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INTEGRAL REPRESENTATION OF STATES ON A C*-ALGEBRA 

David RUELLE 
Institut des Hautes Etudes Scientifiques 

91. BURES-sur-YVETTE - France 

Abstract. Let E be the compact set of states on a C -algebra OC with 
identity. We discuss the representations of a state p as barycenter of a 
probability measure \x on E . Examples of such representations are the 
central decomposition and the ergodic decomposition. They are associated 
with an abelian von Neumann algebra SB in the commutant Ti(OL)1 of the 
inuî e of in the representation canonically associated with o . This 
situation is studied in general and a number of applications are discussed. 
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0- Introduction 
Let OC be a C*-algebra with identity, E the set of states 

on OC . In a number of situations of mathematical physics, a state p 

is "decomposed" into other states a , i.e. o is exhibited as the re­
sultant of a probability measure on E , or p has an integral re­
presentation of the form 

p " / n(d<j) a 
J E 

The measure \A is usually defined through a von Neumann algebra SB in the 
Hilbert space of the cyclic representation rr canonically associated with 
0 ; ft is abelian and contained in the commutant ) 1 of the image 
of 0(, . In Section 1 we describe the relation between # and \i , In 
Section 2 we show, under certain separability conditions, how S3 is dia-
gonalized by a direct Hilbert space integral. In the following sections we 
consider some examples: decomposition of states invariant under a group 
into ergodic states, central decomposition, etc. 

One can often (under suitable separability assumptions) show that 
|i is carried by a special class of states: ergodic states, factor states, 
etc. Otherwise, the various decompositions have their particular problems 
and properties. For instance in the case of the ergodic decomposition of a 
G-invariant state p on a G-abelian algebra, the mapping p —> \x is af-
fine, but for other decompositions (e.g. central) such a property does not 
hold in general. 

There is quite a bit of recent literature on the subject matter 
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of th i s a r t i c l e , besides the c lass ica l l i t e r a t u r e on ergodic theory and 

dynamical systems (which deals e ssen t i a l ly with the case of abelian OC ) . 

In order to be reasonably readable, informative and self-contained, we 

have included here a r e l a t ive ly large amount of material which i s not 

or ig inal (in pa r t i cu la r much of Section 3) . The main r e su l t s of th i s work 

are the general theory of Sections 1 and 2 and the study of "multiperiodic" 

decomposition in Section 4 and decomposition "at in f in i ty" In Section 5. 

Section 4 presents an extension of the theory of dynamical systems with 

d i sc re te spectrum; in par t i cu la r Theorem 4.1 shows that the "equicont i -

nuous part" of the action of a local ly compact abelian group can be so to 

say isolated and exhibited as t rans la t ions on a torus . In Section 5 we con-

sider C -algebras with "quasi- local" s t ruc tu re . In such an algebra i t 

makes some sense to say that two elements A, A1 are "far away" ; a 

s t a t e a may be called c lus ter ing i f a(A A 1) i s close to a(A) .a(A f ) 

when A and A* are far away. Theorems 3.3 and 5.4 say e s sen t i a l ly that 

every s t a t e p has a natural decomposition into c lus ter ing s t a t e s . 

For the organization of the a r t i c l e , we mention that Section 5 

and 6 . 1 , 6.2, 6.3 may be read independently af ter Section 2. A number of 

r e su l t s used in the present work have been collected in Appendix A for 

easy reference. On the other hand the reader i s assumed to be familiar with 

the basic r e su l t s on von Neumann algebras and C -algebras . Appendix B con­

ta ins technical developments needed in Section 2. 
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1. General theorems . 

Throughout th i s note we use the following notation and assumptions. 

i}^ is a C -algebra with iden t i ty , Q(j i s the dual of OC with the 

w -topology, E c (%* i s the (compact) set of s t a t e s on ft . If A € OC , 
A. 

the function A on E is defined by 

A(a) * a(A) 

A fixed s t a t e p € E is chosen; the canonical cycl ic represen­

ta t ion associated with p i s ( ftf , TT, 0 ) * \ 

1.1. Theorem, (a) Let the von Neumann algebra 8 sa t is fy 

nczviOt)1 «5 c 8' (1.1) 

Then the orthogonal projection P on the closure of 8 Q in | i s such  

that 

P ( l » f l P T T ( # ) P C [ P r r i ^ ) ? ] 1 (1.2) 

(b) Let P be an orthogonal projection in ^ 

sat isfying (1 .2 ) , then the von Neumann algebra $8« [ r r ($ ) U 

s a t i s f i e s (1 .1 ) . 

^ in th is t r i p l e i s a complex Hilbert space, Tí a representat ion of @t in 
f^j , fl 6 y > an<¿ the following conditions are satisfied" 

(O ¡I n j! - i . 
( i i ) n ( ^ ) n i s dense In h (fl i s a cyclic vector for rr(W>)) 
( i i i ) ( V A t | ) p(A) - (n, tr(A)fi)% 
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(с) The relatione between $ and P established  
by (a) and (b) are the inverse of each other. 

Let the von Neumann algebra в satisfy (1.1) and let P be the 
orthogonal projection on the closure of IB ft in ^ . We note the following 
facts 

(i) P € Г 

[Let В, Ъ1 € в, we have В PB1 ft * В B^ft « PBBjft r PBPBjG and, since 
в ft is dense In P ^ # BP « PBP . Therefore BP - РВ] . 

(ii) Multiplication by P yields an isomorphism 

C n ( f t ) и { P } ] ' — > ?ЫСС) и { > } ] • 

[Let В € C n ( C t ) U {P}]1 , then B P « 0 * B Q « 0 * Втг(# ) 0 • 0 * В • 0 ] . 

(iii) Р[тт(#) U {*}V * P [ P r r«%)P] ' 
; This follows from the formula (̂ •>„ - uAj* (see A.l) with 

Л - 0<(X) и {p}]" ] . 

(iv) P * » P(PSB)' - Р[Ртт(#)Р]" - Р [ Р Т К # ) Р У 

[The restriction of PS5 to P -^ is abelian and has the cyclic vector 0 ; 

by A. 2 it is thus equal to its cotnmutant. Thus РЙ « P ( P 8 ) ' . The set 
PTT(&)P restricted to commutes with pa , and has the cyclic vector 
ft , therefore 

P(P») 1 з Р[Р17({%)Р]И or P[Prr(#)P]1 => Рв 

and, by A . 2 , Р[Ртт($)Р]" - P [ P I T < # ) P ] ' ] . 

(v) «8 - [>(&) U [ P I T 

[(i) yields $ с [тт(#>) U {PV)' , (iii) and (iv) yield PB » P [ n ( & ) U { P } ] 1 , 

it suffices then to apply (ii)"). 
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Part (a) of the theorem and one half of part (c) follow from (iv) and 

(v) respectively. 

Let now P be an orthogonal projection in ̂  satisfying ( 1 . 2 ) . 

We note the following facts, 

(iv) P[PTT(0OP]» * PCPTrtfl^P]1 

[By A . 2 because the restriction of [P T T ( $ ) P] m to P ^ Is abelian and 

has the cyclic vector Q *}. 

(vii) P [PTT((%)PT - p[rr((%) U {?}V 

[The proof is the same as for (Hi)] 

(viii) Multiplication by P yields an isomorphism 

[TT«%) U { P } ] ' ~ > P [ T T ( # ) U { P 3 V 

[The proof is the same as for (ii)] 

(ix) The closure of [TT($£) U { P } T f t Is the range of P . 

[Because [TT<&) U £P}] 'n - P[rr«% ) U {P}3'ft - P[P1T(&)P]M0 =>PTT«%)0 

by (vi). (vii) ]. 

It follows from (vi), (vii), (viii) that [ T T ( $ 0 U (P}]' is abelian, 

proving part (b) of the theorem. The second half of part (c) follows from 

(ix). 

1 . 2 . Theoreittv Let $ and P be ae in Theorem 1 . 1 . 

(a) Multiplication by P yields an isomorphism © — ^ PiS 

(b) Pfc » P d * ) ' » P[PTT(#)P]M » P[Prr(#)p]» 

(c) There is a morphlsm — > 8. of C -algebras such  

that P a ( A ) s Prr(A)P for all A € Qt • This taorphism la unique% Its  

image is strongly dense in $ 
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1 s T 

/\ c (1.3) 

flt $ PTT(06)P 

Part (a) and (b) of the theorem follow respectively from (ii) 

and (iv) in the proof of Theorem 1.1. 

To prove (c) let first A^,...,An be self-adjoint elements of 

Ot and f 

be a complex-polynomial in n-variables. Consider a simultaneous 

spectral decomposition of PTT(AJ)P, . . . ,PTT(An)P : 

P - J F(dxr . .dxn) 

Prr(Ak) P » Jxk F(dx1...dxn) 

We have then 

||? (Pn(Ax)P PTT.(AN)P)|| 

» 11/ f (xlf...,xn) P(dxl...dxn)|| 

* sup |J>(Y, TT(A. )¥),..., (Y, TT(A n)T))| 
||*|| =1 

* sup I # (a(A.),. . . ,c(A ))j - \\PÛ )|| (1.4) 
a € E 1 n 

The polynomials (Aj,...jA^) are dense in and therefore (1.4) 

implies the existence of a unique morphism 0: P 9 such that 

g(A) « P TT(A)P 
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If the 8(<p) are uniformly bounder and converge strongly to PB , the 

a((p) are uniformly bounded and for each A € Ot the aC^^CA^ A»TT(A)3(p)n 

converge, hence the a ( p ) converge strongly to P , proving part (c) 

of the theorem. 

