in the initial tubes, they can also 

be extended to Q° with the help of the edge of the wedge theorem using an 
appropriate trick • 

These last sketchy observations require a more detailed investigation 
and will have to be treated elsewhere. Let us only stress here, as a final 
remark, that the above methods can be applied - hopefully with more profit -
also to the set of Wightman functions in x space* 

4 . TWO EXAMPLESo 

As an illustration of the expounded theory let us consider first the 
case when A is of the form 

A(p , q) = A(p - q) . (4.1) 

The Wightamn two-point function in x space A(x - y) = (Q , A(x) A(y)) is 
1) 

such an example (we have to set x = p , y = q) • 
_ 

To be contained in a forthcoming paper by Epstein and Glaser. 
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The function A(p - p) = A(2i Im p) does not depend on the real 
part of p , hence the diagonal plane ID^ = (R̂  © i iR̂  actually reduces to 
its imaginary subspace i iR̂. » If we put p - q = z = x + i y , the diffe­
rential form of the positivity condition becomes : 

S a a °. A(iy) * 0 . (4-2) 

fl Sy 

From Theorem 3 it then follows : 

COROLLARY 1 , 

If a distribution f(y) = A(iy) 6 §D* (B) F where B is an open 
set in IR̂  , satisfies condition (4»2) in B , then f is the 
restriction to the imaginary plane [x = O} of a function A(x + iy) 
analytic in the tube V = [z = x + iy € (t : y € B } . 
Let us call the set B = {z : Re z = 0 , Im z € B } the "generating 

set" of A • From Theorem 2 , we then conclude : 

COROLLARY 2 . 
Let B„ c B^ be two connected open sets c |R let B. = f z 6 (E T : 1 2 N l N 
:Re z = 0 , Im z 6 B.} and 7' = { z c (D>T : Im z 6 B.} . If ' l B. N l 
A(p - q) = A(z) satisfying the positivity condition in 7 [e.g., 

1 
in the form (4.2) ] is analytic in a neighbourhood of the set B^ » 
then it is also analytic in the tube J' . 

B 2 

The integral form of the positivity condition can be cast into the 
following form ; 

J A(x - xf + iy) f(x) f(x') dx dx« ̂  0 

for all y € B and all f € S6 (fl̂ ) . (4.3) 
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This has landed us in the very well-known theory of functions of po-
27) 22) sitive type studied by Bochner " and Schwartz 7 and applied to field 

theory by Wightman. 

Our second example will be an application to the two-body scattering 
amplitude. But before discussing it we shall have to state the following 
rather trivial 

LEMMA 1 . 
The positivity conditions A) , B) and C) are invariant under an 
analytic substitution of variables p = Tu , q = Tv . Here T is 
an analytic mapping from u) into Q f where U) is a domain in 
(CM , and 0 € * N the domain of definition of A (in general M ̂  N) • 

The proof is immediatly obtained by looking at the "diagonal" repre-
sentation of A . If we denote A(Tu , Tv) = A(u , v) and fv(Tu) = f

v( u) 
one gets : 

A(u , v) = E f (u) f (v) 
v 

From here, the conditions in the forms A) and C) with p , q replaced 
by u , v immediately follow. 

Note. 
Being an inequality, the positivity condition is determined only up 

to a factor. Indeed, if we replace A by F(p) A(p,q) F(q) « A^(p , q) , 
where F is any function analytic in Q such that F / 0 , nothing will 
change. We also want to warn the reader that the set of functions f which 

v 
diagonalizes A is by no means unique. 

We are now ready to study the absorptive part of the scattering 
amplitude of a process 

A(k1 , 1^) + B(k2 , m 2) - A(k3 f n^) + B(k4 f m g) 
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where the four-momenta and masses of the two scalar particles involved are 
indicated in brackets. In agreement with the notational conventions used 
in (2.5) and (2.6) we have 

A(k3 , k 4 , k 2) = A C T(P , q) 

with CT s k1 + k 2 = - k 3 - k 4 and k g = 0/2 ± q , k 4 = -(0/2 ± p) . 
The (complex) mass shell manifold is given by the equations 

