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identity. We discuss the representations of a state p as barycenter of a

probabiiity measure 4y on E . Examples of such representations are the
central decomposition and the ergodic decomposition. They are associated

wita an abelian von Neumann algebra # in the commutant m(({)' of the

. This
situation is studied in general and a number of applications are discussed.

inaye of Ot in the representation canonically associated with o
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0. Introduction

Let Oi be a C*—algebra with identity, E the set of states
on 0{ . In a number of situations of mathematical physics, a state p
is '"decomposed" into other states o , i.e; o 1s exhibited as the re-
sultant of a probability measure |4 on E , or p has an integral re-

presentation of the form

p = /7 u(do) o
E

The measure i is usually defined through a von Neumann algebra % in the
Hilbert space of the cyclic representation T canonically ;ssociated with
0 ; B is abelian and contained in the commutant m)' of the 1mége
of C% . In Section 1 we describe the relation between # and . In
Section 2 we show, under certain separability conditions, how 8 is dia-
gonalized by a direct Hilbert space integral. In the following sections we
consider some examples: decomposition of states invariant under a group

into ergodic states, central decomposition, etc.

One can often (under suitable separability assumptions) show that
p is carried by a special class of states: ergodic states, factor states,
etc. Otherwise, the various decompositions have their particular problems
and properties. For instance in the case of the ergodic decomposition of a
G-invariant state p on a G-abelian algebra, the mapping p = up is af-

fine, but for other decompositions (e.g. central) such a property does not

hold in general.

There is quite a bit of recent literature on the subject matter



of this article, besides the classical literature on ergodic theory and
dynamical systems (which deals essentially with the case of abelian c% ).
In order to be reasonably readable, informative and self-contained, we

have included here a relatively large amount of material which is not
original (in particular much of Section 3). The main results of this work
are the general theory of Sections 1 and 2 and the study of "multiperiodic"
decomposition in Section 4 and decomposition "at infinity" 1in Section 5.
Section 4 presents an extension of the theory of dynamical systems with
discrete spectrum; in particular Theorem 4.1 shows that thé “"equiconti-
nuous patrt” of the action of a locally compact abelian group can be so to
say isolated and exhibited as translations on a torus. In Section 5 we con-
sider C*—aigebras with "quasi-local" structure. In such an algebra it
makes some sense to say that two elements A, A' are "far away" ; a
state ¢ may be called clustering if of4 A') 1is close to o(A).o(A") -
when A and A' are far away. Theorems 5.3 and 5.4 say essentially that

every state p §as a natural decomposition into clustering states.

For the organization of the article, we mention that Section 5
and 6.1, 6.2, 6.3 may be read independently after Section 2. A number of
results used in the pré%ent work have been collected in Appendix A for
easy reference. On the other hand the reader is assumed to be familiar with
the basic results on von Neumann algebras and C*-algebras. Appendix B con-

tains technical developments needed in Section 2.



1. General theorems.

Throughout this note we use the following notation and assumptions.
P‘A *
0(, is a C -algebra with identity, C‘(,’ is the dual of 06 with the
#
w ~-topology, E < 0{,' is the (compact) set of states on & . 1f A€ 0{ s

the function A on E is defined by

;(o) = g(A)

A fixed state p € E 1is chosen; the canonical cyclic represen-

. . ¥*)
tation associated with p 1is (f? , T, 1) 7.

R () % c B (1.1)

Then the orthogonal projection P on the closure of B (1 in & is such

that

PQ=Q p m()p < [p n(K)p) (1.2)

(b) Let P be an orthogonal projection in 5

satisfying (1.2), then the von Neumann algebra 8 = [n(OK) u {1}

satisfies (1.1).

*
)In this triple g) is a complex Hilbert space, T a representation of GC in
, Q1 € 1? , and the following conditions are satisfied
(1) jail=1 |
(i1) m™&)a is dense in (L is a cyclic vector for n(af))
(i1i) (v A €(¢) o(A) = (O, m(A)QD.



(¢) The relations between 8 and P established

by (a) and (b} are the inverse of each other.

Let the von Neumann algebra ® satisfy (1.1) and let P be the
orthogonal projection on the closure of B in @ . We note the following
facts
(i) pe @

{Let B, B, € 8, we have B PB; =8 BlQ = PBBICIP PBPBlﬂ and, since
8 Q is dense in P{), BP = PBP . Therefore BP = FB],

(11) Multiplication by P yields an isomorphism

[m(() U (2} —= () U {R}]

(et Be[m®) U (P)]' ,then BP=0=2BQ=0=Br())0=0=38=0].

(111) p[n((¥) u {p}]* = [ m(OL)P)"
"This follows from the formula (Vé')P = Qf%P)' (see A.1) with

A= ) u 31" 0.

(iv) p» = p(p®)' = plen(({ )21 = Plen( )R]’

{The restriction of PB® to Pf? is abelian and has the cyclic vector () ;
by A.2 it is thus equal to its commutant. Thus P#® = p(P®). The set
Pﬂ(aﬂ)P restricted to P%? commutes with P8 , and has the cyclic vector

f1 , therefore

P(PP) ' o p{Pm()P]" or P[Pm(({)P]’ > P8
and, by A.2, P{Pm(({)PI" = p(Pm(Cl)P]' 1.
(v) 8= () u {2}
[(1) ylelds 8 c [m((L) U {PY]* , (i11) and (iv) yield PB = p{n(y{r}]',

it suffices then to apply (ii)].



Part (a) of the theorem and one half of part (c) follow from (i{v) and
(v) respectively.
Let now P be an orthogonal projection in «@ satisfying (1.2).
We note the following facts.
(v)  p{em((})2]" = p(Em(({)P]"
[By A.2 because the restriction of [Pm({({)P]" to P{? i{s abelian and
has the cyclic vector 1 ).
(vii) plem(®)e)' = P[n((X) U [P}’
[The proof is the same as for ({i{)]
(viii) Multiplication by P yields an isomorphism
tn() U (213" = 2{m((X) U {17
{The proof is the same as for (ii)]
(ix) The closure of [ﬂ(OC) U {P}1'Qt 1is the range of P
[Because (m®) u 2110 = p[n((%) u {110 = pen(X)PI"0 :)Pﬂ(&)ﬂ
by (vi), (vii) J.
It follows from (vi), (vii), (viii) that [m((X) U {P}]' is abelian,
proving part (b) of the theorem. The second half of part (c) follows from

(ix).

- - -~

(a) Multiplication by P yields an isomorphism % -5 PH
(b) PB = P(PB)' = p(P({)P]" = plen((X)p]’

™
(¢) There is a morphism a : UE) ~—»8 of ¢ -algebzas such

that P a(A) = P(A)P for all A € (. . This morphism is unigue, its

image is stronmgly dense in B




CE) —% 3 ——yp B

/\T c (1.3)

M 5 prc0))p

Part (a) and (b) of the theorem follow respectively from (i1)

and (iv) in the proof of Theorem 1.1.

To prove (c) let first A;,...,A be self-adjoint elements of
% and ? be a complex-polynomial in n-variables. Consider a simultaneous
spectral decomposition of Pﬁ(Al)P,...,PTT(An)P :
P =fF(dx1...dxn)
Pr(A) P = ka Fldx,...dx )
We have then
I P (en(a)d®,. .., Ba )P ||
= Hf@(xl,. -oax ) Fldx,.. .dxn)H
< sup 1Py, ma)n, ..., A DY)
Yerh, [¥] =1

< s | Plota),...,0 N = [PG,...,48) (1.4)
g EE

-~

The polynomials :P(‘;l""’An) are dense in 8(3) and therefore (1.4)

implies the existence of a unique morphism §: 14¢:9) -> P 8 such that
g(A) = p m(A)P

The image of £ is strongly dense in PB . In view of (a) there is a

unique morphism ¢ : €(E) —> B such that for all ¢ € e(E) s

(o) = P aly)



If the g8{(¢) are uniformly bounder and converge strongly to PB , the
alp) are uniformly bounded and for each A € 6% the al@ AN =n(A)B(p)I0
converge, hence the (@) converge strongly to P , proving part (c¢)

of the theorem.