1.3. Theorem1(a) A probability measure \x on E is defined by 

\x(<p) * (ft, a(cD) 0) ( 1 . 5 ) 

The resultant of \i is p 

(b) There is a unique mapping a • L^E, \x) $ such that 

1- if V € f(E) , then a(<p) - a(#) 

2. a is continuous from the topology of weak dual of L*(E, |i) on 
L^E, |a) to the weak operator topology on • . 
The mapping a is onto, is an isomorphism of C -algebras and, for every 
A * € Lm(E, w ) , 

|i(A t> 3 ( 0 , TT(A) a ( * ) Q) ( 1 . 6 ) 

Part (a) is checked immediately. We prove (b). 
Let 3£ « a( *6(E)) , X the spectrum of £ , B : £(X) X the inverse of 
the Gel'fand isomorphism. We may identify X to a subset of E such 
that a(#) 388 B(<p|Y) . Then supp \i * X and (b) follows from A.3. 

*̂  That is, if p is the canonical mapping £(E) L*(B, ̂Jl) , then 
a* a o p . 
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1.4. Corollary. Let (B ] be a finite set of positive ele­

ments of such that J • 1 .We define a ̂  * 0 and 0^ € E by 

« ( 0 , 0) a j a ^ U ) « (n, rr(A)Bj n) 

and introduce a probability measure ^ • E a . 4 on E ( 6„ is- the 

unit mass at a). If i s t l t e s e t °* partial sums corresponding to 

some partition of £B.} we write {B.I * * G i v e n t v o 8 e t 8 fa'^l » 

{ B " 4 } , there exists (B^ * {B^l , {Bn^1 (take (B^ « (B^B^l). 

The directed system (ju^ converges to ^ in the vague topology of  

measures on E . This follows from Theorem 1.3 (b) and A .4. If 

{B1, } * {B.} then, using the order ^ of Bishop-de Leeuw (see A.5) we 

have *{ B ' } « M ( B } « H ' 

1-5. Corollary, Let # be an abelian von Neumann algebra 

C 1 7(00)' . If we associate with it a measure.. U on E by the above  

theory, we have (58 C # ) ( ^ ^ ) . 

[Corollary 1.4 shows that (fc C 8) » (£ -( >l) . Conversely, If \x ̂  p. , 

theorem 1 of [6J*** shows that If ? € (J(E) there exists { € L*(u) 

such that for all h € Qt 

| i ( A f ) * U(A If) 

By ( 1 .6 ) , this gives a ( * ) - » h e n c e s c * J 

i.e. in the w -topology of the space of measures considered as dual 
of Uz) . 

Reference [£] was pointed out to the author by J. Dixmier. 
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If E is metrizable and there is a family (T ) - -
Qf probability measures on E such hat 
(a) the resultant of T is a 

" ' 0 — 

(b) if p € £(E) then a—*Taty>) is a Borel function, and 

M<*p) « T^p) £(da) (1.7) 

[This results from Theorem 2 of [<> ]] 

Formula ( 1 . 7 ) may be written (j * J T Q ji(dar) and shows that if J c 8 , 

the decomposition of p associated with 9 may be accomplished in two 
steps, via the decomposition associated with * . 

1.6« Sources. The use of (1.5) as definition of a measure p 
giving an integral representation of p appears in Ruelle [3<0 for the 
case of ergodic decomposition; a form of the same idea is already present 
in Sakai [3?1 for central decomposition. Further references are given for 
each specific application. A version of Theorems 1.2 and 1.3 for the case 
* C rr(OC)9 n rxiOL)" has been obtained Independently of the present work 
by Doplicher, Guichardet and Rastler [131 • 
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2. Reduction theory 

In th i s Section we le t P be as in Section 1 and we make 

the following separab i l i ty assumption. 

Condition S. For k ~ l , , , M n there are countable families 

((X ) £nd ) of sub-C^-algebras of OC such that 
a r * . a k a l ' * * a k 

( i i ) U Oi i s dense in 7 ^ and U (# Is dense 
*k+i a r - - c t k a k + i a r - - ° k — *i ai 

in OC ) 
( i i i ) j is a closed two-sided ideal of QL % 

' i v ) 3 a . . a Is separable, 

(v) the r e s t r i c t i o n of o to each ^ has norm 1. 
1 1 . . * vX —————— 

t n 
Define 

X - fa £ E : the r e s t r i c t i o n of a ' j has norm 1} 

i n i n 

Let also (A.) be a sequence in 00 such that each 7 contains a 

dense subsequence. We shal l denote by (0 ^, rr^, fl^) the cyclic represen­

ta t ion of OC associated with a € E , I t Is convenient to think of a 

special case of condition S, namely that of separable OC . We may then take 

? a E and for (A^) any dense sequence in CC • The further complications 

which a r i se in the general case are dealt with in Appendix B (Proposition 

B.3). 
*) 

See Dixmier [Si Ch.2, and [d] Appendix A. 
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Let a € <r , for any A . , A. In the sequence ( A . ) define 
1 j 1 

Y. . » TT(A.)Prr(A.) D (2.1) 

Y..(a) - a (A ) tTa ( A . ) n g (2.2) 

The vectors Y ^ ( resp. Y ^ ( o ) ) are dense in , , r e s p . ^ ( a ) . 

With the help of the family ( ? i j ( * ) ) a d i rec t Hilbert space in tegral 

J Q u (da) ^ a (2.3) 

*) 

may be constructed . I t i s the Hilbert space consist ing of functions 

$ : a € E such tha t , for every 1, j , the complex function 

a —> ( Y , . ( a ) , $(a)) i s jj-measurable and a ^ |I$(a)|| i s square-Inte-
f 2 1 / 2 

grable; the norm i s [j |i(da)||*(a)j| ] • The Hilbert space (2.3) does 
not depend on the choice of ( A ^ . I t follows from (2.1), (2.2) and (1.5) 
that 

y i j ) * / u ( d a ) < V j ' ( a ) > Y i j ( a ) ) 

There is thus a l inear isometry of ^ into j | j (da)^ ^ extending 

Y^ —f • This isometry is onto : suppose that we have 

0 * j 9 u ( d a ) ( Y i j ( a ) , $ ( a ) ) - j*u (da) A ^ a ) * ( T T ^ A ^ 0 a , K a ) ) 

Since the A^ are dense in L (E,|j.) [by (1.5) the mapping <p a(<p)0 
i s isometric from L (E,jj) to P , the continuous <p are dense in 
2 

L (E,|a) and the PTT(A)D are dense in P ^ , therefore the A are dense 

in L (E,^)] we obtain jji-almost every where 

See Dixmier i$j Ch. 2, § 1, Proposition 4 . 
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(TT (A. )Q , 4(a)) - 0 
a i a 

and therefore 

$(a ) - o 

For each a , le t T(a) be a bounded operator on | ^ ; for 

every i , j , I 1 , j ' l e t a —> (Y i . (a ) ^ ( c O Y ^ ( c ) ) be measurable and l e t 

HT(a)|i be essen t ia l ly bounded. 

There is an operator 

I ® 
T - j u(do) T(a) 

such tha t , if 4 « j n(da)$(<j) > then T$ * J u(da) T(a)4(a) • 
If 1(a) i s a multiple \(0) of the ident i ty for a l l a , then T is c a l ­

led diagonalizable ; if X is continuous, T i s called continuously  

diagonalizable . 

2 . 1 . Theorem. There is a unique iden t i f i ca t ion 

^ - J li(da)/^ a (2.4) 

such that 

n - J n<da) n a (2.5) 

and for a l l A f ( | 
, * 

tr(A) = (i(do) rr (A) (2.6) 
J s 

With this iden t i f i ca t ion , ffl becomes the von Neumann algebra of diagonali­ 
zable opera tors , in pa r t i cu la r 

* } See Dixmier [gl Ch. 2, § 2. 
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a(A) * j u(dcr) A(c) (2.7) 

If we identify /vj and pXdcr) /f) ^ by the isometry extending 

Y.. — ^ Y . . ( ' ) which we discussed above, we have 

a ( A 1 )TT(A) 0 - TT(A) Prr(A L) o « f | i ( d a ) c ( A ' ) TT (A) 0 ( 2 . 8 ) 

for any A, A 1 in the sequence (A^) and therefore for any A, A 1 6 (% 

(the sequence may be enlarged to include them), ( 2 .5 ) , (2.6) and (2.7) 

follow from (2 .8) , The iden t i f i ca t ion (2.4) i s uniquely determined by 

(2 .5 ) , (2.6) because rr((%)0 i s dense in ^ . The von Neumann algebra IB 

i s the strong closure of a(f?(E)) by Theorem 1.2(c), by (2.7) i t is 

thus the weak closure of the algebra of continuously diagonalizable opera­

t o r s , which i s precisely the von Neumann algebra of diagonalizable opera-

*) 
tors 

Let (T^) be a sequence of bounded operators in such that 

If t/f ^ i s the von Neumann algebra generated by the T. (a) , the operators 

of the form 

T - ia(d<r) T(a) 

with T(c) <~ J{ form a von Neumann algebra Of which i s said to be 
CT 

decomposable and i s denoted by 
(® , , <r 

*) 
See Dixmier [ J j Ch. 2, § 2, Proposition 8. 
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t/i is generated by the T and the diagonalizable operators . 