T 2 V 2 2 V 2 V 2 2 

1 2 = m i ' k 2 4 = m 2 

If we fix a in the form cr = (/s , 0) with s ̂  (m̂  + m 2) f then the 
resulting manifold can be parametrized as follows 

p = ( A , R x ) , q= (A , Ry) , x 2 = y 2 = 1 (4.4) 

where A and R are two real constants depending only on s and the masses* —• —• 
and x and y very independently on the unit sphere. Since the particles 
are supposed to be scalar , A is - at least on the mass shell - a Lorentz 
invariant function and hence depends only on s and the scalar product 
x y « Therefore, without loss of information, we may specialize (4#4) to 

p = (A , R cos u , R sin u , 0) = Tu 
q = (A , R cos v , R sin v , 0) = Tv (4*5) 

and we get 
A (Tu , Tv) = F(cos(u - v)) . (4.6) 

T is evidently an analytic mapping, so Lemma 1 may be applied and therefore 
also Corollaries 1 and 2 • Denoting by 1̂ = u - v = ^ + i ^ the scattering 
angle we can conclude that the "generating set" of A is a purely imaginary 
interval I = [ $: $ = 0 , 1^ € i) • The interval I has to contain the 
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origin since the origin corresponds to physical points, I is also symmetrical 
about the origin because A is an even function of Therefore the tube 
ST of corollaries 1 and 2 is the strip 3^ = { if : - a < Im + a] • The 
image of this strip in the variable z = cos $ is the ellipse with foci 
at z = ± 1 and the major 9emi-axis a = ch a' introduced into physics by 

21) " . Lehmann , while the image of the set I is the real interval 1 ̂  z < a , 
with a = ch a • Thus we have proved the theorem discovered by Jin and 
v 28) Martin • 

COROLLARY 2' • 

If the absorptive part of the scattering amplitude of two scalar 
particles is analytic for fixed s in a neighbouhood of the real 
interval 1 ̂  z < a , where z = cos $ , then it is analytic also 
in the whole Lehmann ellipse with the major semi-axis a » 

This fact can be stated also, in the differential form of Corollary 1 » 

COROLLARY 11 „ 

If a distribution F(x) = F(ch y) € g) (- a < y < + a) satisfies in 
- a < y < + a the set of inequalities 

co ^n 
Z - 2 — F(ch y) Z a a ^ 0 (4,7) 
n=0 3y a+p=n 

for all a 6 (C. such that a = 0 for all a > some N f then F is the 
restriction of a function F(z) analytic in the Lehmann ellipse 
|z-l| + |z+l|<2a=2chor . 

The inequalities (4*7) can be put, in principle, into a form involving 
only derivatives dnF(x)/dxn • What we want to show is that (4.7) implies 
the inequalities : 
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d F^ Z) ̂ 0 for all 1 £ Z < a and n = 0, 1, 2, ... (4.8) 
d Z n 

6) 
used extensively by Martin . 

Instead of manipulation the expression (4.7) directly we shall start 
from the integral condition (4.3) applied to the variable $ [which is a 
consequence of (4.7) ! ] * ^ e 

The imagê of the strip - a < Im $< Oi in the complex plane of the 
variable § = e 1 , z = + %T^) , is the corona, e"^ < |§| < e* . Since 
F is analytic there, it can be expanded into a convergent Laurent series 

F - % § V = £ a *(?V + T V ) . (4.9) 
v=-» v=0 

The last form follows from the symmetry of F under the substitution 
5 -* §~ . Let us apply to (4.9) the integral inequality (4.3) by substituting 
in it x = ^ , xf = ^ , y = 2 ^ = 0 , £ = e

l V ^ 1 and integrate from 
0 to 2TT . We get 

a ^ 0 for all v = 0, 1, 2, ... 
v 

The last inequality implies (4.8) for n = 0 . If we show that dF/dz can also 
be represented by a series of the form (4.9) with the coefficients â  all 
positive, the inequality (4.8) will follow by induction. But this is a conse­
quence of the identity 

- ± i + O - v S L z l l - | V " ^ (4.10) 
dz § - r 1 

' The following proof is due to Epstein. The author would like to thank 
Dr. Epstein for the permission to include it in this paper. 
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The termwise differentiation of the series (4.9) and a rearrangement of terms 
shows namely, by virtue of (4a10) , that the coefficients â  are positive 
linear combinations of the coefficients a « 

v 
As the final comment, let us remark that the inequalities (4#8) are 

weaker than the set of inequalities (4.7) • While (4»7) implies, according to 
the general theory, analiticity in the whole Lehmann ellipse, the inequalities 
(4#8) imply only analyticity in the disc |z - l| < a with positive coefficients 
of the corresponding power series expansion. The last assertion follows from 
the Bernstein theorem (compare, e.g., ) • 
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