1.3. Theorem.(a) A probability measure u on E is defined by
() = (Q, alo) (1.5)

The resultant of 1 is o

(b) There 1s a unique mapping a : L7(E, u) —=> 8B such that
)

1. if @ € FE) , then (@) = ale *

2. & is continuous from the topology of weak dual of Ll(E, W) on

L®(E, u) to the weak operator topology on 8

- »
The mapping a 1s onto, is an isomorphism of C -algebras and, for every

Aell, v e L7, W,

SR ) = (0, mA) Ay ) (1.6)

Part (a) is checked immediately. We prove (b).
tet ¥ = a( €E)) , X .the spectrum of X , B : 8()() -> X the inverse of
the Gel'fand isomorphism. We may identify X to a subset of E such

that ale) = B((p{x) . Then supp u = X and (b) follows from A.3,

*
) That is, {f p 1is the canonical mapping &E) & L°(B, W) , then

a= & ©p



1.4, Coroliary. Let {B } be a finite set of positive ele-
- J .

- o - -

ments of R such that I Bj = 1 ., We define aj 20 and oj € E by

a; = (0, B o o cj(A) - (0, ‘n'(&)nj a)
and introduce a probability measure u'{B }- Za, on E ( 60 is. the
j .

c
3 1%
unit mass at ¢). If {B'k} is the set of partial sums corresponding to

some partition of {BJ} ve write {Bj} = (B',} . Given two sets {B'k] ’

{B"L} , there exists {Bj} ) {B'k’l , {B"d (take {Bj} = {B'kB"‘Ln'

The directed system (L‘{B }) converges to u in the vague topology of
#) 3

measures on E . This follows from Theorem 1,3 (b) and A, 4, If.

(') s {Bj} then, using the order < of Bishop-de Leeuw (see A.5) we

have Migr 1% Hpp) <M

- . —— -

c TT(O(/)’ . 1f we associate with it a measure, ﬁ on E Dby the above

N ~
theory, we have (B c®R) & (U< u) .

{Corollary 1.4 shows that ® < 8) = (< u) . Conversely, if ﬁ-ﬁ Moy
theorem 1 of CGJ**) shows that if ; € 8(3) ‘there exists § € L“(u)

such that for all A € 0('

a /Y

ua ) = G o

~ N - od
By (1:6), this gives a(¢) = aly} , hence BcC B ]

*)

i.e. in the w*-topology of the space of measures considered as dual

of G(&)

Reference [ 6] was pointed out to the author by J. Dixmier.
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If E is metrizable and i« yu there is a family (T.)

0C'c€E
Qf probability measures on E such -hat
(a) the resultant of To is ¢
(b) if @€ C(E) then o —> T (p) 1is a Borel function, and
~ ,
() = f Tg(qo) u(do) (1.7)
E

{This results from Theorem 2 of [ 6 ]]

~ ~
Formula (1.7) may be written y = f'fc p(do) and shows that if B C B,
the decomposition of p associated with B may be accomplished {n two

~
steps, via the decomposition associated with #

1.6. Sources. The use of (1.5) as definition of a measure .
giving an integral representation of p appears in Ruelle [34] for the
case of ergodic decomposition; a form of the same idea is already 'present
in Sakai (377 for central decomposition. Further references are given for
each specific application. A version of Theorems 1.2 and 1.3 for the case

#» () n a0 has been obtained independently of the present work

by Doplicher, Guichardet and Kastler [13] .
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*)
2. Reduction theory

In this Section we let W, P be as in Section 1 and we make

the following separability assumption.

Condicion S, For k = 1l,...,n there are countable families

(X ) and (7
G.l..u’lk — G..L..

(1y

*
) of sub-C -algebras of Oﬁ such that

I
Qpee Oy T« QyeQ )

) u, & is dense in J and U, (X 1s dense

et F1 S T MK 1%

in(%

—_— )

(111) J is a closed two-sided ideal of 0{:& o )
Oy« -0 1O
(iv) :-{G. e s separable,
1 n .
(v}  the restriction of p to each :{g @ has norm 1.
l.“\u . & n
Define
¥ = {g € E : the restriction of o t has norm 1}
Mqe. G Qy...Q
1 i 1 n
% = F
0.1 ‘g‘n CL,L ..qn
Let also (Ai) be a sequence in 56 such that each 70. a contains a
1"
dense subsequence. We shall denote by (éo, ﬁU’ ﬂc) the cyclic represen-
tation of CﬂC associated with ¢ € E . It {8 convenient to think of a

special case of condition S, namely that of separable 05 . We may then take
¥ = E and for (Ai) any dense sequence in 06 . The further complications

which arise in the general case are dealt with in Appendix B (Proposition

B.3).

" :
)See Dixmier [87 Ch.2, and [9] Appendix A,
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Let o € 3: , for any Ai’ A,

in the sequence (Ai) define

3 .
3 ' .

¥, €4, v (o) € *

Y., = A P(A) O (2.1)

\‘Jij(o) = c(Aj) ys (Ai) Oy (2.2)

The vectors “"ij (resp. ?ij(o)) are dense in »@ y: resp. é(o).

With the help of the family (?ij(')) a direct Hilbert space integral

]@ st (2.3)

#*
may be constructed ). It is the Hilbert space consisting of functions

$: 0E€EE —> ﬁ)o such that, for every 1, j, the complex function
c - (“.'ij (0), 8(0)) 1is y-measurable :;r}czl o —> |[l8(c)|| is square-inte-
grable; the norm is [f u(dc)“@(c)”z 7 . The Hilbert space (2.3) does

not depend on the choice of (A,) . It follows from (2.1), (2.2) and (1.5)

that

Fprjir ¥gy) = /u(dc) (¥ 141(0),¥; (o))

1]

&
There is thus a linear isometry of '@ into / u(do){io extending
Yij —y ‘!’ij(-) . This isometry is onto : suppose that we have

0 = [ W) (¥, (01,80 = [utao) &, @™ () 05,80

~

Since the Aj are dense in LZ(E,u) (by (1.5) the mapping ¢ =3 a(@)Q
is isometric from Lz(E,u) to P/? , the continuous ¢ are dense in
LZ(E,u) and the PT{A)Q} are dense in PI? , therefore the A are dense

in LZ(E,u)] we obtain y-almost every where

+ .
)See Dixmier £8) Ch. 2, § 1, Proposition 4.
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(m_ (a0, &) =0
g 1 ¢
and therefore

§(o = ©

For each 0 , itet T{g) be a bounded operator en % ; for
every i, j, 1', j' let o> (?i,j,(o),T(o)Yij(o)) be measurable and let
o—> IT(5)}, be essentially bounded.

*\
There is an operator /

)
T =‘{ uldo) 1(o)

@
such that, if & = f’ u(do)d(g) , then T¢ = jreh(dc) T(c)8(q)

If T(0) 1is a multiple A(O) of the identity for all o , then T is cal-

led diagonalizable ; if A 1is continuous, T 1is called continuously

diagonalizable .

2.1. Theorem. There is a unique identification

4’9= j(@p(dc)z? . (2.4)

such that

G
0 =/ uldo) 0, (2.5)
and for all A € (¥
23]
~(A) = f. uldo) ys (A) (2.6)
‘ I 4

With this identification, B becomes the von Neumann algebra of diagonali-

zable operators, in particular

Fry
) See Dixmier {81 Ch. 2, § 2.
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- @ -
c(A) = J/ w(do) Ao) (2.7)

; &
If we identify /@ and f p(dO’)/?O by the isometry extending

'

Yij -_— ‘Yij(') which we discussed above, we have
a(A)M(A) O = w(A) P=(a') O =qu(dc) c(AY) 'ﬁg(A) o (2.8)

for any A, A' in the sequence (Aj) and therefore for any A, A' € 06
(the sequence may be enlarged to include them), (2.5), (2.6) and (2.7)
follow from (2.8), The identification (2.4) is uniquely determined by
(2.5), (2.6) because ™(J{)1 is dense in @ . The von Neumann algebra B
is the strong closure of a( ¥(E)) by Theorem 1.2(c), by (2.7) it is

thus the weak closure of the algebra of continuously diagonalizable opera-
tors, which is precisely the von Neumann algebra of diagonalizable opera-

3
tors )

0
Let (Ti) be a sequence of bounded operators in 19 such that

(® e 1
T, =J ulda) 11(0)

i
1f .. 1s the von Neumann algebra generated by the Ti(c) , the operators

of the form

N
™ =[ w(de) T(m)

with T(ao) EJ”’O form a von Neumann algebra (,r which is said to be

decomposable and is denotred by
S

17

| u(do) ol

* -
) See Dixmier [§] Ch. 2, § 2, Proposition 8.
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#*
ay‘is generated by the 1, and the diagonalizable operators .