2.2. Theorem, (a) Let Jf be a decomposable von Neumann 

algebra : 
— / © 

t i A » f u ( d a ) ^ a 

Then J f * i s decomposable and 

(b) Let (t/f̂ ) be a sequence of decomposable von Neumann 

algebras; 

Jf4 - J ii(da) o T t a 

Then 

n t ^ - J * ,.<*»> ( n ^ ) ^ - , 0 ) 

This theorem is proved in Dixmier [7] (Ch. 2, § 3, Th6orfeme 4) 
in the case of a (Radon) measure \x on a locally compact space with 
countable basis. The resu l t hold however without countability hypothesis 
on E as follows from a paper by Effros [181 

2.3. Source£ 1 The direct in tegra l I <}g w a s c o n ~ 
sidered by Sakai [3Jj for the central decomposition of a state on a se­

tt 
parable C -algebra. (The absence of separab i l i ty condition in the note by 
Wils [4̂ 1 on the same subject i s puzzl ing.) The case of separable Q(/ 9 

and ^ c n ( ^ ) 1 n TT({%) ,F > i s considered in [13]. 

#)See Dixmier [«] Ch. 2, S 3. 

This reference was pointed out to the author by J. Dixmier. 
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3. Ergodic decotnposltion. 

Let G be a group and ? a representat ion of G in aut 00 . 

We define an action T of G on E by 

T a(A) - o(T~l
 A) (3.1) 8 g 

*) 
and l e t I C E be the set of G-invariant s t a t e s , i . e . , of s t a t e s 
such that T a ~ cr for a l l g € G , g 

We assume that p € I ; there Is then a unique unitary repre-

mentation U of G in /y such that 

U(g) 0 - 0 (3.2) 

U(g) TT(A) tKg"1) « TT(T A) (3.3) 
% 

We let P be the orthogonal projection on the subspace of Jfj cons t i ­

tuted of the vectors invariant under U ; (3.2) y ie lds 

P ft « ft (3.4) 

*#) 
3 .1 . Theorem . The following conditions are equivalent 
(a) P 7 ( & ) P C [P rr(G0)?V (3.5) 
(b)*** 5 Let Aj, A 0 € and le t K P y | . Then, given 

^ M r - invar ian t° would be more correct but n G-invar iant M wi l l cause no 
confusion. 

See Lanford and Ruelle [2/1. 
4Hftt) 

One might in (b) suppose A , , A^ se l f -adjoint and/or replace the ex-
pectat ion value for $ by a matrix element between $ j , $2 € P • 
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€ > 0 , there ex is t X. £ 0 , g. € G such that EX. * 1 and 
x > o-x x  

| ( * , [ E X. TT(T A ) , TT(A0) ] $ ) | < € ( 3 . 6 ) 

i 1 § i 

The proof wi l l resu l t from the following facts 

( i ) If ^ , Y2 € and e > 0 there exis t X i £ 0 , g^ € G such that 

E X = 1 and, for a = 1 , 2 , 

i i Z X ' X . u C g ' g.) V " a ' i < s 

where the X 1 . s o , g'̂  € G are arbitrary subject to E X ' ^ a 1 

[Using A. 6, we may suppose ¡1 T k ^ S ^ ^ a - P¥ a ||.< € hence 
i 

;( E A ' u( g» ) ) ( E X u(g,)Y r - P V I I < E 3. 
j * 

( i i ) Let A ^ A 2 € % be such that {JA^Jj < 1 , | |A 2 | | ¿ 1 . 

Let k v $ 2 € P i j ' , be such that ||^^|| £ 1 | | * 2 | | £ 1 . Given € > 0 one 

can find X i ^ 0 , g^ € G such that E \^ 8 8 1 and 

[TT(A ] [)PTT(A 2) -TT ( A 2 ) P r r ( A 1 ) ] $ 2 ) 

- ( * l f [E X' , H(T , AUTT(A 9 ) ] * ) | < e 

j 8 j 1 

where A < x * ^ T g Ai a n d t h e ^'j > g l j ^ G a r e arbitrary subject 

to n 1 , 3 1 . 

[This follows from (i) with ^ - rrU*)^, ? 2 * T T U J ) ^ ] . 

( i i i ) (a) <* (b) 

[Notice that, by polarization, (a) is equivalent to 

" (« , [ n ( A X ) Pn (A 2 ) -TT ( A 2 ) P r r ( A 1 ) ] $ ) * 0 for all * € P fj ,! . Putting 

X' = 1 , g f

x = 1 and $ l » § 2 * $ in (ii) yields the implication 

(a) =* (b) . To prove (b)=* (a) we use again (ii) : if (b) holds we may 

choose X 1 , , g'. so that 

J j 
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|(*, [ z \\ n(r , A ; ) , TT ( A ? ) ] « ) ( < c 
j j 

and (a) follows]. 

3 . 2 . Corollary. If the conditions of Theorem 3 . 1 are satisfied  
with respect to a closed subgroup H of G , they are satisfied with  
respect to G 
[This is immediately verified for (b)]. 

3 . 3 . Corollary The conditions of Theorem 3 . 1 are implied 
by the following 
(c) Let A L , A 2 € QL and $ € P / ^ then 

infg€(J | ( | , Tt([Tg Av A 2 ] ) * ) | - 0 ( 3 . 7 ) 

[This is immediately verified for (b)]. 

*) 
3.4. Theorem . Consider the following conditions on the 

G-lnvariant state o 
(a) p is ergodic, i.e., p is an extremal point of I . 
0>) The set TT(& ) U U(G) is irreducible in . 
(c) P Is one dimensional. 
We have (a) (b) (c) . rf p satisfies the conditions of  

Theorem 3 . 1 , then (a), (b), and (c) are equivalent. 

The existence of a self-adjoint operator C€[TT((%)U iKG)]1 , 

#)See [1*1, C34-L [ 2 7 ] . 
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such that 0 £ C £ 1 and C is not a multiple of 1, is equivalent by 
A.7 to non (a) and non (b); thus (a) * (b). If (c) holds, (1.2) is veri­
fied and (c) (b) by Theorem 1.2 (a). If the conditions of Theorem 3,1 
are satisfied, (1.2) is verified and Theorem 1,1 gives (b) «* (c). 

3.5. Proposition^ rf A € Ot , define 

conv (TG A) - { Z X t T g A : X i * 0, Z If 1. g t € G} (3.8) 

Then 
inf p(C*C) » (0, n(A*) PTT(A) ft) (3.9) 

C 6 conv (iv A) 
G 

*) 

The proof results from A.6 and the inequality 

p(c*c) - |jrr(c)fi|i2 ^ ||p ^(c)nj | 2 

- ||P rr(A)Q||2 * (0, rr(A*)P TT(A) ft) 

3 . 6 . Theorem. Let the conditions of Theorem 3.1 be satisfied, 
**) 

so that the theory of Section 1 applies 

<*) 
This simple proof vas communicated to the author by H. Araki. 

It is interesting to notice that here 8 « [rr(#£) U U(G)]1 , we shall 
not make explicit use of this fact. 
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(a) The measure (j defined by (1.5) i s the unique maximal  

measure on I (with respect to the order of Bishop- de Leeuw, see 

A. 5) with resul tan t p 

(b) If the condition S of Section 2 is sa t i s f ied (e .g . i f 

Ct is separable) , the measure \x i s carried by ergodic s t a t e s . 

The proof r e su l t s from the following facts 

( i ) supp | i C l 

[By Corollary 1.4, \± is l imit of measures (j£B carr ied by finitely 
many points cv € E where 

a. (A) - (ft, B. ft)""1 (ft, TT(A) B. ft) 
J J J 

and B € * ; using (ft, TT(A)B^ ft) * (ft,rr(A)P ft) we find at € I ] 

( i i ) (a) holds 

[We have to show that i f £ is any probabi l i ty measure on I with r e ­

sul tant p and (p a convex continuous function on I , then 

a(<p) £ |i(p) . In view of A. 4 we may suppose that [i has f in i t e support: 

£(<p) = E a . <p(P i) where cu ^ 0 , p. U , Z a { « 1 , E ̂  o 1

 8 P , 

but then (see A. 7 ) |i i s of the form ^ of Corollary 1 .4 with 

Bj € n C ^ ) ' 0 U(G)' and, since U(G) 1 c {p} 1 by A. 6, B̂  6 8 . Corollary 

1.4 gives then u(<p) £|i(<p)l. 

( i i i ) If a € I , l e t P be the project ion on the subspace of G-invariant 

vectors in - ? o r a n y A € (J6 , the following quantity vanishes 

U-almost every where in O 

(TT (A) ft . P „ rr (A) - |( ft,,n(A) ft ) | * 

c a a a a 1 a a 
[Since th is quantity i s a p r i o r i £ 0 , i t suffices to remark that 
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u(dO)[(TTRT(A)ft,P/, " ( A ) n ) - A*(oM(o)] 

- jn<do>[i«ifc € c o n y ( T A ) a(c*c)] - (0,a(A*)a(A)ft) 
G 

* inf. c Av D(C C) (ft,n(A )PTT(A)0) - 0 C € convvT A) 

where we.have used twice Proposition 3.5]. 
(iv) (b) holds. 
[In view of Proposition B.3 (a) the sequence ^ ( A ^ Q ^ is dense i n / ^ a 

p-almost every where, and (iii) shows that P ^ is almost every where 
the projection on ft ] 

3.7. G-abelian algebras. 
If the conditions of Theorem 3.1 are satisfied, the integral 

representation of p given by jj will be called ergodic decomposition 
(this terminology is justified by Theorem 3.6 (b)). We shall say that 
0(/ jLs G-abelian if the conditions of Theorem 3.1 are satisfied for  
every G-invariant state p . The following characterization is readily 
deduced from Theorem 3.1 : Qi/ i± G-abelian if and only if for all a € I 
and € > 0 there exist \^ * 0 , ĝ^ € G such that S ̂  • 1 and 

|o([E X T A , A 2])| < e 
i si 

3.8. Theorem^. If is G-abelian, then I Is a simplex  
in the sense of Choquet (see A. 5), 

This follows immediately from Theorem 3.6(a) and the defi­
nitions. 

3.9. Theorem**^. Let @i be G-abelian and let 8 be contained 

See Lanford and Rue lie [27]. 
##) 

This theorem yas proved originally by Stftrmer [39] under the assump­
tion that a(A) is contained in the strong operator closure of conv TT(T A) 
for each A € OC and each invariant state p . Here we follow [36], G 

Exercise 6.D. 
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in тт((/{,)" for each invariant s ta te p . Then two ergodic s t a tes 

P"l a n d ^2 c a n n Q t be quasi-equi alent if they are d i s t i n c t . 

Let ^H? * ^ 2 * ^2* ^2* b € t h e c a n o n i c a l cycl ic 

representat ions associated with p^ and p 2 . The s t a t e s P̂ »P2 a r e 

called quasi-equivalent if there i s an isomorphism 6 of ТГ^(06)И  

onto тг2 (£?£)" such that 6 T^CA) 3 7T 2(A) when A - Let now Q^9 

be ergodic, d i s t i n c t , and take p * j p + ^ p 2 ; by A . 7 and A.6 there 

exis t B^ , B 2 € 3J with 0 ^ Bj, 0 ^ B 2, Bj + B 2 * 1 , and 

^P i(0 58 (П, rr(A) B i 0) . Since the are ergodic we have B^ B 2 * 0 
so that В̂  and B 2 are mutually orthogonal projec t ions , we may i d e n t i ­

fy i ^ . with the range of in /1^ and write тг^СОЙ^ /Г.ТГСОВ̂ ^ 0 . 

We have Bĵ  € D* С тт ( (&)" , l e t thus TT(A) f t then 

But if and p 2 were quasi-equivalent we would have the contra­

dic t ion 

3.10. Sources^ For the case of abelian 0£ (decomposition 

of an invariant measure into ergodic measures) see for instance 

Phelps [J0J Section 10. For the extension to non-abelian (K see Rue l i e 

Г34З > and in a different s p i r i t Kastler and Robinson [ 2 J ] where an 

"abst ract" decomposition i s discussed. The present treatment largely 

follows Lanford and Ruelle [ 2 f ] with some improvements in Theorem 3.6 

and the addition of Theorem 3.9 ("Stunner's theorem" [ЗЭП). For further 
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results see [21], [l*j, [40], [4t], [33], [It] . A review and applica­
tions to statistical mechanics are given in [3$] Ch 6 and 7. In the 
examples of ergodic decomposition which occur in statistical mechanics, 
G is typically the Euclidean group or the translation group in 3 dimen­
sions; a G-ergodic state is interpreted as "pure thermodynamic phase19 , 
and ergodic decomposition is the decomposition of a "mixture11 Into 
pure thermodynamic phases. In physical applications the algebra OC 

is not always separable, but the states of physical interest satisfy a 
form of condition S . For instance it may be that Qi , J 

sub-C*-algebraa of Oi such that Qi^ la isomorphic to the bounded ope 
rators and 3 a to the compact operators of some Hilbert space <5£ f t ; 

a state p which has a restriction of norm 1 to each tT*, is then 
called locally normal (see [35}, [20 ] f [3<] Ch 7), 



- 23 -

4. Multiperiodic decomposition. 

Let G be a locally compact abelian group noted multipli-
catively. As in Section 3 we let T be a representation of G in 
aut (%, . we assume t h a t the state p is G-invariant and we let U 
be the unitary representation of G in satisfying (3.2) and (3.3). 

*) 
We assume that U is strongly continuous and we let E(\) be the 
spectral measure on the charactergroup G such that: 

n 
U(g) - . X(g) E(dX) (4.1) 

J G 

Let X be the subset of G consisting of the points X such that the 
corresponding projection does not vanish: E({x}) + 0 . For simplicity 
we write E({x}) * E[x] . Then 

£ * {X € G : E[X] + 0} (4.2) 

We define the projection 
P« £ E[Xl « I E[Xl (4.) 

X€G X€X 

From (3.2) we obtain then 

P O « f! (4.4) 

It is known that the' range Vjh of P consists of the almost 
periodic vectors of , i.e. of the vectors Y with a relatively com­
pact orbit U(G)Y . 

gV — 1 ' " — -
If for each A € % and a € E the function g —>a(T A) is conti-

S 
nuous on G , then it can be shown that D is strongly continuous. 
The existence of E(0 is asserted by the S.N.A.G. theorem, see for 
instance Maurin [2 9] p. 218. 
See for instance [ 4 0 Ch 1 § 7 . 
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• 4 . 1 . Theorem. The following conditions are equivalent. 

(a) P T T ( # ) P c r P rr(^)P]' (4.5) 

(b) Let ^ € (% , and let Xj, X 2, X^ 6 G , then 

E C X ^ T K A ^ E [ X 1 x ] TT(A2) E [ X 2 ] 

- E [X 1 ]TT(A 2 ) E [ X ~ L X 2 ] TT(A 1) E [ X 2 ] (4.6) 

(c) Let A X , A 2 » let * 2 € P/fy
5, and let X € G . 

Then, given e > 0 , there exist \^ £ 0 , ĝ, € G such that I X^" 1 

and 

| ( § r [ S X . X(g i ) " 1 n ( T G A 1 ) , T T ( A 2 ) ] # 2 ) | < C ( 4 . 7 ) 

The proof will result from the following facts; 

(i) If S is a finite subset of , X € G and e > 0 there exist 

*i S 0 ' 8i ^ G s u c h t h a t 2 ^i = 1 a n d 

¡1 E X . X(g.) - 1 U(g.) Y - E[X]Y |i < e ( 4 . 8 ) 
i 

for all Y € S . 

[Notice that E[x] is the projection on the space of invariant vectors 

for the representation g —^X(g)~* U(g) of G in . It suffices then 

to use A . 6 ] . 

(ii) If ( 4 . 8 ) holds and if X ' ^ 0 , g! € G are such that £ X.' - 1 , 
j 

then || S Xt X ! X(g..gj)"1 U(8l.gj)Y - E[X]T || < e 
1 > j 

[Because if ( 4 . 8 ) holds and g 6 G , then 

Ii S A t X(g1.g)"
1 U(8l.g)Y - E[x]y || 

- |j X(g)'1 U(g) [ S \ t X(g i)"
1 U(g > T - E[X] T|| < 6 ] 
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( i i i ) Let A L > A 2 6 Oi be such that IJAJJ £ 1 , |'A7|| il .Let 

X V V X 3 € ° a n d V $ 2 € <? b e S u c h t h a t * l » I ' M * 1 a n d 

E ^ X I 1 $ 1 * § 1 1 E ^ X 2 ^ $ 2 = *2 * G i v e n e > 0 » c h e r e exist X * 0 , 

g.. € G such that £ X • 1 and 

] C* X ,C Tr(At) EPX 1 X 3 3 n(A2) - TT(A 2) ECX^ 1 X 2 1 T T C A ^ I I J ) 

- Uv [E Xj X 3 (g ! ) TT(TG, A.p,Tr(A2)]42)| < e 

where Aj « £ ^ ^(g ^ T ^ Aj at*d the Xj * 0 , gj € G are arbitrar> 
subject to Z \ ! » 1 . 

[In view of (i) and (ii) one can choose the X^» ĝ. such that 

;; T. XJ z x i x 1 ( g i gj) - 1 x 3 ( g i gj) - 1 u(g t gj) TT(AJ)# 1 

- E [ x x x 3 ] TT(A*) * j| < e/2 

jl E Xj 2 \ L X3(g. gj) X2(g. gj)"1 u ( 8 l gj) T T ^ ) § 2 

- ECX^ 1 X 2 ] TT(A 1 )* 2 | | < e/2 

This yields immediately the result"]. 
(iv) (c) • (b) =» (a) 

[(iii) yields the first implication, the second results from summation 
over X 3 , Xv X 2 € G " in ( 4 . 6 ) 1 . 