- v a r — a--

algebra :
. @ o
A = [ u(da)uzifa

Then Uf" is decomposable and

@ ’
VV’ zf J(d@)u‘fc (2 ' 9)

(b) Let (VV;) be a sequence of decomposable von Neumann

algebras: @
(A/\i’( u(dc):f{\io

Then

e (2.10)
n, I} = o Wi

This theorem is proved in Dixmier [7] (Ch. 2, § 3, Théoréme 4)
in the case of a (Radon) measure i on a locally compact space with
countable basis. The result hold however without countability hypothesis

v )
on E as follows from a paper by Effras [18)

. - -~ e -

sidered by Sakai [37F) for the central decomposition of a state on a se-
" ,

parable C -algebra. (The absence <f separability condition in the note by

Wils [447] on the same subject is puzzling.) The case of separable Cb s

and f ™)' n (0" , is considered in [13].

*)
See Dixmier [87 Ch. 2, § 3.

)

This reference was pointed out to the author by J. Dixmier.
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3. Ergodic decomposition,.

let G be a group and T a representation of G in aut GZ .

We define an action T of G on E by

T of(A) = 0(7'1 A) (3.1)
g g

#*
and let I CE be the set of G-invariant ) states, il.e., of states

such that Tg g=0 for all g € G

We assume that p € T ; there is then a unique unitary repre-

. . f .
sentation U of G in A? such that

G (3.2)

it

u(g) 0

6lg) ma) ug™hH n(r &) (3.3)

We ler P be the orthogonal projection on the subspace of {9 consti-

tuted of the vectors invariant under U ; (3.2) yields

PO=1 (3.4)

i
3.1. Theorem )A The following conditions are equivalent

[P

(a) P (e < [p ((hp) (3.5)
(b) ._g£l<A1, A, €0 and let §€p %} . Then, given

4 .
"r-invariant" would be more correct but "G-invariant" will cause no
counfusion, )

*
") gee Lanford and Ruelle [2)7.

e
)One might in (b) suppose 4., A, self-adjoint and/or replace the ex-
i

pectation value for § by a matrix element between Q}, §2 €P %} .
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€ >0 , there exist Ai 20,3 €6 such that T Ai = 1 and

(e, T2 Ay ﬁ('rg A, ma) T8 < e (3.6)

The proof will resulc from the following facts

(i) 1£ Vv , Vv, EJ£% and € > 0 there exist ki 20, 8; € G such that

1?7 2
T ki = 1 and, for a=1, 2,
1> i <e

- " v !
A ; li Ug j gi) Yo P ?a 4

s

R

where the l'i 20, g’j € G are arbitrary subject to T A', =1

k|
"Using A.6, we may suppose | T kiU(gi) ?a - PYa | <€ hence
i

¢

v L) t - ‘
« sJ;A j BT (A Uy pY )l <e 1.

(i1) tec A, A, € ({ be such that [ <1, o)l s1

Let 8,8, € p;? , be such that & |l <1 [lg,)l S1 . Given ¢ >0 one

-1} 1;5
can find Ki 20, 84 € G such that T Ai = ] and
|3, [m(a)dPr(a,) -m (&) Pm(a)]E)
- - [} ' ,
(3, [; A ; n(Tg',Allﬂ(AZ)] @2)] <e
J J
where A‘l = 7 ki Tg A and the X'j ; g‘j € G are arbitrary subject
i i
to T A', =1
o A 5
r i i . { } = ¥* =
(This follows from (i) with ¥, ﬁ(Al)Ql, Yz ﬂ(A1)§2 1.
(iii) (a) = (b)

TNotice that, by polarization, (a) is equivalent to

"
!

"(3,L A Pa(a,) -n (A)DPM(A)]E) = 0 for all P € Xa " . Putting

ki =1, 'y =1 and §1 = @2 = § in (ii) yields the implication

(a) = (b) . To prove (b)= (a) we use again (ii) : if (b) holds we may

choose X'j, g'. so that

Y
o4
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[ee, ? A H(Tgi AD, m(AN] B <e

and (a) follows].

3.2, Corollary. If the conditions of Theorem 3.1 are satisfied

- 4 o o om

with respect to a closed subgroup H of G , they are satisfied with

respect to G
"This is immediately verified for (b)].

3.3. Corollary. The conditions of Theorem 3.1 are implied

by the following

(c) Let A, &, €} and QEP,@ then

inf e | (8, ml A ADD)| =0 (3.7)

{This 1s irmediately verified for (b)].

*)
3.4. Theorem

. Consider the following conditions on the

G-invariant state p

(a) p 1is ergodic, i.e., p 1is an extremal point of I .

(b) The set ﬂ((%) U U(G) 1is irreducible in )(?

(c) P 1is ane dimensional.

We have (a) = (b) &€ (¢) . If p satisfies the conditions of

Theorem 3.1, then (a), (b), and (c) are equivalent.

The existence of a self-adjoint operator CEfﬂ(GL)U we)}'

" see (161, [34], [270.
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such that 0 S C €1 and C 1is not a multiple of 1, is equivalent by
A.7 to non (a) and non (b}; thus (a) ® (b). If (¢) holds, (1.2) is veri-
fied and (c) = (b} by Theorem 1.2 (a). If the conditions of Theorem 3.1

are satisfied, (1.2) is verified and Theorem 1.1 gives (b) = (¢).

e Yy

conv (TG Ay= (% A Tgi A Ai 20, 1T Ai- 1, g, € ¢} (3.8)

Then

inf otc®e) = (a, ma™) Pra) m (3.9)
C € conv('rG A)

*
- The proof results from A.6 and the inequality )

oc”e) = imera)? = b we)nl?

= |lp A = (@, naP ma) o)

3.6. Theorem. Let the conditions of Theorem 3.1 be satisfied,

- e~

3
sO that the theory of Section 1l applies )

) This simple proof was communicated to the author by H. Araki.

* ¥
) It is interesting to notice that here 8 = [m((}{) U U(6)]' , we shall

not make explicit use of this fact.
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(a) The measure u defined by (1.5) is the unique maximal

measure on 1 (with respect to the order of Bishop- de Leeuw, see

A.5) with resultant p

(b) If the condition S of Section 2 is satisfied (e.g. if

Ot is separable), the measure u 1is carried by ergodic states.

The proof results from the following facts

(i) supp pcil
(By Corollary 1.4, u 1is limit of measures u{B ] carried by finitely
h|

many points oj € E where

0.(A) = (0, B, M™F (a, ma) B, O)
J J J

and Bj €W ; using (0, ﬁ(A)Bj N) = (N,n(A)P B, 1) we find o, €1])

3
(ii) (a) holds

"We have to show that if ?f is any probability measure on 1 with re-
sultant o and ¢ a convex continuous function on I , then

S(¢) 2 u(@) . In view of A.4 we may suppose that T has finite support:
ﬁ(¢) =Za; w(pi) where o, 20, p; €1, ¢ a, = 1,12 o By =P

but then (see A.7)‘§ is of the form u{B‘} of Corollary 1.4 with

Bj em()' nue)' and, since U(G)' < {é?' by A.6, Bj €8 . Corollary
1.4 gives then ﬁ(q:) s ulo 1.

(ii1) If o €1 , let Pc be the projection on the subspace of G-invariant
vectors in é?c . For any A € Ot , the following quantity vanishes

y-almost every where in @
, 2
(Mg (&) O, B w (4) 6) - [Ca,ma) a)l

{Since this quantity is a priori 2 0 , it suffices to remark that



A* -~
J) u(da)[(ﬂc(A)ﬂ,Po ﬁG(A)no) - A (0)A(o)]

=gu(dc)[inf ) s(c'e)] - (n,a(R*)a(R)m

C € conv(TGA

< inf 5(CC) . (B,mCA YPRAN) = O

C € conv(?GA)
where we have used twice Proposition 3.5].

(iv) (b) holds.