(v) (a) * (b) 
[Let *]_ € E [ X l l i j , $ 2 € E [ X j ] ^ , (a) gives 
( 4 . , TT(T A.) P TT(A.H„) « ( * ,TT (A.) PTT (T A . ) * . ) . 1 g l 2 2 1 2 g ! 2 
Writing P - Z E [ X . X ] - Z ELX" 1 X ] yields then 

X X 
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E _ x ( g ) " 1 (*v TT(A1) E C X ^ I T T ( A 2 ) $ 2 ) 
X € G 

- E . X ( g ) - 1 ( $ R TT(A2) E [ X _ 1 X 2 ] TT(AJ)§ 2 ) 
X € G 

and (b) follows!. 

(vi) Let # L € E D ^ ] ^ , « 2 € E [\1 and € > 0 , (b) Implies the 

existence of \^ * 0 , g^ € G such that 2 ^ * 1 and 
! < * ! . [ £ A t X j X ( G L g j ) ~ l TT(T g i G , A L ) , TT<A 2)] * 2 ) j < € 

where the Xj * 0 , gj € G are arbitrary subject to E Xj • 1 . 
[This follows directly from (iii)1. 
(vii) (b) * (c) 

[It suffices to prove (c) for the case of finite sums $. » E f , , 
1 X 1 

$ 2 » E f 2 where E [ x ] j y , and this follows from (vi)"|. 
X 

4.2. Corollary If the conditions of Theorem 4.1 are satis­ 
fied with respect to a closed subgroup H of G , they are satisfied  
with respect to G 

[This is immediately verified for (c)]. 
4.3. Corollary The conditions of Theorem 4.1 are Implied  

by the following 
(d) Let Aj be self-adjoint elements of and 

*r *2 6 * -SSH 

inf | ( f TK[T A , Aj)§j| - 0 (4.9) 
g 6 G 1 g i l l 

[This is immediately verified for (c)]. 
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*) 

4.4. Theorem Let the conditions of Theorem 4.1 be satisfied, 

then -

(a) The conditions of Theorem 3.1 are satisfied 

(b) X - X " 1 

(c) If p is ergodic, then E[X] is one dimensional for  

every X 63C and 3C is a subgroup of G . 

From Theorem 4.1 (b) we obtain 

[E[Xl ÎT(A1) E[X], E[Xl TT(A2) E[X]] « 0 (4.10) 

E[ll tr(A^) E[X1 rKA^ E[ll - E[l] TT(A2) ECX* 1 ] T T ^ ) E d ] (4.11) 

ECX^ T K A ^ E [ X X X ] TKAJ) E[X 2] - ECXjl T T ^ ) E[l] Tt(A 1 ) E ^ ] (4.12) 

Inserting X * 1 into (4.10) we obtain (3.5)» proving (a). 

Part (b) of the theorem results from (4.11). By Theorem 3.4, the ergodi-

city of p implies the irreducibility of nr($£) U U(G) f therefore the 

algebra 

E[Xl [E[X] TT((%,) E[X11" 

restricted to the range of E[X] is Irreducible and since it Is abelian 

by (4.10), E[x] is one dimensional. In particular E[l] is one dimensional 

and (4.12) gives 3C DC <^ j £ , which together with (b) proves that 3C 

is a group. 

4.5. Egulcontinuous^actions^ 

If the conditions of Theorem 4.1 are satisfied, equations (4.4), 

(4.5) hold and therefore the theory of Section 1 applies. In particular 

} See [231 
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there is a natural in tegral representat ion of p given by a probabi l i ty 

measure p on E (see Theorem 1.3.. We ca l l th i s in tegra l representat ion 

the mult iperiodic decomposition of p , We shal l show (Theorem 4.7) that 

if p i s ergodic and P Jf^ separable, the action of G on the measure 

p i s equivalent to a cer ta in equicontinuous action of G on the Haar 

measure m of a compact abelian group M . This wi l l j u s t i fy the phrase 

"multiperiodic decomposition". 

Let K be a compact space and T a continuous act ion of 

G on K , i . e . , r : G X K — i s continuous and i s a representat ion 

of G by homeomorphisms of K .We say that the action T i s equicon­

tinuous If, for each <p € £(K) , the set [<p © T * g € G] i s r e l a t i v e -

Si 

ly compact in ^ (K) 

~* 
Let G be obtained by replacing the or ig ina l topology by 

— ~# 

the d i sc re te topology on G . The character group G of G i s the 

compact group associated with G . Define a group isomorphism Y : G 

such that (yg) (X) » X(g) for a l l X € G , then y i s continuous and 

has dense image. For every continuous group homomorphlsm V\:G —^ H where 

H is compact, there i s a continuous homOmorphism fj : G —^ H such that 

r\ * r\ y 
4.6. Theorem. Let T be an equicontinuous action of G on  

the compact space K 

*) 
For a proof see [3] 16.1. 
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(a) There ex i s t s a continuous action T of G on K such 

chat T - • r if g 6 G  
Yg S — 

(b) Îf m is a probabi l i ty measure on K , invariant and  

ergodic with respect to the action T orf G , then the support H of 

m in K is a homogeneous space of G (for the action T ) and m 

re s t r i c t ed to M is the Kaar measure of th i s homogeneous space. 

(c) Conversely, le t T be a continuous action of G on a  

homogeneous space M and le t m be the Haar measure on M . Then the 

action g —^ T £f G on M is equicontinuous and m i s ergodic 
• g 

with respect to i t . 

We prove successively the three par t s of the theorem 

(a) The equicontinuity of the action of G implies that the 

closure of the set of operators T : <p — ) <p « T in ^(K) , with 
g g 

respect to the strong operator topology, i s a compact group H . There­

fore there ex i s t s a continuous homomorphism T G —^ H such that for 

a l l g € G we have T * T . Bv continuity H consists of auto-
g Yg 

morphisms of ^f(K) ; there i s thus a homeomorphism T— of K such 
g 

that 
f~ CD * <p o T-

g g 
The mapping T : G X K } K i s continuous and T * T if g € G 

i g g 

(b) If M were not a homogeneous space of G , we could find 

x, y € M such that x £ T~ y (where T - y i s compact). There would then 

See for instance Jacobs [2JL] p 112. 
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exist a compact neighbourhood L of x such that L fl Tg y « 0 or equiva­

lent ly y £ T^L .' Then TrL would b a compact set with x in its interior 
G G 

and y £ T- L . Because of the ergodicity of m with respect to the 
G 

action T of G , m would be carried by T- L or the complement of this 

set in M , in contradiction with the fact that M is the support of m . 
If x € M » the Haar measure m on M is defined by 

x J 

P 
m (<p) » dg <p(r~ x) 

x J _ 8 
G 

The measure m x is independent of the choice of x because of the 

transitivity of Ts on M and the invariance of the Haar measure on G 

Notice now that the invariance of m with respect to the action T of 

G implies its invariance with respect to the action T of G : 

m(^ o T ) * m(p) gives by continuity m(̂ D © T- ) " m((p) 
g g 

We have thus 

c f - c 
m(p) »J m(dx) (p(x) » dg[ o(dx) p(T- x)-] 

K J G J K 8 

A 

« J m(dx) [ dg p(?- x)] » m (tfù 
K G 8 x 

and therefore m « m 
x 

(c) If (p € (f(K) , (fi o is compact, hence tp o T^J is 

relatively compact, and g —^ T * T is equicontinuous. Since there 
g Yg 

is a measure on M invariant under G (namely m), there exists also an 

ergodic measure on M , but such an ergodic measure is by (b) necessari­

ly the Haar measure m , therefore m is ergodic.] 
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4.7. Theorem. Let the conditions of Theorem 4.1 be s a t i s f i ed ,  

l e t o be ergodic and l e t P Jt^ be separable. 

Replacing the or ig ina l topology of JC (defined by (4 .2)) by  
the d iscre te topology we obtain a group j £ 5 we l e t M be the compact  

character group of x ££d m the normalized Haar measure on M 

We define a continuous homomorphism 6 : G ^ M with dense image by 
(6g)(X) « X(g) for a l l X € X • The action (g, x) —> x . 6g of 

G on K is equicontinuous and m i s ergodic with respect to i t . 

There ex i s t s a mapping f : M—^E with the following pro­ 

pe r t i e s . 

(a) f transforms m into |i in the sense that the mapping 
2 2 

<p(*) —*<p(f) i s Isometric from L (E, |i) onto L (M, m) . 

(b) For a l l A 6 Ot , g € G 

f . (A) * f (T* 1 A) (4.13) x.og x g 

m-aimost everywhere with respect to x 

If A € Ci > X € 3C we define 

A X - L ErxX'] TT(A) E[X'] (4.14) 

X 

be the C -algebra generated by the A and define a r e ­

presentat ion T of G into aut % by 
T r Q « U(g) Q U(g)" 1 (4.15) 

We have in pa r t i cu la r 

T A X » X(g) . A X (4.16) 
g 

The proof of the theorem wi l l r e su l t from the following fac ts . 
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( i ) ^ i s abelian 
X l X 2 

[Using (4,6) we have [A ^ , ] 

- ^ [ E [ X X 1 X 2Jn ( A 1 ) E [ X X 2 ] r r ( A 2 ) E [ X ] - E [ X X 1 X 2]n ( A 2 ) E [ X X 1 ] ^ « 0] . 
XO£ 

( i i ) Let M be the spectrum of ^ , we denote by Q —> [Ql the 

Gel !fand isomorphism ^ —jf (M) . The action r of G on M de­

fined by [Q] (T X) * [T"* Ql (X) i s equicontinuous. 