(In view of Proposition B.3 (a) the sequence ﬂb(Ai){% is dense in.{}c
u~almost every where, and (iii) shows that P is almost every where

the projection on Qg]

If the conditions of Theorem 3.1 are satisfied, the integral

representation of p given by y will be called ergodic decomposition

(this terminology is justified by Theorem 3.6 (b)). We shall say that

06 is G-abelian if the conditions of Theorem 3.1 are satisfied for

every G-invariant state p . The following characterization is readily

deduced from Theorem 3.1 : @ﬂ‘ig G-abelian {f and only if for all 0 € I

and € > 0 there exist ki 20 , - € G s&uch that ¥ Ai ] and

)‘v' |
lo(L? Ay Tgi AL A <

* -
3.8. Theorem ). If Uﬂ is G-abelian, then I is a simplex

- — - -

in the sense of Choquet (see A.5).

This follows immediately from Theorem 3.6{(a) and the defi-

nitions,

¥ .
3.9. Theorem . let 0{, be G-abelian and let 8 be contained

*)
7 See Lanford and Ruelle [27].
-
)Thia thegrem yas proved originally by Stérmer [39] under the assump-
tion that (&) 1s contained in the strong operator closure of conv (T A)

for each A €(X and each invariant state p . Here we follow [36], ¢
Exercise 6.D.
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in m(({)" for each invariant state p . Then two ergodic states

¢, and p, cannot be guasi-equi ralent If they are distinct.

1 2

f
Let (A?l, Ty Ql) , ({82, Ty s 02) be the canonical cyclic
representations associated with Py and Py - The states p1’°2 are

called quasi-equivalent if there is an isomorphism § of ﬁl(Of/)"

[

onto nz((}[)" such that § nl(A) ﬁZ(A) when A 60(4 . let now o, Py

i

be ergodic, distinct, and take p % Py + % p, i by A7 and A, 6 there

exist B, , B, €8 with 0 <B,, 0 SB,, B, + B =1 , and

1? 1 2
1 . = S - =
fpi( ) = (0, m(A) B, f1) . Since the p, are ergodic we have B, B, 0

so that B, and B, are mutually orthogonal projections, we may identi-

i
We have B, € ® C m{{)" , let thus m(a) —7B; , then

fy J?i with the range of B, in /{9 and write ni(')ﬂi= \/;.Tr(')Bi 0.

n(A).%z —-9311)32 = OLQZ

But if o, and p2 were quasl-equivalent we would have the contra-

1

diction

ayt;, =86 )|y =14
wA)U22 5 m(aA 1‘31—_?6 1;21 1}?2

3.10. Sources. For the case of abelian (f (decomposition

- - —

of an invariant measure into ergodic measures) see for instance

Phelps [30] Section 10. For the extension to non-abelian (M see Ruelle
7341 , and in a different spirit Kastler and Robinson [23] where an
“abstract" decomposition is discussed, The present treatment largely
follows Lanford and Ruelle [2)) with some improvements in Theorem 3.6

and the addition of Theorem 3.9 ("Stdrmer's theorem" [39]). For further
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results see (28], (147, [40], [41), [38], [1Y] . A review and applica-
tions to statistical mechanics are given in [36) Ch 6 and 7. In the
examples of ergodic decomposition which occur in statistical mechanics,
G is typically the Euclidean group or the translation group in 3 dimen-
sions; a G-ergodic state is interpreted as ‘"pure thermodynamic phase" ,
and ergodic decomposition i{s the decomposition of a "mixture" into
pure thermodynamic phases. In physical applications the algeibra 0‘

is not always separable, but the states of physical interest satisfy a
form of condition S . Por instance it may be that 060, ’ Za are
sub-C*-algebras of 0{ such that Ofu is isomorphic to the bounded ope
rators and 30. " to the compact operators of some Hilbert apace %a ;

a state p which has a restriction of norm 1 to each 3& is then

called locally normal (see [35}, [20], [3€] ch 7).
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4., Multiperiodic decomposition.

Let G be a locally compact abelian group noted multipli-
catively, As in Section 3 we let T be a representation of G {in
aut 0% , we assume that the state p 1is G-invariant and we let U
be the unitary representation of G in j? satisfying (3.2) and (3.3).
We assume that U 1s strongly continuous*) and we let E(¢) be the

#3)

spectral measure on the charactergroup G such that.

u(g) = f. X(g) E(dX) (4.1)
G

Let ¥ be the subset of G consisting of the points X such that the
corresponding projection does not vanish: E({X}) # 0 . Por simplficity

we write E({X}) = E[X] . Then

% = (X €c: E[X]#0) (4.2)

We define the projection

pP= ¢ E[Xx1 = ¥ E[X] (4.7)
AEG XEX

From (3.2) we obtain then
PO = 0 (4.4)
i) , .
It is known that the range PJ9 of P consists of the almost

periodic vectors of Ja , L.e. of the vectors ¥ with a relatively com-

pact orbit U(G)V

%
) 1f for each A € OL and ¢ € E the function g —}0(78 A) 1is conti-

nuous on G , then it can be shown that U 1is strongly continuous.

)

The existence of E(+) is asserted by the S.N.A.G. theorem, see for
instance Maurin [29] p. 218.

et
)See'for instance [Q#] Ch 1 §7.
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4,1, Theorem. The follcwing conditions are equivalent.

- . -y -

(a) e(¥)p < [P w((0)p] (4.5)
(b) Let A, A, € (¥ , and let X, X,, X, €C , then

ELX, Jm(a) E[X, X,] m(A)) E[Xz]
= E[x In(ay) ELG X0 (A E[X,) (4.6)

() Let A  , 4, e , let 3, QZGP,}J‘, and let X €G .

Then, given € >0 , there exist Ai 20, g € G such that T Ki‘ 1

and

- -1 ,
[(8,,0 &, x(g,) 7y Ap)om(Ay)] 3,)| <e (4.7)

(1) 1f s

1

for all VY

i
The proof will result from the following facts;

is a finite subset of/b , X€Gand ¢ >0 there exist

A 20 , 8 €G such that T A, =1 and
i i

L TA, x(gi)’l ug,) ¥ - E[X]Y || < e (4.8)
i

m

S

{Notice that E[X] is the projection on the space of invariant vectors

for the representation g -ﬁrX(g)-l U(g) of G in A% . 1t suffices then

to use A.6].

(1i) If (4.
then || T
i,]

8) holds and if A' 20 , gi € G are such that I 15 =1,

)
MM X(gp8T TuGeg )Y - EIXNY | <o

[Because if (4.8) holde and g € G , then

| z A X(gi-g)-1 ulg, )Y - e(x]y ||

1

=1 x@ U [ Th %) ug) ¥ - EX] ¥ < ¢ )
1
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(it1) et 4, &, € (f be such char Al <1, (Al 1 . Let

. 1
X, Xy, X, €6 and 8, &) €% be such thar ¢, 51, &, <1 and

E[X17 él = él s E[XZ]QZ =&, . Given ¢ >0 , there exist ki 20,

4
4

i

g; € G such that T Ki = 1 and
~1
[, 0ma)) BNy X0 mla) - mlay) ECRST X1 mlA ) 4,)

- ' ' |

(&, [? kj x3(gj) n(¢g! Al)’ﬂ(AZ)]’Z)l <e¢
J J

where Ai = f Xi XB(gi)Tgi A, and the k; 20, 35 € ¢ are arbitrary

subject to T l; = 1,

[In view of (i) and (ii) one can choose the ) such that

1* 8¢

i ' ' -1 1 -1 t #
W T Aj % A )‘ll(g.l gj) X3(gi gj) U(gi gj) Tr(Al)é1

J
#* \
- E[x; X, m(a) @1” < e/Z.
e e e [ t"l 1
| ; Aj ; Ki X, (gy gj) X, (g, gj) U(g; gj) n(AI) %,

- E[X;I X,] n(Al)QZH < e/2

This yields immediately the result’.

(1v) (e} = (b) = (a)

[(iii) yields the first implication, the second results from summation
over X, X, X, € G in (4.6)7.

(v) (a) = (b)

[Let @1 € E [Xl]%a s §2 € E [XZJJQ , (@) gives

(g, w(rg A)) P m(A))8,) = (§,m () Pr (Tg 408%) .

Writing P = L E[X X] = Erx L X,7 yields then

X

>
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r xpt

XeeG

(% ﬂ(Al) E[XIX] n(AZ)éz)

1}

= 3 x(g)‘1 (%
X €@

and (b) follows].

-1
L’ ﬂ(Az) E[x x2] n(Al)Qz)

(vi) Let & €E D‘JPQ ;8 €E(X)]h and €>0 , (b) tmplies the

existence of Xi 20, 84 € G such that T li = ] and

1 1yl
[(8),0Z A} gy 87 mlr

v A ), ﬂ(A )] $.)| <e¢
1,3 173 gj 1 2 2 l '

i

where the ki'z o, gi € G are arbitrary subject to T Aj =1

[This follows directly from (iifi)].
(vii) (b)) = (c)

(It suffices to prove (c) for the case of finite sums ’1 =3 !11( ’
X

8, = E 6)2{ where Q)I( , 6)2( € E[X]}J , and this follows from (Yi)'].

4.2. Corollary. 1If the conditions of Theorem 4.1 are satis-

- - - o v e e

fied with respect to a closed subgroup H of G , they are satisfied

with respect to G

[This is immediately verified for (c)].

4.3, Corollary. The conditions of Theorem 4.1 are implied

- ——

by the following

(d) Let A;s A, be self-adjoint elements of 0‘ and
61, 92 € Piy , then

inf (&, ™[ A, A, DED)| =0 (4.9)
gEG! 1 g A D%

{This is immediately verified for (c)].
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#*
4.4, Theorem ) Let the conditions of Theorem 4.1 be satisfied,

- - o

then -
(a) The conditions of Theorem 3.1 are satisfied
® X=X}

(¢) If p 1is ergodic, then E[X] is one dimensional for

every X €X and X 1is a subgroup of G

From Theorem 4.1 (b) we obtain
(E(x] mA,) E[X], E[X] n(Az) E(x]] =0 (4.10)
E[11 mA)) E(X] m(ay) E(1] = E[1] m(A,) ECX™1Y mia,) E(1] (4.11)
E[xlj ﬂ(Al) E[x1 xzj n(Az) E[X2} = E[XI] n(Az) E(1] n(Al) E[X2] | (4.12)
Inserting X = 1 into (4.10) we obtain (3.5), proving (a).

Part (b) of the theorem results from (4.11). By Theorem 3.4, the ergodi-

city of p implies the irreducibility of m((}{) U U(G) , therefore the

algebra

Elx7 (E[x] m(({» E[x1"

restricted to the range of E[X] is {rreducible and since it is abelian
by (4.10), E[X] 1is one dimensional. In particular E[1] 1is one dimensional
and (4.12) gives X . X < X , which together with (b) proves that X

is a group.

If the conditions of Theorem 4.1 are satisfied, equations (4.4),

(4.5) hold and therefore the theory of Section 1 applies. In particular

") See (23
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there is a natural integral representation of p given by a probability
measure I on E (see Theorem 1.3.. We call this integral representaticn

the multiperiodic decomposition of p . We shall show (Theorem 4.7) that

if o 1is ergodic and P,i? separable, the action of G on the measure
g 4is equivalent to a certain equicontinunus action of G on the Haar
measure m of a compact abelian group M . This will justify the phrase

"multiperiodic decomposition",

Let K be a compact space and T a countinuous action of

G on K , i.e., T: G XK=—3K 1is continuous and is a representation
of G by homeomorphisms of K . We say that the action T is equicon-
tinuous 1f, for each ¢ € E(K) , the set {¢ o Tg = g € Gl is relative-

ly compact in 8(1()

-~

Let G be obtained by replacing the original topology by
-~ - A*
the discrete topology on G . The character group G of G 1is the

compact group associated with G . Define a group isomorphism v:G —ﬁ»é

such that (yg) (X) = X(g) for all X € G , then vy 1is continuous and
has dense image. For every continuous group homomorphism T:G —»H where
H is compact, there is a continuous homomorphism 1 : E-}}{ such that

- *
n=mny )

4.6. Theorem. Let T be an equicontinuous action of G on

- - e ——

the compact space K

#
) For a proof see [9] 16.1.
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(a) There exists a continuous action T of G on K such

that 7 =~ 1if g €G

(6) If m 1is a probability measure on K , invariant and

ergodic with respect to the action T of G , then the support M gﬁl

m in K is a homogeneous space of G (for the action T ) and m

restricted to M is the Haar measure of this homogeneous space,

(¢) Conversely, let T be a continuous action of G on a

homogeneous space M and let m be the Haar measure on M . Then the

action g ~%.;v of G on M 1is equicontinuous and m 1is ergodic

B

with respect to it.

We prove successively the three parts of the theorem

(a) The equicontinuity of the action of G implies that the
closure of the set of operators Tg o=y 'rg in f(K) s with
respect to the strong operator topology, is a compact group H *). There -~

fore there exists a continuous homomorphism T .: G ~>H such that for

all g € G we have Tg = ¥vg . By continuity H congists of auto-
morphisms of {(K) ; there is thus a homeomorphism ?—g— of K such
that
Te o = ER
g #7907

The mapping T:G XK —> K 13 continuous and ;YS = Tg if g€G

(b) If M were not a homogeneous space of G , we could find

X, vy € M such that x ¢ ?5 y (where ?a y 1s compact). There would then

»
) See for instance Jacobs [247 p 112.
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exist a compact neighbourhood L of x such that L N ?(-; y = ¢ or equiva-
lently y ¢ ?(-;L . Then '?éL would b~ a compact set with x in its interior
and y £ ?é L . Because of the ergodicity of m with respect to the
action T of & , m would be carried by ?é L or the complement of this

set in M , in contradiction with the fact that M is the support of m .

If x € M , the Haar measure m  on M is defined by
mx(rp) = JZ dg ¢p('r§ x)
G

The measure m is independent of the choice of x because of the

transitivity of ;E; on M and the invariance of the Haar measure on G
Notice now that the invariance of m with respect to the action T of
G implies its invariance with respect to the action T of & :

m{p © Tg) = m(¢) gives by continuity m(y e ;E) = m(qp)

We have thus

n(p) =| mldx) p(x) = dg{ | m(dx) o(T- x)]
K G K g

u_(K m(dx) [ _((_; dg <p("?.g. x)] = m ()

and therefore m = m}t

(c) I1f o€ P , ¢ o ?(-; is compact, hence @ o ?YG is

relatively compact, and g — T, " ‘?Yz is equicontinuous. Since there
is a measure on M invarfant under G (namely m), there exists also an
ergodic measure on M , but such an ergodic measure is by (b) necessari-

ly the Haar measure m , therefore m 18 ergodic.)
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- - -

let 0 be ergodic and let P{a be separable,

Replacing the original topology of X (defined by (4.2)) by

*
the discrete topology we obtain a group x ; we let M be the compact

3
.y 3

character group of £ and m the normalized Haar measure on M

We define a continuous homomorphism 6 : G —> M with dense image by

(6g)(X) = X(g) for ali X € X . The action (g, x) =>x . &g of

G on M 1is equicontinuous and m 1is ergodic with respect to it.

There exists a mapping f : M ~»E with the following pro-

perties.

(a) f rransforms w into W in the sense that the mapping

@(+) — o(f) 1is isometric from L2(E, i) onto LZ(M, m) .

(b) For all A€(l , g €G

£ = -1
x.bg (A) fx (Tg A) (4.13)

m-almost everywhere with respect to x

1¢ Ae(¥ ,XE% we define

A=t D) ma) E[x') (4.14)

X'e€X
. * X
We let @, be the C -algebra generated by the A" and define & re-

presentation T of G into  aut 2 by
T, Q= Ul @ U (4.15)

We have in particular

T, A= X A (4.16)
&

The proof of the theorem will result from the following facts.
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() 9 is abelian
' R %
[Using (4.6) we have [A 1 Ay 1

=XEIEE[XX1X2_;1T(A1)E[XX2]ﬂ(Az)ELX]~E[XX1X2]n(Az)E[XXI]n(Al)E[X] ] = 07 .

(ii) Let M be the spectrum of Q , we denote by Q —> [Q] the

Gel'fand isomorphism 9 — ¥(1) . The action t* of G on M de-

fined by [Q] (‘rg x) = [T;I Q1 (x) 1is equicontinuous.
4

[1t follows from (4.16) that the mapping g —) 1'8 Q 1is continuous and

the orbit 'rg Q relatively compact for the norm topology of Q 1.

(£i1) The algebra P ® (see Theorem 1.1 and Theorem 1.2 (b)) is equal .

-1
to the weak closure Q, of 22 .