[ I t follows from (4.16) that the mapping g }r Q is continuous and 
the orb i t T Q r e l a t i ve ly compact for the norm topology of 0/ ] . 

g 

( i i i ) The algebra P $ (see Theorem 1.1 and Theorem 1.2 (b)) i s equal . 
to the weak closure 

[We have P TT(A)P * 2 A in the sense of strong convergence, hence 
x e X 

P 18 c Jl . The r e s t r i c t i o n of P 8 to ? is abelian and has the 
cyclic vector 0 , hence i t i s maximal abelian and contains the r e s t r i c t i o n 

of to pjj^ (which commutes with i t ) ; therefore P $ 

( iv) A measure m on M i s defined by 

m([Q]> * (f»> Qf» (4-17) 

m is ergodic and i t s support i s M . 

[ i f m were not ergodic there would exis t a G-invariant vector ¥ in 
the closure of ^ 0 such that ¥ i s not a multiple of ft % in contra­
dic t ion with the ergodici ty of p (see Theorem 4.4(a) and Theorem 3.4). 
Let 0 £ Q 6 2 > t h e « m([Q]> * 0 Q 1 / 2 P rr(A)P 0 - 0 (because of (i) 
and ( i i i ) ) * Q 1 / 2 TT(A) ft * 0 * Q 1 / 2 * 0 ; therefore supp m - M ]. 
(v) M can be ident i f ied to the character group of j£ so that m is 
the Haar measure and T x * x. 6g (here J C * and 6 are defined as 
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in the statement of the theorem). 
[By (ii), (iv) and Theorem 4.6 (a), (b), T extends to a continuous 
action T of G on M and one may identify M with G/H where 
H - {g € G : T- * 1 } ; in this identification m is the Haar measure g 
of G/H and T <g> * <g.yg> where <•> : G — ^ G/H is the quotient 

g 
mapping. From (4.16) it follows that H * [g 6 G : X € X * g(X) - 1} 
and we may therefore identify G/H to the character group of j£ 
The Image of <yg> in j£ is 6g so that T x • x.6g ] . 

8 1 

(vi) The space £(M) is separable 
[Because the separability of Pj^ implies that the character group 
of M is countable]. 
(vii) The Gel'fand isomorphism —^ £(K) extends uniquely to a 
morphism of C -algebras > L*(Mt m) , again denoted by [•} , such 
that 

m([Rl) ~ (f), R O) (4.18) 

This morphism is an isomorphism onto. 

[This results from A. 3 applied to the restriction of 52 T O 

(viii) There is a mapping f# : M —> E such that for all A € OC , f

x<A) 

is measurable and for all € L̂ *(M, m) 

Jm(dxH(x)[PTT(A)P](x) - J,m(dx)f(x) fx(A) (4.19) 

We have m-almost everywhere 

[Pa(A)j(0 - [PTT(A)P](0 - f,(A) « A(f#) (4.20) 
[The function f, defined by A.8 satisfies (4.19); since sup ||f || » 1 

x 
and fft(D * 1 m-almost everywhere we may assume that f, maps M into 
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E ; (4.20) follows from (4.19) and Theorem 1.2]. 

( ix) Property (a) of the theorem holds. 

[Since polynomials in the A are dense in £(M) and since 

<p —) [Pa(<p)l i s a morphism £(E) — > L°°(M, m) (by Theorem 1.2, (iii) 

and (vii)), (4.20) gives [P 0,(^)1 ( * ) * (pit.) m-almost everywhere if 

p € £ (E) . Therefore 

U(0) - (0,a(o)O) * Jm(dx)[Pa(o)](x) »|m(dx)0(fx) * 
12 2 

Therefore the mapping cp—><p(ff) is isometric L (E, \i) —^ L (M, m) . 

The image of £(M) in 2 by p —^ P <x(<p) is strongly dense (Theorem 

1.2 and (iii)). Since the morphism [•] : % —> L^Oi, m) is onto by 

(vii) and since the norm of [Rl in L2(M, m) is t|[R]||2 » |JR ft|| by 

(4.18), we find that th* image of |?(M) by <fi —} [P a(p)] is dense in 
2 2 2 L (M, m) . Therefore the isometry L (E, ]i) —* L (M, m) is onto]. 
(x) Property (b) of the theorem holds 

[in view of (4.20) we have m-almost everywhere in x 

f x 6 g (A) « [PtT(A)P] (x.6g) - [PTT(A)P1 (rg x) 

« [U(g^1)Prr(A)P U(g)](x) « [P TT(T^ A)P](x) - f <T^1 A) ] 

4.8. 5?55£.£^2--.I^?2£Sm^^iZi 

(a) Define unitary representations V and W of G in 
2 2 L (E, jj) and L (E, m) respectively by 

V(g) <p(cr) - (p(T~l a) 

W(g) $(x) « •<x . ( 6g ) " 1 ) 

2 2 
Define further the mapping T : L (E, p) —^ L (Mf mX by 
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T «(x) * p(f ) x 

Part (a) of Theorem 4.6 expresses that T is an isometry of L (E, (i) 
2 

onto L (M, m) and part (b) that 
TV(g) » W(g) T 

(b) Let the conditions of Theorem 4.1 be satisfied and p 
be ergodic. Let X be any subgroup of 3£ and define 

P * E ~ E({X]) 

Then (4.6) gives 

P TT(OC) P C [p rr(Ot) P] f 

Furthermore Theorem 4.7 remains true if 3L and P are replaced every-
where by 3L and P 

(c) Suppose that jC Is a discrete subgroup of G and define 

H « [ g € G : X e : £ = * X(g) - 1} 

then H is a closed subgroup of G , G/H is compact, and P/f̂  con­
sists exactly of the vectors invariant under H , The tnultiperiodic 
decomposition is in that case an ergodic decomposition with respect to 
H and it will follow from 6.4 that \x is carried by H-ergodlc states. 

4.9. Sources. Much interest has been paid to dynamical systems 
with discrete spectrum and to the discrete part of the spectrum of dyna­
mical systems (see for instance Arnold and Avez [3] 9.13, Appendix 7, 
and references quoted there). A version of Theorem 4.4 with non commuta­
tive Ci was proved by Kastler and Robinson [ 2 * 3 , see also [1$3 • A 
first attempt at understanding the decomposition studied here was made by 

2 
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Doplicher, Gal lavot t i and Ruelle [ i l ] . 

If the ideas expressed by Landau and Lifshi ta about the tuu^/ 
of turbulence in hydrodynamics ([2f] § 27) are correc t , the multtperioclie 
decomposition may be useful in the descript ion of a turbulent state. 
Other appl icat ions exis t in s t a t i s t i c a l mechanics (see [3^J). The i n t e ­

res t ing s i tua t ions are those for which J C i* not a d i sc re te subgroup 

of G , t h i s corresponds for physical systems to the existence of periods 

with i r r a t i o n a l r a t i o s . 
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5. Quasi-local structure and decomposition at i n f in i ty . 

When a family u f sub-C -algebras of (% i s given, 

we may say that a quasi-local structure is defined on Ot . The following 

theorem is then often useful. 
., *) 5 .1 . Theorem. Let £r be a directed ordered set and le t 

($ A) A be a decreasing family of von Neumann algebras In JQ . Define 

^ * ^ A C % a n ( * assume $ c rr( (%) 1 . The following conditions are 

equivalent. 

(a) ffl consis ts of the multiples of 1 . 

( b ) Given A € QL there ex i s t s A € such that 

B € $ A |(n,TT(A)B ft) - p(A)(ft, B ft)| < || B || 

(c) Given 5 > 0 and A € 0 t there exist-s A such 

that 

B € « A * I (ft, TT(A)B ft) - p(A)(ft, B ft) | 5: € || B || 

Using the replacement A— fk /c one ve r i f i e s (b) ** (c ) . 

The proof of (a) (b) i s obtained by observing the equivalence of the 

following conditions [To obtain (iv) °> ( i i i ) use the compacity of the 

set of operators of norm £ 1 in the weak operator topology]. 

( i ) : non (a) 

( i i ) : there ex is t A^, A 2 € OC and B € * such that 

(ft, n ( A L ) B TT(A2)ft) * (ft, rr(AX A 2)ft) (ft, B ft) 

( i i i ) : there exis t A € OC and B € © such that 

|| B j! * 1 and !( f t , r r (A)B ft) - ( f t | T T (A ) f t ) ( f t , B ft) j * 1 

oC i s directed if, given A-, A there ex i s t s A such that 
A _, A0 ^ A . 
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( i v ) : there ex is t s A € Ob and for every A there ex i s t s € 
A A 

such that 

|lBA|| * 1 and !(fi,rr (A)B<A 0) - (0, rrU)Ù)(Ù> B

A

 n> ! * 1 

(v) : non (b) . 

5.2. Quasi-local structures 

We shall now study an example where algebras # A are construc­

ted from a quasi- local s t ruc ture . 

Let £ be an ordered set where a r e l a t ion A JL M may hold 

between pairs of elements, and l e t (OC^)^ ^ ^ be a family of sub-

C ̂ -algebras of QC . We assume that the following conditions are s a t i s ­

fied. 