(We have P m(A)P = T Ax in the sense of strong convergence, hence
_ XeX ,
PBC 2 . The restriction of P8 to P)9 is abelian and has the

cyclic vector ) , hence it is maximal abelian and contains the restriction
of ,‘Z, to P}g {(which commutes with it); therefore P SDQ,]..

(iv) A measure m on M is defined by

n({QY) = (n, o (4.17)
m 1s ergodic and its support is M
[(If m were not ergodic there would exist a G-invariant vector ¥ in
the closure of Q {1 such that ¥ 1is not a multiple of I , in contra-
diction with the ergodicity of » (see Theorem 4.4(a) ‘and Theorem 3.4).

Let O SQGQ, then m([Ql) = 0 = Q 1/2

1/2 /2 _

P m(A)P 61 = O (because of (1)

and (1ii)) = Q mAY =0= Q1 0 ; therefore supp m = M ].
o #
(v) M can be identified to the character group of X 8o that m 4is

*
the Haar measure and Tg x = x. g (here X and & are defined as
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in the statement of the theorem).

{(By (i1), (iv) and Theorem 4.6 (a), (b), T extends to a continuous
action T of ¢ on M and one may identify M with G/H . where
H= (g €G: ?é =1 }; in this identification m 18 the H;ar measure
of G/H and 'r'g <g> = <g.yg> where <> : G —>G/H 18 the quotient
mapping. From (4.16) it follows that H = {g €3G : X Gx ®» g(X) = 1}
and we may therefore identify G/H to the character group of %*
The image of <yg> in &:* is 06g 8o that 'rgx = x.6g J.

(vi) The space € (M) 1s separable |

[Because the separability of P}‘a implies that the character group f
of M is countable].

(vii) The Gel'fand isomorphism Q—? C(K) extends uniquely to a
morphism of C*—algebras . le.—é LM, m) , again denoted by [+] , such

that

m([R1) = (O, R O) (4.18)

This morphism is an isomorphism onto.

{This results from A.3 applied to the restriction of & to Pfé J.

(vii{) There is a mapping f : M —> E such that for all A €(X, x-—)fx(A)

is measurable and for all ¢ € LI(M, m)

~(m(dx)ﬁ(x)[l’!‘T(A)P](:!c) - ‘(m(dx)ﬂr(x) fx(A) (4.19)

We have m-almost everywhere

[Pa(A)I(-) = [PMCA)PI(+) = £ (A) = A(E,) (4.20)

[The function £, defined by A.8 satisfies (4.19); since sup “fx“ = ]
X .
and f (1) = 1 m-almost everywhere we may assume that f, maps M into

.
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E ; (4.20) follows from (4.19) and Theorem 1.27.
(ix) Property (a) of the theorem holds.
"Since polynomials in the A are dense in { (M) and since

© — [Pale)] is a morphism E(E) —> L*(M, m) (by Theorem 1.2, (iii)

and (vii)), (4.20) gives [P a(e)l (+) = &(f,) m-almost everywhere if

¢ € £ (E) . Therefore
W@ = (0.0 = [nenPato)}x) = f a(dx)e(£,)

Therefore the mapping ¢ —> @{f,) 18 isometric ‘i.z(E, ) -—)LZ(M, m) .
The image of £ (M) in A by ¢ —>P a(p) is strongly dense (Theorem
1.2 and (iii)). Since the morphism [+] : ,”2‘—9 L”(M, m) is oato by
(vii) and since the norm of [R1 in L2(M, m) fis H[R]“z = |lr 0] by
(4.18), we find that the image of L(M) by ¢ —3 [P alp)] is dense in
LZ(M, m) . Therefore the isometry LZ(E, M - LZ(M; m) 1is onto).

(x) Property (b) of the theorem holds

[In view of (4.20) we have m-almost everywhere in x
£y bg (A) = [Pn(A)P] (x.8g) = [Pm(A)P] (‘rg x)

- Coe™Henwr (160 = [z niet WPl = gt w )

4,8, Remarks on Theorem 4.7.

- s - — - -

(a) Define unitary representations V and W of ¢ in

LZ(E, {) and LZ(E, m) respectively by

v(g) @lo) = (0(1’;1 )
W(g) ¥(x) = ¥(x.(6g)" 1)

Define further the mapping T : LZ(E, W) —)LZ(M, m), by
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T o{n) = (p(fx)

Part (a) of Theorem 4.6 expresses that T 1is an isometry of LZ(E, W)
onte Lz(M, m) and part (b) that

Tv(g) = W(g) T

(b) Let the conditions of Theorem 4.1 be satisfied and p

~J
be ergodic. Let £ be any subgroup of X and define

T T EC({x])
XeE

Then (4.6) gives
B0 P [P wl) P

Furthermore Theorem 4.7 remains true if X and P are replaced every-

o~

~
where by X and P
(c) Suppose that x is a discrete subfroup of G and define
H={g€G:Xe¥X = X(g) =1}

then H is a closed subgroup of G , G/H is compact, and ?}a con-
sigts exactly of the vectors invariant under H ., The multiperiodic
decomposition is in that case an ergodic decomposition with respect to

H and it will follow from 6.4 that yu 1is carried by H-ergodic states.

- . -

with discrete spectrum and to the discrete part of the spectrum of dyna-
mical systems (see for instance Arnold and Avez [37 9.13, Appendi‘x 7,
and references quoted there). A veraion of Theorem 4.4 with non commuta-
tive ({ was proved by Kastler and Robinson [23], see also [15] . A

first attempt at understanding the decomposition studied here was made by
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Doplicher, Gallavotti and Ruelle [14] .

If the ideas expressed by Landau and Lifshitz about the naturs
of turbulence in hydrodynamics ([2€] § 27) are correct, the multiperiodic
decomposition may be useful in the description of s turbuleat state,
Other applications exist in statistical mechanics (see [3#)). The inte-
resting situations are those for which x is not a discrete subgroup

of G , this corresponds for physical systems to the existence of periods

with irrational ratios.
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5. Quasi-local structure and decomposition at infinity,

v £ : FLTANN *
When a family (UV/\’ vf sub-C -algebras of 06 is gilven,
we may say that a quasi-local structure is defined on O(z . The following

theorem 1s then often useful.

4

#
.i. Theorem. Let 55 be a directed ) ordered set and let

w

(Q\A)A X be a decreasing family of von Neumann algebras in ,@ . Defilne

R =N A ‘:‘\6 ﬁ/\ and assume B c 7( (}(/)’. The folloving conditions are

equivaient,

(a) B consists of the multiples of 1 .

(b) Given A € G‘(, there exists A G,tf such that

BEB = (OB 0) - pa)n, 3o < 8|

(c) Given ¢ >0 and A € there exisrs A €40 such

that

BE® = [(0, mMAB M - pA)A, B ¢ | 8|

Using the replacement A —)A/¢ one verifies (b) & (c).

The proof of (a) © (b) is obtained by observing the equivalence of the
following conditions [To obtain (iv) = ({ii) use the compacity of the
set of operators of norm <1 in the weak operator topology].
(1): non (a)
(i1): there exist Al’ A2 €8 and B €% such that

(Q, n(a,)8 =(A,)0) # (Q, ~(A; 4,00 (0, B O)
(111): there exist A € ({ and B € B8 such that

He! <1 and [(Q,m(A)B O) - (O,m(A)) (0, BOD| 21

* <
To\c is directed if, given Al' Az €ax there exists A Gz such that

<
A{,/\z A
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(iv): there exists A £ OC and for every A there exists BA € %A

such that
Byl <1 and l(a,m (W)B, Q) - (0, m(A)O)O, B, ) =1

(v) : non (b)

5.2. Quasi-local structure,

v e o - " - W -

We shall now study an example where algebras EA are construc-

ted from a quasi-local structure,
Let £ be an ordered set where a relatfon AJ M may hold
between pairs of elements, and let (otA)A €
* 4
C -algebras of CK . We assume that the following conditions are satis-

be a family of sub-

fied.
<
QL 1. If /\1 A2 and /\Z.L M , then AI.L M
QL 2. The set £ is direcred and if A L Ml’ AL Hz, there exists
M€ £ such that M, M, S M and ALM

QL 3. If AL M , then [@%A , L~M1 = 0

v . . .
QL 4. UA €c YUA is deuse in 06
We define
Y o0
OC'/\ L'M:/\_i_M M (5.1)
L
By QL 2, CLA is a self-adjoint algebra and QL 1 gives
AL )
(A, sA)Y =» (- o OCL) (5.2)
1 2 A A
1 2
Define also
- ‘L\"

Clearly % C m(({)" . On the other hand QL 3 and (5.1) give [d::(kkjﬁo s
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hence (9, n(OtA)j =0 and, by QL 4, B cm((0)' . We shall call %

the algebra at infinity ; we have just shown that the algebra at infinity

is contained in the center of m(J)" . In particular the theory of

Section 1 applies. The corresponding decomposition of p given by u

(see Theorem 1.3) will be called decomposition at infinity ; under

suitable separability assumptions 4 18 carried by states with a trivial

algebra at infinity (see Theorem 5.4 below). From (5.2) we get

(hy S8 = (B 2 B

Therefore Theorem 5.1 holds, it characterizes the cases where the alge-

bra at infinity is trivial, we reformulate this theorem as follows,

#)
5.3. Theorem . We let (OiA)A € satisfy QL 1 - QL 4, and

— -

e,

use the notation (5.1), (5.3). The following conditions are equivalent.

(a) The algebra at infinity ® consists of the multiples

(o}
far)
—

(b) Given € >0 and A € 0( there exists A € £ such that

if A' € (}L: , then

lo(a A") - p(A) p(a")]| s e || A |

Let D, be the weak closure of ﬂ(Oﬁi) and P, be the

largest projector in D, . Every B € %A is of the form Bt31+k(1-PA)
with B, €D, i B, <, Al =<|B]| ; therefore B =X\ 1+B'

vhere B' =B -1 P €D , | <] B [+ xat<2|B] . From

1!

Theorem 5.1, we see thus that (a) is equivaleat to

3* . ] ] -
)This theorem is of the Sinai-Powers type (see Sinai [38], Powers [81],

Lanford and Ruelle [28]).



(b') Given A € ({ there exists A € £ such that

B' €D, = [(O,ma)s' & - p(a)Q, B’ M| se 8 |

#
Using Kaplansky's density theorem ~ we may write equivalently

A (0, = lataan - p(a) pan] s e [in]

This in turn is equivalent to (b) because if A' € OC; there exists
4
A" € OLA such that m(A') = m(A") and || A" || 1s arbitrarily close to

: 3eat
I any ™

be a countable family of

-------- Let AES
#
sub-C -algebras of ({ satisfying the conditions QL 1 - QL 4 . If either

of the conditions (a), (b) below is satisfied, the measure i 18 carried

by states ¢ with trivial algebra at infinity.

(a) 0ﬂ is sepirable.

(b) For each A € £ there is a separable closed two-sided

ideal (:{/\ of C‘(’A such that the restriction of p to 3/\ has

norm 1 .

In both cases, the condition S is satisfied and we may use
the results of Section 2. For each A let (AA.) be a dense sequence
in OﬁA (case (a)) or in BA (case (b)). Thi von Neumann algebra 8,
is generated by the n(AMj) with AL M and gontainn the diagonalizable

operators (Theorem 2.1); furthermore the von Neumann algebra generated

by the T (A, ) 1s B, =1 (CIL)" We may therefore write
cAMj o A )

Ao

#)
)

See Dixmier [8] Ch 1, § 3, Théorime 3.

See Dixmier [9] Proposition 1.8.2.
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R = 4 " oo & ' 4 "
Bo= (00 -f uldo) m (CL)
Using Theorem 2.2 (b) this g:.ves

ré 4
%= 000" = | ko) A ()

“~

Since ® {s the algebra of diagonalizable operators we find that
N ﬂg(CC:)“ consists of the multiples of the fdentity operator in {%J

i{l~almost everywhere in ¢

in local quantum field theory (see for instance Araki [1])where £ con-
sists of the bounded open regions in Minkowski space ordered by inclusion
and AL M if A and M are space-like regions. Similar situations
arise in statistical mechanics (see for instance [3¢]), the definition of
K-systems (see Sinai [38#]), or the study of canonical (anti) commutation
relations (see Powers [3f]). In statistical mechanics, Theorem 5.4 may

be used to describe the decomposition of equilibrium states iavariant
under space translations into clustering equilibrium states (see
Dobrushin [#0], [11], Lanford and Ruelle [28]). When such a decomposition
is non trivial, symmetry breakdown is said to occur, concrete and non
trivial examples of symmetry breakdown have been worked out by Dobrushin
(111, The case (b) in Theorem 5.4 is useful in dealing with states of

physical interest, for instance locally normal states (see 3.9).
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7

8. Further decompositions.,

In Sections 3-5 we have discussed some. typical integral re-~
presentations of states on a C*~a1gebra, We consider here briefiy some
further examples. Many more applications of the general theory of
Sections 1 and 2 are of course possible, the choice of ® depending

ny #)

on the extra structure present on o .

6.1. Canonical representation of states on an abelian C -al-

s - o " D > S O e S S e S R 0 B b e A A G B R D O e S ha A S s

e - o

(% is abelian, we can apply the theory of Section 1 with
%= =(J)" . in rhat case 4 is carried by the set of extremal
points of E , i.e. the spectrum of o , and p—ryu 1s the adjoint

of the Gel'fand isomorphisn.

6.2. Central decomposition,
1f R= (M) na(lh" (i.e. B 1is the center of WX ™)

the theory of Section 1 applies. The integral representation of p given’

by u 1is called central decomposition . If % consists of the multiples

of 1 (di.e. if ﬂ(GLY" is a factor), p 1is called a factor state . Sup~

pose that condition § of Section 2 is satisfied, them u  1is carried by

3

the factor states. It follows indeed from Theorem 2.2 that

A=l natlDr ‘f ulde) Tm (G0 o .-G((}cr*‘; (6.1)

g

*}If a quasi-local structure is given, various decompositions, analogous
to that of Section 5, arise naturally. If a group of automorphlsms is
given, a decomposition of quasi-invariant states, similar to the ergodic
decomposition of invariant states, has been discussed [13]
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and since %R consists of the diagonalizable operators (Theorem 2.1),

10((}(/)' n T?O(U’i)" consists of the multiples of 1 y-almost everywhere

in ¢

6.3. Relation with the disintegration of measures.

- - i " - " - 5 B P mr W o

Let K be a metrizable compact space, 0(,1 =

#*
separable C -algebra of complex continuous functions om K and
¢: 0(1 —> m( (}f/)' AnBhr e morphism of &1 into the center of

()" such that &1 = 1 . A probability measure W, on K 1is

defined by

Hy (0 = (a, 6(9)A)

If ® = 6(%1)" , the theory of Section 1 applies and we shall show

that there is a mapping‘ £

rabple for A EO(;, and
(0,al@) 6(H)A) =f by (dx) §(x) ol£)
K

for ¢ € f(E) , VE ) . In particular

ulp) = ()K u.l(dx) (f(fx)

let BE® and § € £(K) , then
q, B sy s | B o, lsi) s 8 |} ul(wl)
Therefore there is a unique [B) € L (K, ul) such that

(0,B6(¥)O) = jul(dx) v(x) [B] (x)

and one can see that [+] is a morphism (using A.3).

If 3 € f(R) let F, € ({' be defined by

(6.2)

, : K—>E such that £ ,(A) {8 ,-measu-

(6.3)

(6.4)

(6.5)
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F(a) = (6, =(A) 8(H)M = (O, alA) 53O (6.6)

sl
iy

Then (6.4) gives L F i s pl(iw§) and F, has a unique extension to
a continuous mapping from Li(K, ul) to the strong dual of Ck ; A8

{
gives the existence of f, : K-> 0{  such that £.(A) fis pl—measurable,

1 1

T f. s 1 and

FQ(A) =()u1(dx) g {x) fx(A) 6.7)

i

Since i f,ll €1 and jvul(dx) fx(l) = 1 we have ), -almost everywhere
f, €E ; by a change of definition on a set of measure zero we assume

now f €E for all x € K . Using (6.5) and (6.6) we may rewrite (6.7)

as
f

EICRRTC) fa(a)1(x) =Jul(dx) ¥ (x) R(fx)
so that we have u1~aimost everywhere in x
[a(A)I(x) = AC£)
Since & and [+7 are morphisms and the polynomials are dense in

€(E) we have, for all Q< ¥(x)

3
el () = cp(fx)

Hi-almost everywhere in x , yielding (6.3).