QL 1. If \ * A

2

 a n d A 2 X M » t h e n A l X M 

QL 2. The set Z is directed and if A ± M^, A, JL M^i there ex i s t s 

M € £ such that H, , MJJ * M and A I M . 

QL 3. If A l M , then [$,K , U u l * 0 

QL 4. U. r «, ObA i s dense in Ob . 
A £ £ A 

We define 

OC* « U ^ (5 1) 
A °M:A JL M M 

By QL 2, (%A i s a se l f -adjoint algebra and QL 1 gives 

(A- £ Aj ^ (Oit ^ (5.2) 1 2 A X A 2 

Define also 

Clearly * c ï ï ( ( ^ ) » . On the other hand QL 3 and (5.1) give tC£t , 
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hence (>, TT(0¿ ) ] « o and, by QL 4, * c r т ( { ^ ) , . We shall call Si 

the algebra at infinity ; we have jus t shown that the algebra at Infinity  
is contained in the center of n(QQ)" • In pa r t i cu la r the theory of 
Section 1 applies. The corresponding decomposition of p given by j¿ 
(see Theorem 1.3) wi l l be called decomposition at infinity ; under 

sui table separab i l i ty assumptions ¡a i s carried by states with a trivial 

algebra at i n f in i ty (see Theorem 5.4 below). From (5.2> we get 

Therefore Theorem 5.1 holds, it characterizes the cases where the alge­

bra at i n f in i ty i s t r i v i a l , we reformulate this theorem as follows. 

*) 

5.3. Theorem^ We l e t ( # A ) A g £ satisfy QL 1 - QL 4, and  

use the notat ion (5 .1 ) , (5 .3 ) . The following conditions are equivalent. 

(a) The algebra at infinity ft consists of the multiples 

of 1. 

(b) Given e > 0 and A € Oi there exists A € £ such that 

it A1 € & A , then 

jp(A A 1) - p(A) p(Af) I * € || A1 || 
Let S)A be the weak closure of rr($L) and PA be the A A A 

largest projector in 3>A . Every B € ® A is of the form B»Bj+X(l-PA) 

with *x € S>A , ü B x I! i || B ||t I X I ^ || B j | ; therefore B « X 1+B' 

where B1 * Bj - X P A 6 5>A , IJB'H ^ || B][ || + | X .| < 2 || B || • From 

Theorem 5 . 1 , we see thus that (a) is equivalent to 

— ^ 
This theorem is of the Sinai-Powers type (see Sinai [3$], Powers [íl], 

Lanford and Ruelie [2$]). 
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(b') Given A £ Ot there exists A € £ such that 

B' € S A =» [(0 Jn(A)B' A ) - p U X O , B' Q) [ ^ € ¡1 B' j | 

*) 

Using Kaplansky's density theorem we may write equivalently 

A' € 0 ^ * |p(A A ' ) - p(A) p ( A ' ) | ^ e !|TT(A)!| 

This in turn is equivalent to (b) because if A ' 6 0(f^ there exiats 

A" € (XA such that rr(A') » rr(A") and || A" || is arbitrarily close to 

!l« CA")J! * * } . 

5.4. Theorem. Let ( ( X ' ^ ) ^ ^ ̂  be a countable family of 

sub-C -algebras of Ot satisfying the conditions QL 1 - QL 4 . If either  

of the conditions (a), (b) below is satisfied, the measure [X is carried  

by states o with trivial algebra at infinity, 

(a) d[/ is separable, 

(b) For each A € £ there is a separable closed two-sided 

ideal ^ A of Oi ^ such that the restriction of p to Qf̂  has  

norm 1 . 

In both cases, the condition S is satisfied and we may use 

the results of Section 2. For each A let (A^ ) be a dense sequence 

in 0iA (case (a)) or in *] * (case (b)). The von Neumann algebra ft 
A WA A 

is generated by the TKA^) with A J . M and contains tha diagonalizable 

operators (Theorem 2.1); furthermore the von Neumann algebra generated 

by the Tt (A^,) is S3. - TT (OC ) M . We may therefore write 

U ttj Ac a A 
"75 - . 

See Dixmier i$\ Ch 1, 5 3, Th6orfeme 3. 
See Dixmier [j] Proposition 1.8.2. 
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A A J a A 

Using Theorem 2.2 (b) th is g:.ves 

* « n TT«X^)" * f ' 1i(da) H TTA((X^)TT 

Since *A is the algebra of diagonalizable operators we find that 
0 consists of the multiples of the identity operator in Jtj^ 

U-alinost everywhere in a 

5.5. Source^ The concept of quasi-local structure originates 
in local quantum field theory (see for instance Arakl [l"})where £ con­
sists of the bounded open regions in Minkowski space ordered by Inclusion 
and AX M if A and M are space-like regions. Similar situations 
arise in statistical mechanics (see for instance [ 3 f ] ) , the definition of 
K-systems (see Sinai [3$]), or the study of canonical (antt-) commutation 
relations (see Powers [31]). In statistical mechanics, Theorem 5.4 may 
be used to describe the decomposition of equilibrium states invariant 
under space translations into clustering equilibrium states (see 
Dobrushin [IO], [l'l» Lanford and Ruelle [24]). When such a decomposition 
i s non trivial, symmetry breakdown i s said to occur, concrete and non 
trivial examples of symmetry breakdown have been worked out by Dobrushin 
[ill. The case (b) in Theorem 5.4 is useful in dealing with states of 
physical interest, for instance locally normal states (see 3.9). 
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(3. Further decompositions. 

In Sections 3-5 we have discussed some., typical in tegra l r e -

presentat ions of s t a t e s on a C -algebra,, We consider here b r i e f ly some 

further examples. Many more appl icat ions of the general theory of 

Sections 1 and 2 are of course poss ib le , the choice of * depending 

on the extra s t ruc ture present on v/u 

6.1, Canonical representat ion of s t a t e s on an abel ian C -al­

gebra. 

If Ot i s abel ian, we can apply the theory of Section 1 with 

56 - TT(0O m . In that case u is carr ied by the set of extremal 

points of E , i . e . the spectrum of % , and p —f \s i s the adjoint 

of the Gel'fand isomorphism. 

6.2. Central decomposition. 

If * - 7 7 ( 0 0 ' n rr(<%)»' ( i . e . ® i s the center of n (0O") 

the theory of Section 1 appl ies . The in tegra l representat ion of p given 

by a i s called centra l decomposition . I f # consis ts of the mult iples 

of 1 ( i . e . i f rKO^)11 i s a fac to r ) , p i s cal led a factor s t a t e . Sup­

pose that condition S of Section 2 is s a t i s f i e d , then n i s carr ied by 

the factor s t a t e s . I t follows indeed from Theorem 2.2 that 

ft = n{OC)' n Tr(0i)» = u(da) I T T C & ) ' n rjOtri (6.1) 

. 
If a quasi-Local s t ruc ture is given, various decompositions, analogous 
to that of Section 5, a r i se na tura l ly . If a group of automorphisms i s 
given, a decomposition of quasi- invar iant s t a t e s , s imilar to the ergodic 
decomposition of invariant s t a t e s , has been discussed [ l j ] . 
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and since W consists of the diagonalizable operators (Theorem 2 .1) , 

~^((&)' H v,^(0i)" consists of the multiples of 1 (i-almost everywhere 

in a 

6.3. Relation with the d is in tegra t ion of measures. 

Let K be a metrizable compact space, QO^ m £(K) the 

separable C -algebra of complex continuous functions on K and 

a morphism of (X.. into the center of 

TT((%)m such that 61 » 1 . A probabi l i ty measure on K is 

defined by 

UjC*) - (0, 6(*)n) (6.2) 

If $ * 6 (^6^) M , the theory of Section 1 applies and we shall show 

that there is a mapping' f§ : K —^ E such that f#(A) is -measu­ 

rable for A € Ot y and 

(O,a(0) 6(*)n> = J ^(dx) *(x) <p(fx) (6.3) 

for p € ^ (E) , * € u(K) . In pa r t i cu la r 

u(<p) - f ^ ( d x ) <f> (£x) 
*i K 

Let B € * and tjr € £(K) , then 

j(0, B 6($)fl)| * ¡1 B Ji(0,|6(*)IO) S || B ¡1 1̂ (1*1) (6.4) 

Therefore there i s a unique [B] € L°(K, n^) such that 

( f t ,B6 ( t )0 ) » J ^ C d x ) \Jr(x) [ B ] (x) (6.5) 

and one can see that [•] i s a morphism (using A.3). 

If $ € £(K) l e t € OC' b e defined by 
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F,.(A) »'(П, тт(А) 6Ш0) - (П, а(А) 6(ф)П) (6.6) 
V 

Then (6.4) gives П F II £ ̂ (juj) and F. has a unique extension to 

a continuous mapping from L^(K, ц^) to the strong dual of ft ; A.8 

gives the existence of f, : К —f ОС such that f #(A) i s ^-measurable . 