The problem of disintegrating a measure with respect to a
mapping (see for instance Bourbaki [57 §3, n° 1) corresponds to the

special case 0l =¢(L) where L is compact and metrizable,

o0 e v -t v o o Bt - o <2 v o o s D - -

let G Dbe a topological group and 7T, a representation of

¢ in aut C% 'such that the functions g —%'U(Tg A) are continuous


file:///lAdx
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(with ¢ €2 , AC[{ ). Let also H be a closed normal subgroup of

G such that G/H is compaét. We assume that the state p 18 G-ergodic
(see Theorem 3.4) and that 6% is H-abelian (see 3.7). If u is the
measure giving the ergodic decomposition of p (with respect to H ),

then the support of i is a homogeneous space of G/H and | is the

Haar measure of this homogeneous space. [The support of | consists of

H-invariant states on which G/H acts continuously, u is ergodic for

this action and the proof proceeds as for part (b) of Theorem 4.6].
Let ¢ € supp 4 , then

{
ola) = f dg T_ o(A) (6.8)
G/H 8

where g is the class of g in G/H . The support of U consists of

H-ergodic states. [By A.9% we may assume that o is an extremal point

of the closed convex hull of suppuu . Let o= % o, + ; o, where 9y »

G, are H-invariant states. Define probability measures Hps Mo by

2

u, (@) = j) dg 1_ o(p)
t G/H g

The ergodicity of p implies that it is the resultant of Hy and Mg 3
. A 1 1

Theorem 3.6 (a) yields then Hy o uz-{ i and, since i = 5 M+ 5 Hy

M= My =W This shows that G5 0y € supp M . But since ¢ 1is an

extremal point of the closed convex hull of supp u we have g, = 0y J.

- an - - -

Sakai [37. in the case of separable 0l , sealso (4] ; for physical
applications see Araki and Miyata [2], Haag, Kastler and Michel [1%)].

The decomposition in 6.4 of a G-ergodic state into H-ergodic states
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improves a theorem of Ginibre (for which see [33]) by weakening the

continuity conditions,
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Appendix A.
A.l. Lec 7 be a von Neumann algebra in f? , P E J% a pro-
jection. Let t p be the restriction of pAP to P‘%? and (Jé')P
I o ¢
the restriction of Pt to P 42 . Then ufp and (uf )P are von

Neumann algebras in PA? and (ufi)P = (Jép)' . [See Dixmier [§] Ch 1,

§2, n°® 1.

A.2, 4 von Neumann algebra B is called maximal abelian if
R = W' If an abelian von Neumann algebra has a cyclic vector, then it

is maximal abelian. [See Dixmier [g] Chl, § 6, n°3, Corollaire 27].

A.3. Extension of the Gel'fand isomorghism.

- e - —— - - A . 0 s D o e o B o s o - -

%
Let 9@ be an abelian C -algebrs of operatora on the Hilbert
f I ?
space 19 , O € Aa a cyclic vecror for the commutant 96 of S{ . We
denote by X the spectrum of 32 , by %(X) the space of complex con-
tinuous functions vanishing at infinity, by B : ‘f(x) - 3? the inverse

of the Gel'fand isomorphism, and by m the measure on X such that

o) = (0, B(HIN

The mapping B extends by continuity to a unique mapping B: Lm(x,m)—j»ﬁ
where L (X,m) has the topology of weak dual of L'(X,m) and B 1is
the weak c¢losure of SE with the weak operator topology ; B thus ex-
tended is onto and 1Is an isomorphism of C*-algebras. (See Dixmier [§]

Ch 1, § 7).

A.4. Let E be a convex compact set in a locally convex space

and let (wj) be a continuous partition of unity on. E (i.e. a finite
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family of continuous functions ¥, 2 O such that I wj =1). If u

is a probability measure on E , let a = u(wj) and Gj be the
- -1 e,
resultaat of =, Voou Define
4 o
fad
L= 8
. ? QJ a,
] J
wiere & _  is the unit mass at ¢ . The measure i can be approxi-

=

~
mated in the vague topology by measures of the form U . [Take (wj)
!
subordinate to a sufficiently fine open covering of E , see Bourbaki

[4] p. 217 Prop. 37.

-y ap o e s o S v e Ky iy s e s e e D e S s o e B e A - -

-

Let E Dbe a convex compact set in a locally convex space,
An order relation <« 1is defined (Bishop and de Leeuw) on the probabi-
lity measures on E by wu, 74 M, if u1(¢9 < u2(¢) for all convex
continuous function ¢ on E . If My < Ho then Hy and Hy have

the same resultant.

E is sald to be a simplex (Choquet) if for every p € E
there is a unique probability measure “p on E which has resultant

p and is maximal for the order <4 . [See Choquet et Meyer [r]].

- - e - O . A At ST e T - o -

let zL be a semi-group of contractions of a Hilbert space,
and let P be the orthogonal projection on the space of vectors in-
variant under every U € ([, ; then P 1is contained in the strong

operator closure of the convex hull of 4 [See Riesz and Nagy [32]
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n® 1467

A.7. Let p ve a state on 3$ and f a positive linear
form on Ol such that £ s 5 ; then there exists T € m((}{)' such
that

£f(») = (0, w( 3T

T is unique and O < T <1 . [See Dixmier [4] 2.5.1].
Let a group G act by automorphisms on & and p, f be G-in-

variant (See Section 3) then the uniqueness of T vields T € U(G)'.

A.8., A variant of the theorem of Dunford-Pettis.

- 2 o O 2 e e T Dy T O o ey s S e T o P B . W o

Let m be 8 measure on the compact set M such that Ll(m)
is separable. Let 0‘ be any Banach space and 0(' its strong dual.
For any continuous linear mapping F. : (m) — CZ' there is a func-
tion f,  : M -—?C{“ with sup_ ¢ M ‘l s|ir H such that for every
Aced, £f,(A) is m-measurable and, for every § € Li(m) R

§ " -
| m(dx) ¥{x) fx(“) FW (A)

- *
"See Bourbaki [5] § 2, Exercise 19 )]

A.9. Theorém of Milman.

Let M be a set in a locally convex space. If the closed
convex hull of M is compact, its extremal points lie in the closure

of M . [See Kothe [24] § 25, 1, (7)].

#) 1 am indebted to A. Grothendieck for explaining a solution of this
exercise to me,
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Appendix B
. N . . e . - IS
3.1, Pronosiv.on., ot ) be a closed two-sided ideal of
D T I I ) o ‘»d
» o Ag
the C -algebra ué‘ . Every state ' ou (J has a unique extension
./:f P I3 “ ~ : . 1 .
to a state o on 4o 1f Loy, 7™, O is the canonical cyclic re-
~

. . » N s 0 . . s
sresentation associated with ¢ , ~(J) 1is strongly dense in ﬂ\ob).

This follows trom Dixmier [§. Proposition 2.10.4.

P-A

*
B.2. Propositicn., Let the € -algebra 0{ have an identity

. A * )
and JCO be a separable sub-C -algebrs of éz .

(a) The set :{; of states on é% which have a restriction

of norm 1 to Oﬁo is a Baire subset of the set E of all states on

(&

(h) If a measure i on E has resultant p € Qfo , then

.. is carried by ifo

Let (A_) Dbe a dense sequence in the self-adjoint part of

t

the unic ball of lﬁo ; (&) resuits from

¥ ={cczkE

sup a(A ) = 1} = D v
o a

vV = U fogeng:olhA)>1 - L
" n n

To prove (b) suppose that o = u' + y

"

where ' and " are
carried respectively by Vm and its complement.

We have

- - ]
ola) = u'A) +ua) = ffu i+ el -2

7

The main ideas of this appendix come from [35), see also [36] Ch. 6.
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Since sup ip(An)‘ =1 , we find | u" ji=0
n

B.3. Proposition. We use the notation of Section 2 and

assume that condicion § is satisfied.

(a) If o€ F , then "?c is separable and the sequence

™~ is d i -
J(Ai) QG s dense in 1;90

(b) ¥ is a Baire subset of &

(¢) M is carried by ¥

Part (a) results from Proposition B.1, parts (b) end (e)

result from Proposition B.2,

PO el

7 am indebted to D. Kastler for advanced communication of his results on
integral representations of states. I want also to thank H. Araki for

critical reading of the~'manuscript, and J, Dixmier fot'usveful references,
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