;! f.;| * 1 and 
л 

F,(A) * \lAdx) f(x) f (A) (6.7) у J I x 

Since |i ft J; £ 1 and J ^ ( d x ) * x ( l ) 1 we have ц^-almoet everywhere 

f. €E ; by a change of def in i t ion on a se t of measure zero we assume 

now f € E for a l l x £ К . Using (6.5) and (6.6) we may rewrite (6.7) 
as 

f UjCdx) $(х) [a(A)Kx) -J^Cdx) f(x) A(f x ) 

so that we have ц^-almost everywhere in x 

Ca(A)j(x) - A(f x ) 

Since a and [ O are morphisms and the polynomials are dense in 

t (E ) we have, for a i l cp € 

Га(рГ. (x) - cp(f ) 
X 

-almost everywhere in x , yielding (6 .3 ) . 

The problem of d is in tegra t ing a measure with respect to a 

mapping (see for instance Bourbaki [5] §3, n° 1) corresponds to the 

special case ОС ~ ^tih) where L is compact and metrizable. 

6.4. Decomposition with respect to a normal subgroup. 

Let G be a topological group and т, a representat ion of 

G in aut fX such that the functions g —> а(т A) are continuous 
1э 

file:///lAdx


- 45 -

( w i t h a € £ , A í (X ). Let also H be a closed normal subgroup of 

G such tha t G/H is compact. We assume that the state p is G-ergodic 

(see Theorem 3 . 4 ) and that % is H-abelian (see 3 . 7 ) . If u is the 

measure g i v i n g the ergodic decomposition of p (with respect to H ), 

then the support of u is a homogeneous space of G/H and JJL is the  

Haar measure of this homogeneous space. [The support of \x consists of 

H-invariant states on which G/H acts continuously, \x is ergodic for 

this action and the proof proceeds as for part (b) of Theorem 4 . 6 ] . 

Let a € supp |j , then 

D(A) - I dg T a(A) (6.8) 
JG/H 8 

where g is the class of g in G/H . The support of ji consists of 

H-ergodic states. [By A. 9> we may assume that a is an extremal point 

of the closed convex hull of supp \x . Let J * ~ + j where <Ĵ  , 

are H-invariant states. Define probability measures ^ **y 

n 
\iA<p) * dg T ai<f>) 

JG/H 8 

The ergodicity of p implies that it is the resultant of JJ^ and * 

Theorem 3 . 6 (a) yields then , JÍ^ M> a n d» since \i • j JJL̂  + j jĵ  , 

¡i^ 3 ii_ ** |i . This shows that 0". , cr0 € supp p. . But since a is an 

extremal point of the closed convex hull of supp jj we have 1(5 02 ]• 

6 . 5 . Sources. Central decomposition has been studied by 

Sakai [ 3 ^ " in the case of separable , see also [ 4 2 ] ; for physical 

applications see Araki and Miyata [ 2 ] , Haag, Kastler and Michel 

The decomposition in 6 . 4 of a G-ergodic state into H-ergodic states 
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improves a theorem of Ginibre (for which see [33]) by weakening the 
continuity conditions. 
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Appendix A. 

A.l. Lee sJZ be a von Neumann algebra in > P € v/t a pro­

jection. Let s/t p be the r e s t r i c t i on o f ? J P to ? Jfy and 0£') p 

the r e s t r i c t i o n of P / [ to P . Then utfp and (jt ) are von 

Neumann algebras in P/|j and (ĉ 'jp - C^p) 1 . [See Dixmier [g] Ch 1, 
§2, n° 1] . 

A .2 . A v ° n Neumann algebra IB is called baximal abelian i f 

^ - ^ r . If an abelian von Neumann algebra has a cyclic vector, then i t 

is maximal abelian. [See Dixmier [g ] Chi, 8 6, n°3, Corollaire 2 ] . 

A .3 . Extension of the Gel'fand isomorphism. 

Let % be an abelian C*-algebra of operators on the Hilbert 

t>pace M , ft 6 /J^ a cyclic vector for the commutant 3£ of 3£ • We 

denote by X the spectrum of ^ , by *£(X) the space of complex con­

tinuous functions vanishing at i n f in i ty , by B : ^(X) —^ 3C fche inverse 

of the Gel'fand isomorphism, and by m the measure on X such that 

m(f) « (ft, B(f)O) 

The mapping B extends by continuity to a unique mapping B: L (X,m)—^ IB 

where L (X,m) has the topology of weak dual of L'(X,m) and 83 i s 

the weak closure of j£ with the weak operator topology ; B thus ex­

tended i s onto and is an isomorphism of C -algebras. [See Dixmier [£] 

Ch 1, § 7] . 

A .4 . Let E be a convex compact set in a locally convex space 

and le t be a continuous pa r t i t ion of unity on . E ( i . e . a f in i te 
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family of continuous functions . £ 0 such that £ ty. •* 1 ). If |i 
J J 

i s a probabil i ty measure on £ , l e t ou ~ ^ ^ j ^ a n < * ^ e ^ e 

r esu l t an t : of a. L U . Define 
j J 

, J ex. 
j J 

where 6^ i s the unit mass a t a . The measure p can be approxi-
mated i n the vague topology by measures of the form \i , [Take (if,) 

subordinate to a suff ic ient ly fine open covering of E , see Bourbaki 
[4] p. 217 Prop. 31. 

A.5. Integral representat ions on convex comgact^sets^ 

Let E be a convex compact set in a locally convex space. 
An order r e l a t ion ^ i s defined (Bishop and de Leeuw) on the probabi­
l i t y measures on E by ^ ^ ^ M̂ (<p) ̂  U^p) f° r a ^ convex 
continuous function <p on E .If ^ ^ ̂  then and have 
the same resu l tan t . 

E i s said to be a simplex (Choquet) if for every p € E 
there i s a unique probabi l i ty measure (ĵ  on E which has resultant 
p and i s maximal for the order ^ . [See Choquet et Meyer [jr]]. 

A.6. Theorem of Alaoglu-Birkhoff. 

Let ^ be a semi-group of contractions of a Hilbert space, 
and let P be the orthogonal projection on the space of vectors in­
v a r i a n t under every U € (>C ; then P is contained in the strong 
operator closure of the convex hull of [See Riest and Nagy [3,2] 
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n° 146]. 

A' 
A. 7. Let p oe a state on uiz and f a posi t ive l inear 

form on QL such that £ s p ; then there ex is t s T € TT(0O* such 

that 
f(0 - (0, rr(0 T n) 

T i s unique and 0 £ T * 1 . [See Dixmier [$] 2.5.1]. 
Let a group G act by automorphisms on % and . f be G-in~ 

variant (See Section 3) then the uniqueness of T yields T € U(G) 1, 

A.8. A_variant of the theorem of Dunford-Pettis. 

Let m be a measure on the compact set M such that L^(m) 
is separable. Let (/t be any Banach space and Qt* i t s strong dual. 

For any continuous l inear mapping F. : L^(m) —> 00 there i s a func­
t ion f# : M —^ (jC with sup^ g M !l f

x il ^ H p il 8 u c h t I l a t : f o r every 

A t ^ » f,(A) is m-measurable and. for every 6 L^(m) , 

fm(dx) *(x) f U) - F. (A) 
J x <r 

^See Bourbaki [5] § 2, Exercise 19 ] 

A.9. Theorem of Milman. 

Let M be a set in a locally convex space. If the closed 

convex hull of M i s compact, i t s extremal points l i e in the closure 

of M . [See Kothe [2*] § 2 5 , 1, (7)]. 

*) 1 am indebted to A. Grothendieck for explaining a solution of th is 
exercise to me. 
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Appendix В. 

3.1. Propos iv Ion. Lcjt (̂ be a closed two-sided ideal of 
* /fir ^ che С -algebra . Every state o! on <j has a unique extension 

ro a s ta te о on ; .'2" > ^ 0) is the canonical cyclic r e -

presentation associated w 11h с > т-( ) is strongly dense in TTÍ $ / ) . 

This follows from Dixmier [3l Proposition 2.10.4, 

Б .2 . Proposition. Let the С -algebra {% have an iden t i ty  

and (}C ^ be a separable sub-C -algebra of (J¿ , 

(a) The set ̂  of states on % which have a r e s t r i c t i o n  

of norm 1 jto (% is a Baire subset of the set E of a l l s t a t e s on 

a . 

•̂'̂  If a r n e a s u r e U ££ E has resu l tan t p 6 > then 

^ is carried by ^ 

Let (Â ) be a dense sequence in the self-adjoint part of 

che unir, ball of {% ; (a) results from 

? * [a i E : sup a(A ) * П » n ^ V o c r n m > o m n 
V - U fa € E : a(A ) > 1 - Ь m n • n m 

To prove (b) suppose that ц - ц1 + ц" where ц 1 and ц и are 
carried respectively by V and its complement. 

We have 

o(A N ) - u'U n) + ц » и п ) * ¡I n' li + ¡I ц- ü ( 1 - ¿ ) 

- 1 - I !! ц" j! 

-p. 
'The main ideas of th is appendix come from [3.5"3, see also [ 3 £ ] Ch. 6 . 
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Since sup Íp(An)¡ = 1 . we find || jifl || « 0 
n 

Proposition. We use the notat ion of Section 2 and  

assume that condición S is s a t i s f i ed . 

(a) If a € Tr > then ^ ^ i s separable and the sequence 

T7 (A.) 0 i s dense in h 
o í a oo 

(k) 7 is a Baire subset of E 

^ ) ^ i s carried by . 

Part (a) results from Proposition B.l, parts (b) and (<*) 

result from Proposition B.2. 
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